:::

詳目顯示

回上一頁
題名:以概念階層為導向之時間序列模式資料探勘–以財務資料庫為例
作者:黃燕萍 引用關係
作者(外文):Yan-ping Huang
校院名稱:國立雲林科技大學
系所名稱:管理研究所博士班
指導教授:許中川
學位類別:博士
出版日期:2007
主題關鍵詞:分群演算法資料探勘樣板探勘時間序列分析Pattern discoveryCluster analysisData miningTime series analysis
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:28
資料探勘是從大量資料中擷取隱藏、未知與潛在,但具有實用性的資訊分析方法。在資料探勘領域中,知識探勘的相關研究已有長足的進步。時間序列資料,包含大量未知與潛在的資訊。財務類型的資料庫中,通常存有大量的時間序列資料。過去時間序列相關研究以迴歸分析為主,傳統迴歸分析模型的統計性質,多半建立在線性模型的基礎上;然而,線性模型對於變動幅度不大的非線性模型,尚可作較高準確度的估計,但是,若變動幅度超過某一限度,估計的準確性就會降低,因而減少其應用上的價值。自組映射圖類神經網路,目前是時間序列資料研究中經常使用的分析方法之一。然而,自組映射圖類神經網路為一種高度非線性模式,只能處理數值型資料,無法有效處理混合型的資料。
因此,本研究嘗試以概念階層樹結合資料探勘的架構,利用物以類聚的原理,從分析過去的樣本資料中,針對財務類型資料庫之時間序列資料,學習樣版辨識,利用同類相聚的特性以達分群之目的;更進一步在模式中找出未知、潛在但具有實用性的樣版資訊,及精簡且具代表性的規則,以此協助預估財務資料的變動。目前本研究運用ESA演算法結合EViSOM (Extended Visualization-induced Self -Organizing Map)及EAOI (Extended Attribute-Oriented Induction),以視覺化展現多維度資料知識的呈現方式,可處理混合型資料,並且在處理混合型資料時,具有學習、非線性、無模式估計及良好歸納推演能力的優點。本研究提出以概念階層為導向之樣版資料探勘模式,使用ESA分群演算法,進行時間序列資料分群樣版特徵探勘。此模式可以從混合型資料中,探勘出實用的樣版知識及精簡且具代表性的規則。
Data mining, a recent and contemporary topic, is the process of automatically searching large volumes of data for patterns in computing. Nowadays, pattern discovery is a field within the area of data mining. In general, large volumes of time series data are contained in financial database and these data have some useful patterns which could not be found easily. Many financial studies in time series data analysis use linear regression model to estimate the variation and trend of the data. However, traditional methods of time series analysis used special types or linear models to describe the data. Linear models can achieve high accuracy when linear variation of the data is small, however, if the variation range exceeds a certain limit, the linear models has a lower performance in estimated accuracy. Among these traditional methods, SOM (Self Organizing Map) is a well-known non-linear model to extract pattern with numeric data. Many researches extract pattern from numeric data attributes rather than categorical or mixed data. It does not extract the major values from pattern rules, either.
The purpose of this study is to provide a novel architecture in mining patterns from mixed data that uses a systematic approach in the financial database information mining, and try to find the patterns for estimate the trend or for special event’s occurrence. This present study employs ESA algorithm which integrates both EViSOM algorithm and EAOI algorithm. EViSOM algorithm is used to calculate the distance between the categorical and numeric data for pattern finding, whereas EAOI algorithm serves to generalize major values using conceptual hierarchies for patterns and major values extraction in financial database. The attempt of using ESA algorithm in this study is to discover the pattern in the Concept Hierarchy based Pattern Discovery (CHPD) architecture. Specifically, this architecture facilitates the direct handling of mixed data, including categorical and numeric values. This mining architecture is able to simulate human intelligence and discover patterns automatically, and it also demonstrates knowledge pattern discovery and rule extraction.
1.Agrawal, R., Imielinski, T. and Swami, A., 1993, “Mining association rules between sets of items in large databases”, Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 207-216.
2.Becanovi, V., 2000, “Image object classification using saccadic search, spatio-temporal pattern encoding and self-organization”, Pattern Recognition Letters, vol. 21, issue 3, March, pp. 253-263.
3.Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, vol. 31, pp. 307-327.
4.Brennan, M. J., Chordia, T. and Subrahmanyam, A., 1998, “Alternative factor specifications, security characteristics, and the cross-section of expected stock returns”, Journal of Financial Economics, vol. 49, pp. 345-373.
5.Cai, Y., Cercone, N., and Han, J., 1991, Attribute-oriented induction in relational databases, In Piatetsky G. S., and Frawley, W. J. (Eds.), Knowledge discovery in databases, pp. 213-228.
6.Carpenter, G. A. and Grossberg, S., 1990, “ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures”, Neural Networks, vol. 3, pp.129-152.
7.Chang, K.W. and Hsu, C. C., 2005, “Mixture model classification for mixed data”, ICIM 2005 International Conference of Information Management.
8.Chen, D. R., Chang, R. F. and Huang, Y. L., 2000, “Breast cancer diagnosis using self-organizing map for sonography”, Ultrasound in Medicine and Biology, vol. 1, no. 26, pp. 405-411.
9.Chen, M. S., Han, J. and Yu P. S., 1996, “Data mining: An overview from a database perspective”, IEEE Trans. Knowledge and Data Engineering, vol. 8, pp. 866-883.
10.Chen, S. H. and He, H., 2003, “Searching financial patterns with self-organizing maps”, Computational Intelligence in Economics and Finance, Springer.
11.Chen, S. H. and Tsao, C. Y., 2003, “Self-organizing maps as a foundation for charting or geometric pattern recognition in financial time series”, Proceedings of 2003 International Conference on Computational Intelligence for Financial Engineering (CIFEr2003), Hong Kong, March, pp. 20-23.
12.Dash, M. and Choi, K., Scheuermann, P. and Liu, H., 2002, “Feature selection for clustering - a filter solution”, IEEE International Conference on Data Mining, pp. 115-122.
13.Deboeck, G. J. and Alfred, U., 2000, “Picking Stocks with Emergent Self-organizing Value maps”, Neural Networks World, vol. 10, pp. 203-216.
14.Deboeck, G. J. and Kohonen, T., 1998, Visual Explorations in Finance with self-organizing maps, Springer-Verlag, pp. 250-260.
15.Duda, R. O. and Hart, P.E., 1973, Pattern Classification and Scene Analysis, John Wiley & Sons.
16.Ester, M., Kriegel, H. P., and Sander, J., 1997, “Spatial data mining: A database approach”, Proceedings of the fifth international symposium on spatial databases (SSD’97), Berlin, Germany: Springer, pp. 47-66.
17.Ester, M., Kriegel, H. P., Sander, J., Wimmer, M. and Xu, X., 1998, “Incremental clustering for mining in a data warehousing environment”, Proceedings of the 24th International Conference on Very Large Data Bases (VLDB), pp. 323-333.
18.Fama, E. F. and French, K., 1992, “The cross section of expected stock returns”, Journal of Finance, vol. 47, pp. 427-465.
19.Fama, E. F. and French, K., 1995, “Size and book-to-market factors in earning and return”, Journal of Finance, vol. 50, pp. 131-155.
20.Fayyad, U. M., Piatetsky, S. G. and Matheus, C. J., 1991, Knowledge Discovery in Databases: An Overview, AAAI/MIT Press.
21.Fayyad, U. M., Piatetsky, S. G., Smyth, P. and Uthurusamy, R., 1996, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press.
22.Friedman, N., Geiger, D. and Goldszmidt, M., 1997, “Bayesian network classifiers”, Machine Learning, vol. 29, no. 2, pp. 131-163.
23.Fu, Y., Sandhu, K., and Shih, M. Y., 1999, “Clustering of web users based on access patterns”, Proceedings of the 1999 KDD Workshop on Web Mining, San Diego, CA: Springer.
24.Greiner, R., Grove, A., and Schuurmans, D., 1997, Learning Bayesian nets that perform well, In Geiger, D. and Shenoy, P. P. (Eds.), Proceedings of the thirteenth annual Conference on Uncertainty in Artificial Intelligence, San Francisco, CA: Morgan Kaufmann. pp. 198-207.
25.Guha, S., Rastogi, R. and Shim, K., 1999, “ROCK: A robust clustering algorithm for categorical attributes”, Proceedings of the IEEE Conference on Data Engineering, pp. 512-521.
26.Gujarati, D., 1999, Essentials of Econometrics, 2nd edition, McGraw-Hill.
27.Gunter, S. and Bunke, H., 2002, “Self-organizing map for clustering in the graph domain”, Pattern Recognition Letters, vol. 23, issue 4, February, pp. 405-417.
28.Hair, J. F., Anderson, R. E., Tatham, R. L., Black, W. C., 1998, Multivariate Data Analysis, Fifth Edition, Prentice-Hall International, Inc., New Jersey.
29.Han, J. and Kamber, M., 2001, Data mining concepts and techniques, San Francisco: Morgan Kaufmann.
30.Han, J., Cai, Y., and Cercone, N., 1992, “Knowledge discovery in databases: an attribute-oriented approach”, In Proceedings of the 18th VLDB Conference, British Columbia, Vancouver, pp. 547-559.
31.Han, J., Cai, Y., and Cercone, N., 1993, “Data-driven discovery of quantitative rules in relational databases”, IEEE Transactions on Knowledge and Data Engineering, vol. 5, pp. 29-40.
32.Hand, D., Mannila, H. and Smyth, P., 2001, Principles of Data Mining, MIT Press.
33.Hertz, J., Krogh, A., and Palmer, R. G., 1991, Introduction to the Theory of Neural Computation, Santa Fe Institute Studies in the Sciences of Complexity lecture notes. Addison- Wesley Longman Pub. Co., Inc., Reading, MA.
34.Hsu, C. C. and Chen, Y. C., 2007, “Mining of Mixed Data with Application to Catalog Marketing”, Expert Systems with Applications, vol. 32, no. 1, pp. 12-23.
35.Hsu, C. C. and Wang, S. H., 2005, “An Integrated Framework for Visualized and Exploratory Pattern Discovery in Mixed Data”, IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 2, pp. 161-173.
36.Hsu, C. C., 2004, “Extending Attribute-Oriented Induction Algorithm for Major Values and Numeric Values”, Expert Systems with Applications, vol. 27, no. 2, pp. 187-202.
37.Hsu, C. C., 2004, “Extending Attribute-Oriented Induction Algorithm for Major Values and Numeric Values”, Expert Systems with Applications, vol. 27, no. 2, pp. 187-202.
38.Hsu, C. C., 2006, “Generalizing Self-Organizing Map for Categorical Data”, IEEE Transactions on Neural Networks, vol. 17, no. 2, pp. 194-204.
39.Hsu, C. C., Huang, Y. P. and Hsiao, C. M., 2006, “Modified Adaptive Resonance Theory Network of Mixed Data Based on Distance Hierarchy”, Lecture Notes in Computer Science, vol. 3994, 2006.
40.Huang, Y. P., Hsu, C. C. and. Wang, S. H., 2007, “Pattern Recognition in Time Series Database: A Case Study on Financial Database”, Expert Systems with Applications, vol. 33, pp.199-255.
41.Imielinski, T. and Mannila, H., 1996, “A database perspective on knowledge discovery”, Communications of ACM, vol. 39, pp. 58-64.
42.Jain, A. K. and Mao, J., 1994, “Neural networks and pattern recognition”, Computational Intelligence: Imitating Life, pp.194-212.
43.Jain, A. K., Murty, M. N., and Flynn, P. J., 1999, “Data Clustering: A Review”, ACM Computing Surveys, vol. 31, no. 3, pp. 264-323.
44.Jegadeesh, N. and Titman, S., 1993, “Return to buying winners and selling losers”, Journal of Finance, vol. 48, pp. 65-91.
45.Kiang, M. Y., Kulkarni, U. R. and Tam, K. Y., 1995, “Self-organizing map network as an interactive clustering tool — An application to group technology”, Decision Support Systems, vol. 15, issue 4, December, pp. 351-374.
46.Kiang, M., Michael, Y., Hu, Y. and Fisher, D. M., 2006, “An extended self-organizing map network for market segmentation - a telecommunication example”, Decision Support Systems, vol. 42, issue 1, October, pp. 36-47.
47.Kiang, M.Y., Kulkarni, U. and Tam, K.Y., 1995, “Self organizing map network as an interactive clustering tool - An application to group technology”, Decision Support Systems, vol. 15, pp. 351-374.
48.Kohonen, T., 1981, “Automatic formation of topological maps of patterns in a self-orgazing system”, Proceedings of 2nd Scandinavian Conference on Image Analysis, Espoo, Finland, pp. 214-220.
49.Kohonen, T., 1984, Self-organization and associative memory. Springer Verlag.
50.Kohonen, T., 1996, “Engineering applications of the self-organizing map”, Proceedings of the IEEE, vol. 84, no. 10, pp. 1358-1384.
51.Kontkanen, P., Myllymaki, P. and Tirri, H., 2001, “Classifier learning with supervised marginal likelihood”, Proceedings of the seventeenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA: Morgan Kaufmann, pp. 277-284.
52.Koperski, K., Han, J., and Adhikary, J., 1998, “Mining knowledge in geographical data”, Communications of the Association For Computing Machinery, vol. 26, no. 1, pp. 65–74.
53.Kramer, A. A., Lee, D. and Axelrod, R. C., 2000, “Use of a Kohonen Neural Network to Characterize Respiratory Patients for Medical Intervention”, Artificial Neural Net¬works in Medicine and Biology, pp. 192-196.
54.Kulkarni, U. R. and Kiang, M. Y., 1995, “Dynamic grouping of parts in flexible manufacturing systems - A self-organizing neural networks approach”, European Journal of Operational Research, vol. 84, pp. 192-212.
55.Kuo, S. C., Li, S. T., Cheng, Y. C., and Ho, M. H., 2004, “Knowledge Discovery with SOM Networks in Financial Investment Strategy”, Fourth International Conference on Hybrid Intelligent Systems (IEEE Press), December, Kitakyushu, Japan.
56.Laaksonen, J., Koskela, M., Laakso, S. and Oja, E., 2000, “PicSOM – content-based image retrieval with self-organizing maps”, Pattern Recognition Letters, vol. 21, issues 13-14, December, pp. 1199-1207.
57.Langley, P., Iba, W. and Thompson, K., 1992, “An analysis of Bayesian classifiers”, Proceedings of the International Conference on Artificial Intelligence.
58.Li, S. T. and Kuo, S. C., 2005, “Discovering Financial Investment Strategy through Wavelet-based SOM Networks”, The 10th Annual Meeting of Asia-Pacific Decision Sciences Institute (APDSI 2005), June, Taipei, Taiwan.
59.Li, S. T., 2001, “Leveraging a Web-aware SOM Tool for Clustering and Visualization”, The First Asia-Pacific Conference on Web Intelligence (WI-2001), October, Maebashi, Japan.
60.Margaret, H. D., Prentice, H., 2003, Data Mining: Introductory and Advanced Topics.
61.Maulik, U. and Bandyopadhyay, S., 2002, “Performance evaluation of some clustering algorithms and validity indices”, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1650-1654.
62.Merz, C. J. and Murphy, P., 1996, “UCI repository of ML databases”, http://www.cs.uci.edu/~mlearn/MLRepository.html.
63.Ng, A. and Jordan, M., 2001, “On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes”, Advances in neural information processing systems, vol. 14, pp. 605-610.
64.Ong, T. H., Chen, H., Sung, W. K. and Zhu, B., 2005, “News map: a knowledge map for online news”, Decision Support Systems, vol. 39, issue 4, June, pp. 583-597.
65.Ruczinski, I., Kooperberg, C., and Leblanc, M. L., 2003, Logic regression, Journal of Computational and Graphical Statistics, vol. 12, no. 3, pp. 475-511.
66.Sharma, S., 1996, Applied Multivariate Techniques, New York: John Wiley.
67.Smith, K. A. and Ng, A., 2003, “Web page clustering using a self-organizing map of user navigation patterns”, Decision Support Systems, vol. 35, issue 2, May, pp. 245-256.
68.Toivanen, P. J., Ansamaki, J., Parkkinen, J. P. and Mielikainen, S. J., 2003, “Edge detection in multispectral images using the self-organizing map”, Pattern Recognition Letters, vol. 24, issue 16, December, pp. 2987-2994.
69.Tsai, F. C., Kuo, S. C. and Li, S. T., 2005, “Crime Trend Discovery using Fuzzy SOM Networks”, The 11th Asia Pacific Management Conference APMC-2005, Nov, Tainan, Taiwan.
70.Vesanto, J. E., Alhoniemi, J., Himberg, K. K. and Parviainen, J., 1999, “Self-organizing map for data mining in Matlab: the SOM Toolbox”, Simulation News Europe, pp. 25-54.
71.Wang, S. H. and Hsu, C. C., 2005, “Applying Data Mining Technique to Direct Marketing”, Proceedings of the 1st International Conference on Information Management and Business.
72.Wilson, D.R. and Martinez, T. R., 1997, “Improved heterogeneous distance functions”, Journal of Artificial Intelligence Research, vol. 6, pp. 1-34.
73.Wu, S. and Chow, T. W. S., 2004, “Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density”, Pattern Recognition, vol. 37, issue 2, February, pp. 175-188.
74.Yin, H., 2002, “Data visualization and manifold mapping using the ViSOM”, Neural Networks, vol. 15, pp. 1005-1016.
75.Yin, H., 2002, “ViSOM - a novel method for multivariate data projection and structure visualization”, IEEE Transactions on Neural Networks, vol. 13, no. 1, pp. 237-243.
76.Zaiane, O. R., Han, J., Li, Z. N., Chee, S. H., and Chiang, J. Y., 1998, “Multimedia miner: A system prototype for multimedia data mining”, Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 581-583.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE