:::

詳目顯示

回上一頁
題名:游泳抓台出發之垂直跳利用率與下肢動力學探討
作者:李靜雯
作者(外文):Ching-Wen Lee
校院名稱:國立臺灣師範大學
系所名稱:體育學系
指導教授:黃長福
林德嘉
學位類別:博士
出版日期:2004
主題關鍵詞:抓台出發下蹲垂直跳利用率動力學逆過程grab startcountermovement jumputilizing ratioinverse dynamics
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(7) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:7
  • 共同引用共同引用:0
  • 點閱點閱:36
游泳競賽中,出發是影響游泳成績的許多重要因素之一,尤其在短距離的比賽項目中更是不可忽略的一環,因此選手必須更加重視出發的訓練以得到較多的利益。本研究的目的在探討游泳選手之垂直跳能力運用在出發表現上的利用率,藉以評估抓台出發之表現;並瞭解出發動作期間肌肉作用之特殊性,以作為訓練肌力時的參考。
研究中以十位優秀選手為受試者,平均年齡、身高和體重分別為19 ± 2.6歲、1.76 ± 0.04公尺和67.6 ± 5.1公斤,50公尺捷泳最佳成績為25.15 ± 1.25秒。實驗中以Redlake 高速攝影機 (250Hz) 、Kistler測力板 (500 Hz) 和JVC數位攝影機 (120Hz) 同步擷取受試者游泳出發和揮臂下蹲垂直跳動作之資料。分析軟體以Peak Performance Motus 7.0和Kistler Bio Ware求得所需之運動學和動力學參數,再以利用率公式及動力學逆過程方法求得所需之利用率、淨關節肌肉力矩和功率等參數。研究結果指出選手的平均力量利用率(URFa)、平均功率利用率(URPa)和衝量利用率(URIa)範圍依序為50%~75%、15%~35%和18%~42%;游泳出發動作主要貢獻者為膝和髖關節,且髖關節在出發台後期的關節肌肉作用型態和其它跳躍動作不同,髖關節屈肌群在出發台後期是在抵抗地面反作用力矩而做離心收縮。
本研究主要的結論如下:
一、平均力量利用率 (URFa) 是一個簡便且可靠之評估游泳選手出發表現的方法;透過此利用率的檢測,可瞭解選手運用垂直跳能力在游泳出發上的程度多寡。
二、游泳抓台出發著重出發台後期蹬伸平均力量的提昇將有助出發表現。
三、本研究建議在進行肌力訓練時,除了注重踝和膝關節之伸肌群向心肌力練習外,還需針對髖關節的特殊性以離心訓練加強其屈肌群。
The start is one of the important factors in swimming competitions. Especially, the swimmers in sprints have to pay more attention to the training of the start to gain more benefits. There was twofold in the purpose of this study. First, to investigate the utilizing ratio of countermovement jump applying in grab start in order to estimate its performance. Second, to understand the specific muscular strength in swimming grab start to schedule the training program.
Ten male elite competitive swimmers were asked to participate in this study. The subjects data showed that: Ages 19 ± 2.6 yr, body weights 67.6 ± 5.1 kg, body heights 1.76 ± 0.04 m and 50m freestyle 25.15 ± 1.25s (mean ± S.D.). Redlake high speed cameras (250Hz), force plate (500Hz) and JVC camera (120Hz) were used simultaneously to record the process of entire movement. The analyzed system used in this study were Peak Motus 7.0 and Bio Ware softwares. Utilizing ratio, net muscle joint moment, and power were calculated through utilizing ratio function and inverse dynamics method. The results showed that the ranges of average force utilizing ratio (URFa), average power utilizing ratio (URPa), and impulse utilizing ratio (URIa) were 50%~75%, 15%~35%, and 18%~42%, respectively. Knee and hip joints were the main contributing factors to grab start. The pattern of contraction of hip joint in block late phase of grab start were different from the other jumping movements. Due to against to the ground reaction moment, the hip flexors were eccentrically contracted during the block late phase of grab start.
The conclusions of this study were:
1. The average force utilizing ratio (URFa) was a reliable parameter for estimating the swimming start performance. Through the method of calculating the average force utilizing ratio, it was easy to understand the level of exerting countermovement jump ability during grab start.
2. Through increasing average forces in extension phase of grab start will improve start performance.
3. It was suggested that athletes should not only practice ankle and knee extensors with concentric contraction, but also should focus on hip flexors eccentric contraction training.
一、中文部分
林正常、黃勝裕與陳重佑(1999)。蹲踞跳與下蹲跳之垂直跳躍指標與等速肌力相關之探討。中華民國體育學會體育學報,27,91-98。new window
劉宇(1999)。人體多關節運動肌肉控制功能的生物力學分析。台北市:文化大學出版部。
二、英文部分
Arellano, R., Pardillo, S., Fuente, B., & García, F. (2000). A system to improve the swimming start technique using force recording, timing and kinematic analyses. In Y. Hong & D. P. John (Eds.), Proceedings of ⅩⅧ International Symposium on Biomechanics in Sports, vol. 2 (pp.609-612). Hong Kong: The Chinese University of Hong Kong.
Ayalon, A., Gheluwe, B. V., & Kanitz, M. (1975). A comparison of four styles of racing start in swimming. In L. Lewillie and J. P. Clarys (Eds.), Swimming Ⅱ: International Series on Sport Science, Vol. 2(pp. 233-240). Baltimore: University Park Press.
Blanksby, B., Nicholson, L., & Elliott, B. (2002). Biomechanical analysis of the grab, track and handles swimming starts: an intervention study. Sports Biomechanics, 1(1), 11-24.
Blitvich, J. D., McLean, G. K., Blanksby, B. A., Clothier, P. J., & Pearson, C. T. (2000). Dive depth and water depth in competitive swim starts. Journal of Swimming Research, 14, 33-39.
Bobbert, M. F., & Van Ingen Schenau, G. J. (1988). Coordination of vertical jumping. Journal of Biomechanics, 21, 241-262.
Bosco, C., Luhtanen, P., & Komi, P. V. (1983). A simple method for measurement of mechanical power in jumping. European Journal of Applied Physiology, 50(2), 273-282.
Bowers, J. E., & Cavanagh, P. R. (1975). A biomechanical comparison of the grab and conventional sprint starts in competitive swimming. In L. Lewillie and J. P. Clarys (Eds.), Swimming Ⅱ: International Series on Sport Science, Vol. 2(pp. 225-232). Baltimore: University Park Press.
Breed, R. V. P., & McElroy, G. K. (2000). A biomechanical comparison of the grab, swing and track starts in swimming. Journal of Human Movement Studies, 39, 277-293.
Cavanagh, P. R., Palmgren, J. V., & Kerr, B. R. (1975). A device to measure forces at the hands during the grab start. In L. Lewillie and J. P. Clarys (Eds.), Swimming Ⅱ: International Series on Sport Science, Vol. 2(pp. 43-50). Baltimore: University Park Press.
Counsilman, J. E., Counsilman, B. E., Nomura, T., & Endo, M. (1988). Three types of grab starts for competitive swimming. In B. E. Ungerechts, K. Wilke, & K. Reischle (Eds.), Swimming Ⅴ(pp. 81-91). Champaign: Human Kinetics.
De Graaf, J. B., Bobbert, M. F., Tetteroo, W. E., & Van Ingen Schenau, G. J. (1987). Mechanical output about the ankle in countermovement jumps and jumps with extended knee. Human Movement Science, 6, 333-347.
Dempster, W. T. (1955). Space Requirements of the Seated Operator. WADC Technical Report (TR-55-159). Wright-Patterson Air Force Base, OH.
Disch, J. G., Hosler, W. W., & Bloom, J. A. (1979). Effects of weight, height, and reach on the performance of the conventional and grab starts in swimming. In J. Terauds and E. W. Bedingfield (eds.), Swimming Ⅲ(pp. 215-221). Baltimore: University Park Press.
Gallivan, M. T., Hoshizaki, T. B. (1987). A mathematical model of a swimming start entry. In B. Jonsson (Ed.), Biomechanics Ⅹ-B: International Series on Biomechanics (pp. 767-772). Champaign: Human Kinetics.
Gambrel, D. W., Blanke, D., Thigpen, K., & Mellion, M. B. (1991). A biomechanical comparison of two relay starts in swimming. Journal of Swimming Research, 7(2), 23-30.
Gehlsen, G. M. & Wingfield, J. (1998). Biomechanics analysis of competitive swimming starts and spinal cord injuries. Journal of Swimming Research, 13, 23-30.
Groves, R. & Roberts, J. A. (1972). A further investigation of the optimum angle of projection for the racing start in swimming. The Research Quarterly, 43(2), 167-174.
Harman, E. A., Rosenstein, M. T., Frykman, P. N., & Rosenstein,R. M. (1990). The effects of arms and countermovement on vertical jumping. Medicine and Science in Sports and Exercise, 22(6), 825-833.
Hay, J. G. (1985). A mechanical analysis of the grab starting technique in swimming. International Journal of Sport Biomechanics, 1, 25-35.
Hobbie, P. (1980). Analysis of the flat vs. the hole entry. Swimming Technique, 16(4), 112-117.
Horita, T., Kitamura, K., & Kohno, N. (1991). Body configuration and joint moment analysis during standing long jump in 6-yr-old children and adult males. Medicine and Science in Sports and Exercise, 23(9), 1068-1077.
Hubley, C. L. & Wells, R. P. (1983). A work-energy approach to determine individual joint contributions to vertical jump performance. European Journal of Applied Physiology, 50(2), 247-254.
Jacobs, R., Bobbert, M. F., & Van Ingen Schenau, G. J. (1996). Mechanical output from individual muscles during explosive leg extension: the role of biarticular muscles. Journal of Biomechanics, 29(4), 513-523.
Jacobs, R., & Van Ingen Schenau, G. J. (1992). Intermuscular coordination in a sprint push-off. Journal of Biomechanics, 25(9), 953-965.
Kollias, I., Baltzopoulos, V., Chatzinikolaou, K., Tsirakos, D., & Vasiliadis, I. (1992). Sex differences in kinematics and temporal parameters of the grab start. In D. MacLaren, T. Reilly, & A. Lees (Eds.), Swimming Ⅵ (pp.181-185). London: E &FN Spon.
Kramer, J. F., Morrow, A., & Leger, A. (1983). Change in rowing Ergometer. Weight lifting, vertical jump and isokinetic performance in response to standard and standard plus plyometric training program. International Journal of Sports Medicine, 14(8), 449-454.
LaRue, R. J. (1985). Future start. Swimming Technique, 21(4), 30-32.
Lee, C. W., Huang, C. F., Lin, D. C., & Lee, C. W. (2002). The strategy of muscular pre-tension during initial block phase in swimming grab start. Proceeding of ⅩⅩ International society of biomechanics in Sports (pp. 52-55). Careres: Universidad de Extremadura.
Lewis, S. (1980). Comparison of five swimming starting technique. Swimming Technique, 16(4), 124-128.
Maglischo, E. W. (1994). Swimming even faster. Toronto: Mayfield.
McLean, S. P., Holthe, M. J., Vint, P. F., Beckett, K. D., & Hinrichs, R. N. (2000). Addition of an approach to a swimming relay start. Journal of Applied Biomechanics, 16(4), 342-355.
Mills, B. D., & Gehlsen, G. (1996). Examining vertical velocity measurements in the pike and flat swimming starts and preference for male and female collegiate swimmers. Journal of Human Movement Studies, 30, 195-199.
Nelson, R. C., & Pike, N. L. (1978). Analysis and comparison of swimming starts and strokes. In B. Eriksson, & B. Furberg (Eds.), Swimming Medicine Ⅳ: International Series on Sport Sciences, Vol. 6(pp. 347-360). Baltimore: University Park Press.
Paasuke, M., Ereline, J., & Gapeyeva, H. (2001). Knee extension strength and vertical jumping performance in nordic combined athletes. Journal of Medicine Physical Fitness, 41, 354-361.
Pearson, C. T., McElroy, G. K., Blitvich, J. D., Subic, A., & Blanksby, B. A. (1998). A comparison of the swimming start using traditional and modified starting blocks. Journal of Human Movement Studies, 34, 49-66.
Ridderikhoff, A., Batelaan, J. H., & Bobbert, M. F. (1999). Jumping for distance: control of the external force in squat jumps. Medicine and Science in Sports and Exercise, 31(8), 1196-1204.
Robertson, D. G. E., & Fleming, D. (1987). Kinetics of standing broad and vertical jumping. Canadian Journal of Sports Sciences, 12(1), 19-23.
Schnabel, U., & Kuchler, J. (1998). Analysis of the starting phase in competitive swimming. In Y. Hong & D. P. John (Eds.), Proceedings of ⅩⅧ International Symposium on Biomechanics in Sports, vol. 1 (pp.247-254). Hong Kong: The Chinese University of Hong Kong.
Shierman, G. (1979). The grab start and conventional swimming starts: a force analysis. Journal of Sports Medicine, 19, 171-180.
Stefanyshyn, D. J., & Nigg, B. M. (1998). Contribution of the lower extremity joints to mechanical energy in running vertical jumps and running long jumps. Journal of Sports Sciences, 16, 177-186.
Stevenson, J. R., & Morehouse, C. A.(1979). Influence of starting-block angle on the grab start in competitive swimming. In J. Terauds and E. W. Bedingfield (Eds.), Swimming Ⅲ(pp. 207-214). Baltimore: University Park Press.
Thomas, M., Fiatarone, M. A., & Fielding, R. A. (1996). Leg power in young women: relationship to body composition, strength, and function. Medicine and Science in Sports and Exercise, 28(10), 1321-1326
Tomioka, M., Owings, T. M., & Grabiner, M. D. (2001). Lower extremity strength and coordination are independent contributors to Maximum vertical jump height. Journal of Applied Biomechanics, 17, 181-187.
Voigt, R. M., Simonsen, E. B., Alkjær, T., Bojsen-Møller, F., & Klausen, K. (1999). Choice of jumping strategy in two standard jump, squat and countermovement jump ¾ effect of training background or inherited preference? Scandinacian Journal of Medicine & Science in Sports, 9, 201-208.
Voigt, R. M., Simonsen, E. B., Poulsen, P. D., & Klausen, K. (1995). Mechanical and muscular factors influencing the performance in maximal vertical jumping after different prestretch loads. Journal of Biomechanics, 28(3), 293-307.
Welcher, R. L., Hinrichs, R. N., & George, T. R. (1999). An analysis of velocity and time characteristics of three starts in competitive swimming [Abstract]. Book of Abstracts(p.909). Calgary: University of Calgary.
Wilson, D. S., & Marino, G. W. (1983). Kinematic analysis of three starts. Swimming Technique, 19(4), 30-34.
Wilson, G. J., Newton, R. U., Murphy, A. J., & Humphris, B. J. (1993). The optimal training load for the development of dynamic athletic performance. Medicine and Science in Sports and Exercise, 25(11), 1279-1286.
Winter, D. A. (1983). Moments of force and mechanical power in jogging. Journal of Biomechanics, 16(1), 91-97.
Winter, D. A. (1990). Biomechanics and Motor Control of Human Movement. (2th ed.). New York: John Wiley & Sons.
Wisløff, U., Helgerud, J., & Hoff, J. (1998). Strength and endurance of elite soccer players. Medicine and Science in Sports and Exercise, 30(3), 462-467.
Zatsiorsky, V. M., Bulgakova, N. Z., & Chaplinsky, N. M. (1979). Biomechanical analysis of starting technique in swimming. In J. Terauds and E. W. Bedingfield (Eds.), Swimming Ⅲ(pp. 199-206). Baltimore: University Park Press.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top