:::

詳目顯示

回上一頁
題名:多變量製程監控之研究
作者:顏家鈴
校院名稱:國立交通大學
系所名稱:統計學研究所
指導教授:洪志真
唐 正
學位類別:博士
出版日期:2008
主題關鍵詞:多變量製程變異概似比檢定單邊檢定雙邊檢定管制圖結合管制圖平均連串長度多變量製程平均Hotelling's T^2製程失控影響變數Multivariate process dispersionLikelihood ratio testOne-sided testTwo-sided testcontrol chartcombined control chartAverage run lengthMultivariate process meanHotelling's T^2Out-of-controlInflential variable
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
本論文內容分成三個主題。
在第一個主題,我們提出一多變量管制圖來偵測多變量製程變異降低的方法,此為根據多變量單邊檢定 所建立之管制圖,其中 和 分別為所監控品質特性目前的和在控制狀態下的共變異數矩陣,考慮 已知或未知兩種情形,我們分別導出概似比檢定統計量,並以此建立管制圖。透過統計模擬對幾種 的變化來比較平均連串長度,證實所提出的管制圖對多變量製程變異降低的問題比現有基於雙邊概似比檢定所建立的管制圖,在偵測能力上有相當不錯的效率。並以一個實例和模擬例子,證實所提出的管制圖具有應用性及有效性。
在第二個主題,我們結合第一個主題所提出的多變量管制圖及先前Yen and Shiau (2008) 所提的一個偵測多變量製程變異增加的管制圖建立一結合性多變量管制圖來偵測多變量製程變異增加或降低的方法。並且考慮 為已知或未知兩種情形。透過統計模擬對幾種 的變化來比較平均連串長度,說明所提出的基於不均等尾端機率管制界限所建立之結合管制圖,對多變量製程變異增加或降低的問題,比現有基於雙邊檢定所建立的管制圖在偵測能力上也有相當不錯的效率。並以兩個實例和模擬例子,證實所提出的管制圖具有應用性及有效性。
此外,對監控多變量常態製程平均值向量, 管制圖是一被廣泛使用的統計製程管制工具,有一個主要缺點:當 管制圖偵測到製程為失控狀態時並無法直接提供那一個品質特性或那幾個品質特性是造成製程失控原因的資訊。第三個主題的目的則為提出一個根據概似比原理的方法,當 管制圖發出失控訊號時,來找出那一個個別的品質特性平均值最有可能發生改變而不是試著決定那一個個別的品質特性是否失控。此方法對現行所使用的 管制圖方法為一個診斷輔助工具而不是替代工具。
The contents of this dissertation are divided into three main subjects.
In the first subject, a multivariate control chart for detecting decreases in process dispersion is proposed. The proposed chart is constructed based on the one-sided likelihood ratio test (LRT) for testing , where and are respectively the current and the in-control process covariance matrix of the distribution of the quality characteristic vector of interest. Both cases of known and unknown are considered. For each case, the LRT statistic is derived and then used to construct the control chart. A comparative simulation study is conducted and shows that the proposed control chart outperforms the existing two-sided-test-based control charts in terms of the average run length. The applicability and effectiveness of the proposed control chart are demonstrated through two real examples and two simulated examples.
By combining the above mentioned one-sided LRT-based control chart and the one-sided LRT-based control chart for detecting dispersion increases proposed by Yen and Shiau (2008), we propose a combined chart scheme for detecting both cases of dispersion increases and decreases. Both cases of known and unknown are considered. It is found that a combined chart using an equal tail probability to construct a control limit is biased. By simulation studies, the proposed combined chart scheme when using a set of unequal tail probabilities for the two charts outperforms the existing two-sided-test-based control charts in terms of the average run length, when the process dispersion increases or decreases. Two real examples and two simulated examples are used to illustrate the applicability and effectiveness of our proposed combined chart.
About the third subject, Hotelling's chart is a well-known statistical process control tool for simultaneously monitoring elements of the mean vector of a multivariate normal pro¬cess. But it has a drawback that an out-of-control (or a significant) value does not gives us direct information as to which variables in are likely to have caused the out-of-control condition. We propose a method, based on likelihood principle, for identifying a variable or a group of variables in a multivariate normal process with an unknown covariance matrix �n�nthat is likely to be responsible for the out-of-control condition signaled by a significant value. Unlike certain existing methods, our method is not a control/monitoring but a diagnostic tool. Two examples from earlier literatures and one based on simulation are used to illustrate the proposed method. Finally, we compare our results with that of other existing methods for these three examples.
Acosta-Mejia, C. A. (1998). Monitoring reduction in variability with the range. IIE Tran-
sition, 30, 515-523.
Acosta-Mejia, C. A., Pignatiello, Jr. J. J., and Rao, B. V. (1999). A comparison of control
charting procedures for monitoring process dispersion. IIE Transition, 31, 569-579.
Alt, F. B. (1985). Multivariate quality control. In Encyclopedia of Statistical Sciences, 6
(Edited by S. Kotz , N. L. Johnson, and C. B. Read), 110-112. Wiley, New York.
Alt, F. B. and Bedewi, G. E. (1986). SPC of dispersion for multivariate data. InASQC
Quality Congress Transactions, 248-254.
Alt, F. B. and Smith, N. D. (1998). Multivariate process control. In Handbook of Statistics,
7 (Edited by P. R. Krisnaiah and C. R. Rao), 333-351. Elsevier Science Publishers,
New York.
Anderson, B. M., Anderson, T. W., and Olkin, I. (1986). Maximum likelihood estimators
and likelihood ratio criteria in multivariate components of variance. The Annals of
Statistics, 14, 405-417.
Anderson, T. W. (1989). The asymptotic distribution of the likelihood ratio criterion for
testing rank in multivariate components of variance. Journal of Multivariate Analysis,
30, 72-79.
161
Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. 3rd edition.
Wiley, New York.
Atienza, O. O., Tang, L.-C., and Ang, B.-W. (1998). Simultaneous monitoring of univariate
and multivariate SPC information using boxplots. International Journal of Quality
Science, 3, 194-204.
Aparisi, F., Avendano, G., and Sanz, J. (2006). Techniques to interpret T2 control chart
signals. IIE Transactions, 38, 647{657.
Calvin, J. A. (1994). One-sided test of covariance matrix with a known null value. Com-
munications in Statistics-Theory and Methods, 23, 3121-3140.
Chang, T. C. and Gan, F. F. (1995). A cumulative sum control chart for monitoring process
variance. Journal of Quality Technology, 27, 109-119.
Crowder ,S. V. and Hamilton, M. D. (1992). An EWMA for monitoring a process standard
deviation. Journal of Quality Technology, 24, 12-21.
Das Gupta, S. (1969). Properties of power functions of some tests concerning dispersion
matrices of multivariate normal distributions. The Annals of Mathematical Statistics,
40, 697-701.
Djauhari, M. A. (2005). Improved monitoring of multivariate process variability. Journal
of Quality Technology, 37, 32-39.
Dogansksoy, N, Faltin, F. W., and Tucker, W. T. (1991). Identi‾cation of out-of-control
quality characteristic in a multivariate manufacturing environment. Communications
in Statistic- Theory and Methods, 20, 2775-2790.
Dykstra, R. L. (1970). Establishing the positive de‾niteness of the sample covariance
matrix. The Annals of Mathematical Statistics, 41, 2153-2154.
162
Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A Practical Approach. London:
Chapman &Hall.
Fuchs, C. and Benjamini, Y. (1994). Multivariate pro‾le charts for statistical process
control. Technometrics, 36, 182-195.
Golub, G. H. and VanLoan, C. F. (1989). Matrix Computations. Johns Hopkin University
Press, Baltimore.
Gupta, A. K. and Nagar, D. K. (2000). Matrix Variate Distributions. Chapman and Hall,
Boca Raton.
Hayter, A. J. and Tsui, K. L. (1994). Identi‾cation and quanti‾cation in multivariate
quality control problems. Journal of Quality Technology, 26, 197-208.
Hawkins, D. M. (1991). Multivariate quality control based on regression-adjusted variables.
Technometrics, 31, 61-75.
Hawkins, D. M. (1993). Regression adjustment for variables in multivariate quality control.
Journal of Quality Technology, 25, 170-182.
Hotelling, H. (1947). Multivariate Quality Control - Illustrated by the Air Testing of Sample
Bombsights. In Techniques of Statistical Analysis, Eisenthart, C., Hastay, M. W., and
Wallis, W. (eds.), McGraw Hill, New York, NY.
Huwang, L., Yeh, A. B., and Wu, C. W. (2007). Monitoring multivariate process variability
for individual observations. Journal of Quality Technology, 39, 258-278.
Iglewicz, B. and Hoaglin, D. C. (1987). Use of boxplots for process evaluation. Journal of
Quality Technology, 19, 180-190.
Jackson, J. E. (1980). Principal components and factor analysis: part I-principal compo-
nent. Journal of Quality Technology, 12, 201-213.
163
Jackson, J. E. (1991). A User Guide to Principal Components. John Wiley and Sons, New
York.
Kalagonda, A. A. and Kulkarni, S. R. (2003). Diagnosis of multivariate control chart signal
based on dummy variable regression technique. Communications in Statistics - Theory
and Methods, 32, 1665-1684.
Kourti, T. and MacGregor, J. F. (1996). Multivariate SPC methods for process and product
monitoring. Journal of Quality Technology, 28, 409-428.
Kuriki, S. (1993). One-sided test for equality of two covariance matrices. The Annals of
Statistics, 21, 1379-1384.
Krishnaiah, P. R. and Rao, M. M. (1961). Remarks on a multivariate gamma distribution.
The American Mathematical Monthly, 68, 342-346.
Levinson, W., Holmes, D. S., and Mergen, A. E. (2002). Variation charts for multivariate
processes. Quality Engineering, 14, 539-545.
Lowry, C. A., Champ, C. W., and Woodall, W. H. (1995). The performance of control
charts for monitoring process variation. Communications in Statistics-Simulation and
Computation, 24, 409-437.
Mandel, B. J. (1969). The regression control chart. Journal of Quality Technology, 1, 1-9.
Maravelakis, P. E., Bersimis, S., Panaretos, J., and Psarakis, S. (2002). Identify the out of
control variable in a multivariate control chart. Communications in Statistics - Theory
and Methods, 31, 2391-2408.
Mason, R. L., Tracy, N. D., and Young, J. C. (1995). Decomposition of T2 for multivariate
control chart interpretation. Journal of Quality Technology, 27, 99-108.
164
Mason, R. L., Tracy, N. D., and Young, J. C. (1996). Monitoring a multivariate step
process. Journal of Quality Technology, 28, 39-50.
Mason, R. L., Champ, C. W., Tracy, N. D., Wierda, S. J., and Young, J. C. (1997).
Assessment of multivariate process control techniques. Journal of Quality Technology,
29, 140-143.
Mason, R. L., Tracy, N. D., and Young, J. C. (1997). A practical approach for interpreting
multivariate control chart signals. Journal of Quality Technology, 29, 396-406.
Mason, R. L. and Young, J. C. (1999). Improving the sensitivity of the T2 statistic in
multivariate process control. Journal of Quality Technology, 31, 155-165.
Mason, R. L. and Young, J. C. (2002). Multivariate Statistical Process Control with Indus-
trial Applications. ASA-SIAM, Alexandria and Philadelphia.
Montgomery, D. C. (2008). Introduction to Statistical Quality Control. 6nd edition. Wiley,
New York.
Murphy, B. J. (1987). Selecting out of control variables with the T2 multivariate quality
control procedure. The Statistician, 36, 571-583.
Nelson, L. S. (1990). Monitoring reduction in variation with a range chart. Journal of
Quality Technology, 22, 163-165.
Pachares, J. (1961). Tables for unbiased tests on the variance of a normal population. The
Annals of Mathematical Statistics, 32, 84-87.
Page, E. S. (1963). Controlling the standard deviation by CUSUM and warning lines.
Technometrics, 5, 307-315.
Pignatiello, Jr. J. J., Acosta-Mejia, C. A., and Rao, B. V. (1995). The performance
of control charts for monitoring process dispersion. Proceedings of the 4th Industrial
165
Engineering Research Conference Schmeiser, B. and Bidanda, B. (eds), Institute of
Industrial Engineers, Nashville, TN, 320-328.
Rencher, A. C. (1993). The contribution of individual variables to Hotelling's T2, Wilks'
¤, and R2. Biometrics, 49, 479-489.
Reynolds, Jr. M. R. and Cho, G.-Y. (2006). Multivariate control charts for monitoring the
mean vector and covariance matrix. Journal of Quality Technology, 38, 230-253.
Roy, J. (1958). Step-down procedure in multivariate analysis. Annals of Mathematical
Statistics, 29, 1177-1187.
Roy, S. N. and Bargmann, R. E. (1958). Tests of multiple independence and the associated
con‾dence bounds. Annals of Mathematical Statistics, 29, 491-503.
Roy, S. N., Gnanadesikan, R., and Srivastava, J. N. (1971). Analysis and Design of Certain
Quantitative Multirespme Experiments. Oxford: Pergamon Press.
Sakata, T. (1987). Likelihood ratio test for one-sided hypothesis of covariance matrices
of two normal populations. Communications in Statistics-Theory and Methods, 16,
3157-3168.
Schott, J. R. (2005). Matrix Analysis for Statistics. 2nd edition. Wiley, New York.
Sugiura, N. and Nagao, H. (1968). Unbiasedness of some test criteria for the equality of
one or two covariance matrices. The Annals of Mathematical Statistics, 39, 1686-1692.
Sepulveda, A. (1996). The Minimax Control Chart for Multivariate Quality Control. Un-
published Ph.D. dissertation, Virginia Polytechnic Institute and State University, De-
partment of Industrial and Systems Engineering.
Sepulveda, A. and Nachlas, J. A. (1997). A simulation approach to multivariate quality
control. Computers and Industrial Engineering, 33, 113-116.
166
Sparks, R. S., Adolphson, A., and Phatak, A. (1997). Multivariate process monitoring
using the dynamic Biplot. International Statistical Review, 65, 325-349.
Srivastava, M. S. and Khatri, C. G. (1979). An Introduction to Multivariate Statistic.
Elseriver North Holland.
Subbaiah, P. and Mudholkar, G. S. (1978). A comparison of two tests for the signi‾cance
of a mean vector. Journal of the American Statistical Association, 73, 414-418.
Tang, P. F. and Barnett, N. S. (1996a). Dispersion control for multivariate processes.
Australian Journal of Statistics, 38, 235-251.
Tang, P. F. and Barnett, N. S. (1996b). Dispersion control for multivariate processes-some
comparisons. Australian Journal of Statistics, 38, 253-273.
Timm, N. H. (1996). Multivariate quality control using ‾nite intersection tests. Journal of
Quality Technology, 28, 233-243.
Tuprah, K. and Ncube, M. (1987). A comparison of dispersion quality control charts.
Sequential Analysis, 6, 155-163.
Von Neumann, J. (1937). Some matrix-inequalities and metrization of matrix space. Tomsk
University Review, 1, 283-300. Reprinted (1962) in John Von Neumann Collected
Works (Edited by A. H. Taub), 4, 205-219. Pergamon, New York.
Wade, M. R. and Woodall, W. H. (1993). A review and analysis of case-selecting control
charts. Journal of Quality Technology, 25, 161-169.
Wasterhuis, J. A., Gurden, S. P., and Smilde, A. K. (2000). Generalized contribution plots
in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory
Systems, 51, 95-114.
167
Wierda, S. J. (1994). Multivariate statistical process control recent results and directions
for future research. Statistica Neerlandica, 48, 147-168.
Woodall, W. H. and Montgomery, D. C. (1999). Research issues and ideas in statistical
process control. Journal of Quality Technology, 31, 376-386.
Yeh, A. B., Lin, D. K.-J., Zhou, H., and Venkataramani, C. (2003). A multivariate ex-
ponentially weighted moving average control chart for monitoring process variability.
Journal of Applied Statistics, 30, 507-536.
Yeh, A. B., Huwang, L., and Wu, Y. F. (2004). A likelihood ratio based EWMA control
chart for monitoring multivariate process variability. IIE Transactions in Quality and
Reliability Engineering, 36, 865-879.
Yeh, A. B., Lin, D. K.-J. and McGrath, R. N. (2006). Multivariate control charts for mon-
itoring covariance matrix: a review. Journal of Quality Technology and Quantitative
Management, 3, 415-436.
Yen, C. L. and Shiau, J.-J. H. (2008). A Multivariate Control Chart for Detecting Increases
in Multivariate Process Dispersion. Technical Report, Institute of Statistics, National
Chiao Tung University, Hsinchu, Taiwan.
Zhang, G. X. (1980). A new type of quality control charts allowing the presence of assignable
causes-the cause-selecting control chart. Acta Electronica Sinica, 2, 1-10.
Zhang, G. X. (1984). A new type of control charts and a theory of diagnosis with control
chart. World Quality Congress Transactions, American Society for Quality Control,
175-185.
Zhang, G. X. (1992). Cause-Selecting Control Chart and Diagnosis, Theory and Prac-
tice. Unpublished Ph.D. dissertation, Aarhus School of Business, Department of Total
Quality Management, Aarhus, Denmark.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE