:::

詳目顯示

回上一頁
題名:結合廣義Hoek-Brown破壞準則及變形分析法於邊坡穩定分析
作者:周晏勤
作者(外文):Yen-Chin Chou
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
指導教授:陳時祖
陳昭旭
學位類別:博士
出版日期:2007
主題關鍵詞:變形分析法邊坡穩定分析非線性異質性廣義Hoek-Brown破壞準則動態規劃法強度折減法generalized Hoek-Brown failure criterionslope stabilitystrength reduction techniquenon-lineardynamic programming methoddeformation analysisnon-homogeneous
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
本文結合廣義Hoek-Brown破壞準則及變形分析法於邊坡穩定分析,即破壞準則選用廣義Hoek-Brown準則(GHB),再以變形分析法之數值程式(FLAC3D),搭配動態規劃法(DPM)與強度折減法(SRT),來探討邊坡之安全係數與滑動面,目的是希望建立一邊坡穩定分析法能具有非線性破壞準則的特性,能發揮變形分析法考慮到變形量的優點,且能求得安全係數及可能滑動面。本文完成的工作項目有:(1)推導GHB對MC參數之轉換式,並使用FISH語言內建於FLAC3D中;(2)以Fortran撰寫動態規劃法程式;(3)結合變形分析法與動態規劃法、強度折減法進行邊坡案例分析,比較二種方法之優劣點,再採用動態規劃法做更進一步的案例分析。
本文以二個前人研究的均質邊坡案例,作為本文撰寫之程式的驗證與操作程序說明,並以五組自行假設之數值案例來說明本研究方法與程式應用在有外加載重及非均質邊坡的可行性。由二前人研究的數值案例分析結果顯示,無論使用極限平衡法,或以變形分析法結合強度折減法或結合動態規劃法,所獲得之安全係數皆很接近,極限平衡法或動態規劃法所獲得之滑動面很靠近,且皆在強度折減法所得之貫穿塑性破壞帶中穿越。又非線性(GHB-to-MC)以及相等線性(GHB-to-EMC)所得之結果也很靠近,因此可證明本論文所撰寫之程式是正確的。比較動態規劃法和強度折減法之優劣點後,發現主要有三項優點:(1)至目前為止,雖然這二種方法皆無應用於非均質邊坡之研究報告,但動態規劃法只要知道應力分佈狀況,就可求得正確答案,以目前之變形分析技術而言,求取非均質材料物體內之應力分佈已是很成熟之技術,因此以基本原理而言,動態規劃法直接應用於非均質邊坡不會有適用性之疑問,而強度折減法則必需做些假設,例如所有地層之強度皆以相同之比例折減,才能得到計算結果;(2)強度折減法必需用不同之折減值計算多次才能獲得答案,而動態規劃法則是一次搞定;(3)強度折減法得到的滑動面是一個寬帶狀的塑性破壞區,而動態規劃法得到的則是一個明確的滑動面。所以本文決定採用動態規劃法做後續之案例研究。
案例三是個坡頂有載重之均質邊坡,分析結果顯示,外加載重後,滑動面形狀就不再是圓弧形,且非線性與線性方法計算所得之安全係數也有明顯差別。案例四是具有二個水平地層的邊坡,計算結果顯示各個地層各自具有圓弧形之滑動面,因此在地層交界處可能有轉折處產生,且上下地層顛倒後,其安全係數之差異性很大。案例五是一個具有風化表層之順向坡,動態規劃法所獲得之結果與Stabl5程式中block分析法所得結果相近,但其滑動面之彎曲部份更為平滑及自然。案例六是一個具有軟弱夾層之順向坡,案例七是案例六上方加上一水平地層,這二個案例是一般極限平衡法必需做很多假設及多次試誤計算後才可能得到安全係數及滑動面之案例,但動態規劃法仍能在一次計算過程獲得頗為合理之答案。
本研究之結論是使用變形分析法結合動態規劃法在複雜地質條件之邊坡中,能一次運算後獲得最小安全係數及其對應之滑動面,且不需預先做許多假設。又在某些條件下,使用非線性分析法(本文中之GHB-to-MC)是有必要的。因此本研究所發展出來之分析方法是具有廣泛應用性的。
The purpose of this study is to provide a new approach so that the deformation characters and non-linear strength properties of the geologic materials can be taken into account in a slope stability analysis method, which provides the answer of the minimum safety factor and the corresponding sliding plane. In other words, this method must uses a basic deformation method plus some additional function to calculate the safety factor and sliding planes just like the ordinary limit equilibrium method. This research uses the generalized Hoek-Brown failure criterion to define the non-linear strength property, and this failure criterion is incorporated in to the deformation analysis code, FLAC3D, by Fish. Two approaches are adapted to calculate the safety factor and sliding planes, the first one is so called “strength reduction method” and the second one is so called “dynamic programming method”. The basic idea of strength reduction method is to find the reduction ratio of the strength which produces the failure of the slope, then the safety factors can be calculated from the reduction ration, and the plastic zone at failure condition contains the sliding plane. The dynamic programming method, which is originated from operation research study, is to connect the grid points on the slopes with minimum passage (safety factor) to form the sliding plane, and the factor safety is calculated based on the stress and strength distribution of the slope, which is provided by the deformation method. The code of dynamic method is written by this research.
After the completion of the computer codes, two published cases studies which are slopes with homogeneous materials are used to test the goodness of the computer codes, the result shows a very close answer, and the computer codes are accepted for further case studies. By comparison of the characteristics of dynamic programming and strength reduction methods, only the former method is adapted for further cases studies for its flexibility, convenience, and precise.
Five more cases are studied. The first one is a homogeneous slope with heavy surcharge on its top, it shows the benefit of using non-linear strength criterion. The second case is a slope with two horizontal layers, the third case is a dip slope with a weathered layer, the fourth case is a dip slope with a soft inter-layer, and the fifth one is the third and fourth cases with a caped horizontal layer. These cases studies show that the adapted method can calculate the minimum safety factors of the complex geology slopes, and find the corresponding sliding planes.
The merits of this approach combining dynamic programming method, non-linear strength criterion and deformation analysis are that (1) no more assumptions of slip surface are needed including the shape and locations (2) the safety factor and sliding planes of the slopes with complex geology, which are difficult to be analyzed by ordinary limit equilibrium method, can be easily done by this method. (3) the non-linear strength property of geologic materials are taken into account in this method.
參考文獻
1.李德河、紀雲曜、高清泉,模糊集理論在邊坡穩定分析之應用,中國土木水利工程學刊,8卷4期,513-523頁,1996。
2.周晏勤、劉泰宏、陳昭旭、陳時祖,岩體評分法應用於邊坡穩定工法之選擇,台灣公共工程學刊,2卷2期,1-8頁,2006。
3.周晏勤、藍世欽、陳時祖,工程地質特性對道路邊坡穩定性影響,第九屆大地工程研討會論文集,B005,2001。
4.柯建仲,異向性大理岩之破壞力學性質分析,成功大學資源工程系碩士論文,2000。
5.柳雅瀞、曾漢洲、陳昭旭,岩體分類法應用於邊坡穩定性之研究,台灣公共工程學刊,2卷2期,19-32頁,2006。
6.涂家輝,異向性雙合成材料之破壞力學性質分析,成功大學資源工程系碩士論文,2002。
7.涂書芳,以遙感探測方法探討影響公路邊坡穩定的重要因子-以南橫公路甲仙至啞口段為例,成功大學資源工程系碩士論文,2001
8.陳志豪、陳時祖,山區道路邊坡破壞潛勢分析之探討-以南橫公路東半段為例,2002年台灣公共工程學術研討會論文集,台南,93-110,2002。
9.馮正一、梁家齊、吳宗江,邊坡變遷三維測量與穩定性分析,Paper submitted for publication in 水土保持學報,NSC 94-2625-Z-005-008,2006。
10.楊洪海、袁建峰,節理化岩體強度分析與應用,露天採礦技術,第3期,13-15頁,2005。
11.葉時青,岩石邊坡穩定之斷裂力學分析,成功大學資源工程系碩士論文,2002。
12.謝獻仁、盧建昌、廖志中、洪士林、潘以文,類神經網路落石坡危險度分析以中部橫貫公路谷關至德基段為例,1998岩盤工程研討會論文集,365~374頁,1998。
13.簡李濱,應用地理資訊系統建立坡地安定評估之計量方法,中興大學土木工程研究所碩士論文,1992。
14.譚文輝、周汝弟、王鵬、譚亞萍,岩體宏觀力學參數取值的GSI和廣義Hoek-Brown法,有色金屬,第54卷,第4期,15-18頁,2002。
15.Afrouz A., Hassani F.P., Ucar R., Stability analysis of steep rock slopes. Canadian Geotechnical Journal, 26(4): 595-603, 1989.
16.Ahn T.B., Determination of critical slip surface using finite element method, Proceedings of The 9th International Offshore and Polar Engineering Coference, Brest, France, 472-479, 1999.
17.Baker R., Determination of the critical slip surface in slope stability computations. International Journal for Numerical and Analytical Methods in Geomechanics, 4: 333-359, 1980.
18.Baker R., Garber M., Theoretical analysis of the stability of slopes. Geotechnique, 28(4): 395-411, 1978.
19.Baker R., Inter-relations between experimental and computational aspects of slope stability analysis, Int. J. Num. Anal. Methods Geomech., 27: 379-401, 2003.
20.Baker R., Nonlinear Mohr envelopes based on triaxial data. Journal of Geotechnical and Geoenvironmental Engineering, 130(5): 498-506, 2004.
21.Bellman R., Dynamic programming. Princeton University Press, Princeton, N.J., 1957.
22.Bishop A. W., The use of the slip circle in the stability analysis of slopes. Geotechnique, 5: 7-17, 1955.
23.Cai Fei, Ugai Keizo, Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM, Int. J. Numer. Anal. Mech. Geomech., 27: 549-564, 2003.
24.Cai W.M., Murti V., Valliappan S., Slope stability analysis using fracture mechanics approach. Theoretical and Applied Fracture Mechanics, 12: 261-281, 1990.
25.Carpinteri A., Mechanical damage and crack growth in concrete. Martinus Nijhoff, Dordrecht, 1986.
26.Carranza-Torres C., Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci., 41(suppl.1): 1-11, 2004.
27.Carranza-Torres C., Fairhurst C., The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci., 36: 777-809, 1999.
28.Chang Yuan-Liang, Huang Tien-Kuen, Slope stability analysis using strength reduction technique. Journal of the Chinese Institute of Engineers, 28(2): 231-240, 2005.
29.Charles J.A., Watts K.S., The influence of confining pressure on the shear strength of compacted rockfill. Geotechnique, 30(4): 353–367, 1980.
30.Charndra S. Desai, Naresh C. Samtani, Laurent Vulliet, Constitutive modeling and analysis of creeping slopes, Journal of Geotechnical Engineering, 121(1), 1995.
31.Chi Shi-Chun, Guan Li-Jun, Slope stability analysis by Lagrangian difference method based on shear strength reduction. Chinese Journal of Geotechnical Engineering, 26(1): 42-46, 2004.
32.Chi Shi-Chun, Guan Li-Jun, Soil constitutive relation for slope stability by finite element method with the discount shear strength technology. Journal of Harbin Institute of Technology, 37(9): 1298-1302, 2005.
33.Cho S.E., Lee S.R., Instability of unsaturated soil slopes due to infiltration, computers and geotechnics, 28: 185-208, 2001.
34.Clough R.W., Woodward R.J., Analysis of embankment stress and deformations. Journal of Soil Mechanics and Foundation Division, 93(4): 529-549, 1967.
35.Clough R.W., Woodward R.J., Analysis of embankment stress and deformations. Journal of Soil Mechanics and Foundation Division, 93(4): 529-549, 1967.
36.Collins I.F., Gunn C.I.M., Wang Yan, Slope stability analyses for materials with a non-linear failure envelope. International Journal for Numerical and Analytical Methods in Geomechanics, 12(5): 533-550, 1988.
37.Dalgic Suleyman, A comparison of predicted and actual tunnel behaviour in the Istanbul Metro, Turkey. Engineering Geology, 63: 69-82, 2002.
38.Dalgic Suleyman, Slope stability problems of the weak rocks in the Asarsuyu pass of the Anatolian motorway. Bulletin of Engineering Geology and the Environment, 57(2): 199-206, 1998.
39.Dawson E.M., Roth W. H., Drescher A., Slope stability analysis by strength reduction, Geotechnique, 49(6): 835-840, 1999.
40.Dawson E.M., Roth W.H., Drescher A., Slope stability analysis by strength reduction. Geotechnique, 49(6): 835-840, 1999a.
41.Dawson E.M., Roth W.H., Slope stability analysis with FLAC, FLAC and Numerical Modeling in Geomechanics, 3-9, 1999.
42.Dawson E.M., Roth W.H., Slope stability analysis with FLAC. FLAC and Numerical Modeling in Geomechanics, Detournay & Hart, Balkema, Rotterdam, 3-9, 1999b.
43.de Mello V.B.F., Reflections on design decisions of practical significance to embankment dams. 17th Rankine lecture, Geotechnique, 27(3): 281–354, 1977.
44.DeNatale S. Jay, Rapid identification of critical slip surfaces: structure. Journal of Geotechnical Engineering, 117(10): 1568-1589, 1991.
45.Donald I.B., Gim S.K., Application of the nodal displacement method to slope stability analysis. Porc. Fifth Australia-New Zealand Conf. on Geomech, Sydney, Ausralia, 456-460, 1988.
46.Duncan J.M., State of the art: limit equilibrium and finite-element analysis of slopes. J Geotech. Eng., ASCE, 122(7): 577-596, 1996.
47.Erdogan F., Sih G.C., On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85: 519-527, 1963.
48.Espinoza R.D., Bourdeau P.L., Muhunthan B., Unified formulation for analysis of slopes with general slip surface. Journal of Geotechnical Engineering, 120(7): 1185-1204, 1994.
49.Farias M.M., Naylor D.J., Safety analysis using finite elements, Computers and Geotechnics, 22(2): 165-181, 1998.
50.Fellenius W., Calculation of the stability of earth dams. Proceedings of the Second Congress on Large Dams, 4: 445-463, 1936.
51.Fredlund D.G., Krahn J., Comparison of slope stability methods of analysis. Canadian Geotechnical Journal, 14: 429-439, 1977.
52.Goodman R.E., Introduction to rock mechanics. 2nd ed.,. New York: Wiley, 1989.
53.Griffith A. A., The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London, Series A, 221: 163-198, 1920.
54.Griffiths D.V., Lane P.A., Slope stability analysis by finite elements, Geotechnique, 49(3): 387-403, 1999.
55.Griffiths, D.V., Lane, P.A., Slope stability analysis bye finite elements. Geotechnique, 49(3): 387-403, 1999.
56.Ha T.V. Pham, Delwyn G. Fredlund, The application of dynamic programming to slope stability analysis. Canadian Geotechnical Journal, 40: 830-847, 2003.
57.Hack R., Slope stability probability classification. ITC Delft Publication, Enschede, Netherlands, 43: 273, 1998.
58.Hoek E. Brown E.T., Practical estimate the rock mass strength. Int. J. Rock Mech. Mining Sci., 34: 1165-1186, 1997.
59.Hoek E., Brown E.T., Empirical strength criterion for rock masses. J. Geotech. Engng Div., ASCE 106(GT9), 1013-1035, 1980.
60.Hoek E., Brown E.T., The Hoek-Brown failure criterion - a 1988 update. Proc. 15th Canadian Rock Mech. Symp. (ed. J.H. Curran), Toronto: Civil Engineering Dept., University of Toronto, 31-38, 1988.
61.Hoek E., Carranza-Torres C.T., Corkum B., Hoek-Brown failure criterion – 2002 edition. Proc. North American Rock Mechanics Society meeting in Toronto in July, 267-273, 2002.
62.Hoek E., Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique, 33(3), 187-223, 1983.
63.Hoek E., Strength of rock and rock masses. ISRM News Journal, 2(2), 4-16, 1994.
64.Hoek E., Wood D., Shah S., A modified Hoek-Brown criterion for jointed rock masses. Proc. rock characterization, symp. Int. Soc. Rock Mech.: Eurock ‘92, (J.Hudson ed.), 209-213, 1992.
65.Hoek Evert, Reliability of Hoek-Brown estimates of rock mass properties and their impact on design. International Journal of Rock Mechanics and Mining Sciences, 35(1): 63-68, 1998.
66.Hwang Jeaan, Dewoolkar Mandar, Ko Hon-Yim, Stability of two-dimensional excavated slopes considering strength anisotropy, Canadian Geotechnical Journal, 39: 1026-1038, 2002.
67.Irwin G. R., Analysis of stresses and strains near the end of a crack. Trans. ASME, J. Appl. Mech., 24: 361-364, 1957.
68.ITASCA Consulting Group INC., Fast Lagrangian Analysis of Continua Manual Version 3.2 VolumeⅢ: Appendices, HOEK.FIS, 1992.
69.Janbu N., Application of composite slip surface for stability analysis. Proc. of European Conf. on Stability of Earth Slopes, Stockholm, 3: 43-49, 1954.
70.Kieffer D.S., Goodman R.E., Evaluating an old gravity dam on a soft foundation using FLAC, FLAC and Numerical Modeling in Geomechanics, pp.33-37, 1999
71.Kim J.Y., Lee S.R., An improved search strategy for the critical slip surface using finite flement ftress fields, Computers and Geotechnics, 21(4): 295-313, 1997.
72.Kumar P., Slip zones around circular openings in a jointed Hoek-Brown medium. Int. J. Rock Mech. Min. Sci., 34(6): 875-883, 1997.
73.Lefebvre G., Strength and slope stability in Canadian soft clay deposits. Can. Geotech. J., 18(3): 420–442, 1981.
74.Leshchinsky D., Huang C.C., Generalized slope stability analysis: interpretation modification and comparison. Journal of Geotechnical Engineering, ASCE, 118(10): 1559-1576, 1992.
75.Leshchinsky Dove, Chowdhury Sanbina, Variational and traditional rigorous slope stability analyses: comparison of safety factors. Soils and Foundations, 33(3): 139-145, 1993.
76.Li Ji, Xie Shou-yi, Wu De-bin, Xu Wei-ya, Study on rock mass mechanical parameters for Lanyoushan slope. Journal of Hohai University (Natural Science), 33(4): 459-462, 2005.
77.Li Tonglu, Fan Wen, Li Ping, 3D numerical simulation of the high cut slope of Tianwan nuclear power plant. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 23(SUPPL.1): 4493-4497, 2004.
78.Li Xiang-Fan, Yin Ji, Guan Fei, Application of compound soil-nailed wall to foundation pit in soft soil. Chinese Journal of Rock Mechanics and Engineering, 24(21): 3876-3881, 2005.
79.Liu Jin-Long, Luan Mao-Tian, Zhao Shao-Fei, Yuan Fan-Fan, Wang Ji-Li, Discussion on criteria for evaluating stability of slope in elastoplastic FEM based on shear strength reduction technique. Rock and Soil Mechanics, 26(8): 1345-1348, 2005.
80.Lorig L., Lessons learned from slope stability studies, FLAC and Numerical Modeling in Geomechanics, 17-21, 1999.
81.Maksimovic M., Nonlinear failure envelope for soils. J. Geotech. Eng., 115(4): 581–586, 1989.
82.Matsui, T., San, K.C., Finite element slope stability analysis by shear strength reduction technique. Soils and Foundations, 32(1): 59-70, 1992.
83.Merifield R.S., Lyamin A.V., Sloan S.W., Limit analysis solutions for the bearing capacity of rock masses using the generalized Hoek-Brown criterion. Int. J. Rock Mech. Min. Sci., 43: 920-937, 2006.
84.Milutin Srbulov, A simple method for the analysis of stability of slope in brittle soil. Soils and Foundations, 35(4): 123-127, 1995.
85.Morgenstern N.R., Price V.E., The analysis of the stability of general slip surfaces. Geotechnique, 15: 70-93, 1965.
86.Muniram Budhu, Roger Gobin, Seepage-induced slope failures on sandbars in Grand Canyon, Journal of Geotechnical Engineering, 121(8), 1995.
87.Okubo S., Fukui K., Nishimatsu Y., Local safety factor applicable to wide range of failure criteria. Rock Mechanics and Rock Engineering, 30(4): 223-227, 1997.
88.Ozsan A., Akin M., Engineering geological assessment of the proposed Urus, Dam, Turkey. Engineering Geology, 66(3-4): 271-281, 2002.
89.Perry J., A technique for defining non-linear shear strength envelopes and their incorporation in a slope stability method of analysis. Q. J. Eng. Geol., 27(3): 231–241, 1994.
90.Potts D.M., Kovacevic N., Vaughan P.R., Delayed collapse of cut slopes in stiff clay, Geotechnique, 47(5): 953-982, 1997.
91.Ramsamooj D.V., Lin G.S., Prediction of progressive failure in heavily overconsolidated slope. Journal of Geotechnical Engineering, 116(9): 1368-1380, 1990.
92.Reginald E. Hammah, John H. Curran, Thamer Yacoub, Brent Corkum, Stability analysis of rock slopes using the finite element method. EUROCK 2004 & 53rd Geomechanics Colloquium, Schubert, 2004.
93.Robert Y. Liang, Zhao Jihu, Stan Vitton, Determination of interslice force in slope stability analysis. Soils and Foundations, 37(1): 65-72, 1997.
94.Roscoe K.H., The influence of strains in soil mechanics. Tenth Rankine Lecture, Geotechnique, 20(2): 129-170, 1970
95.Saaty T.L., The analytic hierarchy process in conflict management. The International Journal of Conflict Management, 1(1): 47, 1990.
96.Scavia C., A method for the study of crack propagation in rock structures. Geotechnique, 45(3): 447-463, 1995.
97.Scavia C., Fracture mechanics approach to stability analysis of rock slopes. Engineering Fracture mechanics, 35(4/5): 899-910, 1990.
98.Scott A. Ashford, Nicholas Sitar, Effect of element size on the static finite element analysis of steep slopes, International Journal for Numerical and Analytical Methods in Geomechanics, 25: 1361-1376, 2001.
99.Scott L., Huang, Yamasaki Kenji, Slope failure analysis using local minimum factor-of-safety approach, Journal of Geotechnical Engineering, 119(12): 1974-1987, 1993.
100.Serrano A, Olalla C., Allowable bearing capacity of rock foundations using a non-linear failure criterion. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 33(4): 327-345, 1996.
101.Serrano A., Olalla C., Gozalez J., Ultimate bearing capacity of rock masses based on the modified Hoek-Brown criterion. Int. J. Rock Mech. Min. Sci., 37: 1013-1018, 2000.
102.Serrano A., Olalla C., Ultimate bearing capacity of rock masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 31(2): 93-106, 1994.
103.Sharan S.K., Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media. Int. J. Rock Mech. Min. Sci., 40: 817-824, 2003.
104.Sharan S.K., Exact and approximate solutions for displacements around circular openings in elastic-brittle-plastic Hoek-Brown rock. Int. J. Rock Mech. Min. Sci., 42: 542-549, 2005.
105.Sih G.C., Prediction of crack growth characteristics. Proc. of Symp. on Absorbted Spec. Energy/Strain Energy Density, 1983.
106.Song Jian-ho, Zhang Zhuo-yuan, Huang Run-qiu, Modified Sarama non-vertical slice method for stability analysis of rock slope with Hoek-Brown strength criterion. West China Exploration Engineering, 73: 106-109, 2001.
107.Sonmez H., Gokceoglu C., Ulusay R., A Mamdani fuzzy inference system for the geological strength index (GSI) and its use in slope stability assessments. International Journal of Rock Mechanics and Mining Sciences, 41(SUPPL.1): 3B01 1-6, 2004.
108.Sonmez H., Ulusay R., Modifications to the geological strength index (GSI) and their applicability to stability of slopes. International Journal of Rock Mechanics and Mining Sciences, 36(6): 743-760, 1999.
109.Spencer E., A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique, 17: 11-26, 1967.
110.Tharp M. Thomas, Coffin Todd D., Field application of fracture mechanics analysis to small rock slopes. Proceedings of 26th U.S. Symposium on Rock Mechanics, Rapid City, S.D., 667-674, 1985.
111.Tharp M. Thomas, Stability of slopes in discontinuously jointed rock. Proceedings of 25th U.S. Symposium on Rock Mechanics, Evanston, USA: Society of Mining Engineers, 891-898, 1984.
112.Wnuk M.P., Subcritical growth of cracks. Int. J. Fracture, 7(4): 383-406, 1971.
113.Won Jinoh, You Kwangho, Jeong Sangseom, Kim Sooil, Coupled effects in stability analysis of pile-slope systems. Computers and Geotechnics, 32: 304-315, 2005.
114.Yamagami Takau, Ueta Yasuhiro, Search for critical slip lines in finite element stress fields by dynamic programming, Proceeding, 6th International Conference on Numerical Methods in Geomechanics, Innsbruck, Austria. A.A. Balkema, Rotter, 1347-1352, 1988.
115.Yamagami Takuo, Ueta Yasuhiro, Search for critical slip lines in finite element stress fields by dynamic programming. Numerical Methods in Geomechanics, Innsbruck, Austria. A.A. Balkema, Rotter, p.1347-1352, 1988.
116.Yang Xiao-Li, Li Liang, Yin Jian-Hua, Stability analysis of rock slopes with a modified Hoek-Brown failure criterion. International Journal for Numerical and Analytical Methods in Geomechanics, 28(2): 181-190, 2004.
117.Yang Xiao-Li, Yin Jian-Hua, Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci., 42: 550-560, 2005.
118.Yang Xiao-Li, Zou Jin-Feng, Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 43(7): 1146-1152, 2006.
119.Zettler A.H., Poisel R., Roth W., Preh A., Slope stability analysis based on the shear reduction technique in 3D. FLAC and Numerical Modeling in Geomechanics, Detournay & Hart, Balkema, Rotterdam, 11-16, 1999.
120.Zettler A.H., Poisel R., Roth W., Preh A., Slope stability analysis based on the shear reduction technique in 3D, FLAC and Numerical Modeling in Geomechanics, 11-16, 1999.
121.Zhang Hui, Hu Xue-jun, Yu Zi-hu, Experimental study on shear strength of consequent slope bedding surface of freeway. Geological Science and Technology Information, 24(Sup.): 184-188, 2005.
122.Zhang Ling-shuai, Wang Sheng-yu, Application of rock parameters selecting under Hoek-Browne empirical criterion. Shanxi Architecture, 32(6): 104-105, 2006.
123.Zhang S., Chowdhury R.N., Interslice shear forces in slope stability analyses – a new approach. Soils and Foundations, 35(1): 65-74, 1995.
124.Zhao Mingjie, Wu Delun, Ultrasonic identification of rock mass classification and rock mass strength prediction. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 19(1): 89-92, 2000.
125.Zhao Shang-yi, Zheng Ying-ren, Shi Wei-min, Wang Jing-lin, Analysis on safety factor of slope by strength reduction FEM. Chinese Journal of Geotechnical Engineering, 24(3): 343-346, 2002.
126.Zhao Shang-yi, Zheng Ying-ren, Zhang Yu-fang, Study on slope failure criterion in strength reduction finite element methos [J]. Rock and Soil Mechanics, 26(1): 332-336, 2005.
127.Zhao Shao-fei1, Luan Mao-tian1, Lu Ai-zhong, FEM-based nonlinear numerical analyses for limit equilibrium problems in geotechnics considering no associated flow rule. Rock and Soil Mechanics, 25(supp.2): 121-125, 2004
128.Zheng H., Liu D.F., Li C.C., Slope stability analysis based on elasto-plastic finite element method. Int. J. Numer. Meth. Engng., 64: 1871-1888, 2005.
129.Zienkiewicz O.C., Humpheson C., Lewis R.W., Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique, 25(6): 671-689, 1975.
130.Zou Jin-Zhang, David J. Williams, Xiong Wen-Lin, Search for critical slip surfaces based on finite element method. Canadian Geotechnical Journal, 32: 233-246, 1995
131.Zou Jin-Zhang, David J. Williams, Xiong Wen-Lin, Search for critical slip surfaces based on finite element method, Canadian Geotechnical Journal, 32: 233-246, 1995.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE