:::

詳目顯示

回上一頁
題名:虛擬原型與實體模型之真實度研究-以汽車造形設計為例
作者:陳坤淼 引用關係
作者(外文):Kuen-meau Chen
校院名稱:國立臺灣科技大學
系所名稱:設計研究所
指導教授:陳玲鈴
學位類別:博士
出版日期:2008
主題關鍵詞:汽車造形設計判別認知真實性虛擬原型Car Styling DesignForm PerceptionRealismVirtual Prototype
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:47
本研究嘗試了解虛擬原型與實體模型的真實度認知差異,主要分為三階段,第一階段:建置全尺寸投影環境;第二階段:透過專家訪談方式,歸納六大判別真實度屬性分別為造形屬性、光影屬性、色彩屬性、材質屬性、細節屬性、整體效果屬性;第三階段:使用OpenGL繪圖模式(即時模式)與Global illumination繪圖模式(非即時模式)分別進行兩次實驗。首先實驗(一):以「實車」(Real Car)為比較基準,分別針對「縮小模型車」(Scaled Physical Model)、「即時縮小虛擬車」(Scaled Virtual Model)、「即時全尺寸虛擬車」(Full-Scaled Virtual Model)進行真實度實驗。其次實驗(二):以「實車」(Real Car)為比較基準,分別針對「縮小模型車」(Scaled Physical Model)、「即時縮小虛擬車」(Scaled Virtual Model)「即時全尺寸虛擬車」(Full-Scaled Virtual Model)「非即時縮小虛擬車」 (Offline Rendered Scaled Virtual Model)、「非即時全尺寸虛擬車」 (Offline Rendered Full-Scaled Virtual Model),進行不同視角的判別屬性比較。
研究結果發現在汽車虛擬量體以即時繪圖或非即時繪圖方式呈現下,就視角的真實度而言,以透視表現最佳,不過與其他視角比較並沒有顯著性差異存在。實驗(一):就造形屬性而言,「全尺寸虛擬車」所呈現之效果比「縮小模型車」及「縮小虛擬車」呈現較佳,且與「縮小虛擬車」有顯著性之差異存在,因此全尺寸比例的呈現,對造形屬性判別而言扮演十分重要的角色。就光影屬性,色彩屬性和材質屬性而言,「縮小模型車」比「全尺寸虛擬車」與「縮小虛擬車」能得到更佳之效果。不過,細節屬性,則以「全尺寸虛擬車」呈現的效果較佳,而與「縮小模型車」比較起來並沒有顯著性的差異;整體效果屬性而言則以「縮小模型車」較佳,「全尺寸虛擬車」次之,而「縮小虛擬車」最差。
實驗(二):以「非即時虛擬車」呈現,在所有判別屬性中的表現皆是最佳,就整體而言依序分別為「非即時全尺寸虛擬車」、「非即時縮小虛擬車」、「縮小模型車」、「即時全尺寸虛擬車」、「即時縮小虛擬車」。
由實驗(一)與實驗(二)我們得知,「縮小模型車」優於「即時全尺寸虛擬車」因此我們瞭解人們在視覺評估中仍習慣實體呈現及可觸摸之感覺。
在全尺寸或縮小投影,若以「非即時虛擬車」呈現,在所有判別屬性中的表現皆是最佳,也就是說未來如果「即時虛擬車」效果能夠做成如同「非即時虛擬車」的效果一致,相信將能充分運用至汽車造形設計中,其真實度將接近實車效果。
This research seeks to understand the differences between virtual prototypes and physical models in representing car-styling features. A virtual design environment was built for design evaluation based on full-scale cars, which consists of a personal computer host server, three high-end projectors, and a geometric controller. The system projects an image with 2424*768 pixel resolution and 6m*2m projection area, satisfying the requirement of modeling a car in full scale. Through experts’ interview, six sets of evaluation attributes were identified: form, lighting and shadow, details, color, material, and realism. Virtual models using two different types of rendering methods are used in the experiments: real-time rendered virtual prototypes using OpenGL render engine; and offline rendered virtual prototypes using global illumination techniques.
The first experiment compares the different degrees of realism conveyed by physical models and real-time rendered virtual prototypes, with respect to realism closet to the real car. Overall, we found that scaled physical models conveyed the highest degree of realism, followed by full-scale virtual prototypes, and then scaled virtual prototypes. With respect to form attributes, full-scale virtual prototypes delivered better realism than scaled physical and virtual models, where the differences are significant between full-scale and scaled virtual prototypes. Thus, being able to view form features in full size appears to be important in perceiving objects’ forms. With respect to lighting and shadow as well as color and material attributes, scaled physical models conveyed higher degree of realism than full-scale or scaled virtual prototypes. In terms of details attributes, full-scale virtual prototypes provided better realism than scaled virtual prototypes, but not significantly better than scaled physical models. For realism attributes, scaled physical models conveyed the highest degree of realism, followed by full-scale virtual prototypes, and then scaled virtual prototypes.
The second experiment compares the differences in the degrees of realism conveyed by physical models and virtual models (rendered in both real-time and offline). We found that, the full-size virtual model rendered offline using global illumination (FVM-VRay) and the scaled virtual model rendered offline using global illumination (SVM-VRay) were the best, followed by the scaled physical model (SPM) and the full-size virtual model rendered in real time (FVM-Vizard), while the scaled virtual model rendered in real time (SVM-Vizard) comes last. In terms of form properties, FVM-VRay, SVM-VRay and FVM-Vizard have better performance than SPM and SVM-Vizard. Therefore, the full-scaled projection appears to play a crucial role in the perception of form. For lighting, color, material, detail, and overall effect properties, FVM-VRay, SVM-VRay and SPM show better performance. In almost all aspects, virtual models rendered using the global illumination rendering delivered good performance in realism for either full-scaled or scaled projection.
1.王鉅富,2003,<造形於形變過程中與情感意象之關係研究-以汽車為例>,國立台灣科 技大學設計研究所碩士論文,台北。
2.丘永福,1987,<造形原理>,藝風堂,台北市。
3. 呂清夫,1984,<造形原理>,雄獅出版社,台北市。
4. 官政能,1995,<產品物徑-設計創意之生成、發展與應用>,藝術家出版社,台北市。
5. 林榮泰,1980,“座車形態演進之研究”,<明志工專學報>,第12卷,pp.45-78。
6. 林榮泰,1982,“汽車外形設計之研究”,<明志工專學報>,第14卷,pp. 205-282。
7. 林榮泰,1983,“從產品觀探討汽車的設計活動”,<明志工專學報>,第15卷, pp. 283-338。
8. 長町三生,1993,<感性工學>,海文堂,東京。
9. 翁嘉聲,2004,<汽車造形形變對於意象認知與美感反應之關係研究>,國立台灣科技大學設計研究所碩士論文,台北。
10. 高清漢、莊明振,1997,“對Made in Taiwan概念印象定位之探討”,<第二屆設計學會學術研究成果論文集>,亞太圖書出版社,pp109-114。
11. 張建成,2000,<使用者對產品造形意向認知的影響因素研究>,國立交通大學工業工程與管理學系博士論文,新竹。
12. 張紹勳,1994,<SPSS For Windows多變量分析>,松崗電腦圖書資料股份有限公司,台北。
13. 張紹勳,1994,<SPSS For Windows統計分析下冊>,松崗電腦圖書資料股份有限公司,台北。
14. 張紹勳,1994,<SPSS For Windows統計分析上冊>,松崗電腦圖書資料股份有限公司,台北。
15. 梁德聰,2000,<立體物件形變之動態展示於多向度認知空間之應用-以汽車造形為例>,國立台灣工業技術學院工程技術研究所設計學程碩士論文。
16. 陳昶榮,陳玲鈴,林榮泰,1997,“電腦繪圖表現方法對於傳達產品外觀效果之研究”,<設計學報>,第二卷,第二期,pp71-88,台北市。new window
17. 陳國祥,管倖生,鄧怡莘,張育銘,2001, “感性工學-將感性予以理性化的手法”,<工業設計>,第二十九卷,第一期,p2-16。new window
18. 陳鴻源,2002,<汽車輪廓形態意象與區分特徵關係之研究>,國立成功大學工業設計研究所,台南。new window
19. 傅盈璋,1999,<虛擬原型應用在產品設計評估可能性之探討>,國立交通大學應用藝術研究所碩士論文,新竹。
20. 游萬來,林俊明,1997, “產品風格的量化描述研究-以轎車型態為例”,<設計學報>,第二卷,第二期 pp89-108,台北市。new window
21. 黃賜濱,陳玲鈴,2006,“3D虛擬物體之多重視角擬真電腦繪圖”,<中華民國設計學會第十一屆全國學術研討會論文>,pp.C-11-2~ C-11-6
22. 管倖生、林彥呈,2001, “應用類神經網路於手機色彩與造形搭配之研究”,<工業工程學刊>,第18卷,第六期,pp.45-78。new window
23. 樋口健治,1971,<自動車の美學>,光文社,東京。
24. Baxter, M., 1995, Product Design: Practical methods for the systematic development of new products, Chapman &Hall, London.
25. BMW, N.D., “BMW 5series specifications,” Retrieved April 28, 2005, from World Wide Web: http://www.bmw.com.tw/model/5sers/sedan/data.htm.
26. Bouchard, C. and Aoussat, A., 2003, “Modellization of the car design process”, International Journal of Vehicle Design, Vol. 31, No.1, pp.1-10.
27. Burdea, G. C. and Phillppe, C., 2003, Virtual reality technology, John Wiley &Sons, New Jersey.
28. Canadian Driver Communications Inc, Retrieved May 22, 2004, from World Wide Web: http://www.canadiandriver.com/news/news.htm)
29. Chen, K. and Owen, C. L., 1997, “Form Language and Style Description,” Design Studies, Vol. 18, No. 3, July, pp. 249-274.
30. Ching, Francis D.K., 2007, Architecture: Form, Space, & Order, 3rd Edition, John Wiley & Sons, Inc, Hoboken, NJ.
Coates, D., 2003, Watches Tell More than Time, pp.2-33, McGraw-Hill Companies, New York.
31. Dahan, E., and Srinivasan, V., 2000, “The Predictive Power of Internet-Based Product Concept Testing Using Visual Depiction and Animation”, Journal of Product Innovation Management, 17(2):99-109.
32. Debevec, P., 1998, “Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography”, Proceedings of SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, pp.189-198.
33. Debevec, P., 2002, “Image-Based Lighting,” IEEE Computer Graphics and Applications, Vol. 22, no. 2, pp. 26-34.
34. Green, P.E. and Srinivasan, V., 1978, “Conjoint analysis in consumer research: issues and outlook,” Journal of Consumer Research, Vol.5, pp.103-123
35. Hayward, T., 1993, Adventures in Virtual Reality, Carmel, IN: Que.
36. HDRShop, Retrieved Sep 10, 2006, from http://www.hdrshop.com/.
37. IPIX Corporation, 2005, “ IPIX Photography with Nikon Digital Cameras”, Retrieved April 20, 2005, from http://www.ipix.com/downloads/nikon_photography.pdf
38. Jindo, T and Hirasago, K., 1997, “Application studies to car interior of 39. Kansei engineering” International Journal of Industrial Ergonomics, 19,105-114
40. Houghton, J., 2006, “How to use Panorama Tools & PTGui to produce a printable panorama”, Retrieved April 20, 2006, from http://homepage.ntlworld.com/j.houghton/pttute.htm#calib
41. Jorge, J., João, M., Dias, F., Ferreira, A. Jr., 2003, “A consolidated user requirements and task analysis,” SmartSketches, Retrieved March 20, 2007 from http://smartsketches.inesc-id.pt/index.html
42. Lee, S., Chen, T., Kim, J., Kim, G. J., Han, S., and Pan, Z. G., 2004, “Affective Property Evaluation of Virtual Product Designs”, IEEE proceedings of the 2004 Virtual Reality (VR’04), Retrieved May 20, 2007, from http://ieeexplore.ieee.org/iel5/9163/29078/01310076.pdf
43. Mahoney, D. P., 1999, “Getting the big picture”, Computer Graphics World, September, pp.41-44.
44. Nagamachi, M., 1995, “Kansei engineering: A new ergonomic consumer-oriented technology for product development,” International Journal of Industrial Ergonomics, Vol 15, pp.3-11
45. Nagamachi, M., 1996, “implication of Kansei engineering and its application to automotive design consultation,” Proceedings of the 3rd Pan-Pacific Conference on Occupational Ergonomic, pp.171-175
46. Purschke, F., Schulze, M. and Zimmermann, P., 1998, “Virtual reality - New methods for improving and accelerating the development process in vehicle styling and design,” Proceedings of the Computer Graphics International 98, pp.789-797
47. Rowe, J. and Ashley, S., 1999, “Back to the future”, Computer Graphics World, July, pp.23-43
48. Seron, F. J., Gutierrez, D., Magallon J. A., Sobreviela E. J. and Gutierrez J.A., 2004, “A CAVE-like environment as a tool for full-size train design,” Virtual Reality, Vol.7, No.2, pp.82-93
49. SGI-Features, Designing a New Car with Virtual Reality-Virtual Reality is the Success Factor in Digital Product Development at Daimler Chrysler, Retrieved May 22, 2004, from http://www.sgi.com/features/2001/may/daimlerchrysler/
50. Soderman, M., 2005, “Virtual reality in product evaluations with potential customers: An exploratory study comparing virtual reality with conventional product representations,” Journal of Engineering Design, Vol.16, No. 3, pp.311-328.
51. Spheron VR com., “SpheroCamHDR,” Retrieved March 20, 2005, from http://www.spheron.com/en/home/home.php
52. Srinivasan, V., and Dahan, E., 2001, Virtual Prototypes Can Cheaply Test More Ideas, Retrieved March 20, 2005,from
http://www.gsb.stanford.edu/research/reports/2001/srinivasan.html
53. VRay, Retrieved March 18, 2005, from http://vray.info/
54. Webster’s New Universal Unabridged Dictionary, 1979, Simon & Schuster, New York
55. WorldViz, N.D., “VR toolkit,” Retrieved June 20, 2007 from http://www.worldviz.com/products/vizard/index.html.
56. Yamamoto, K., 1986, Kansei Engineering-The Art of Automotive Development at Mazda, Special Lecture at the University of Michigan, Ann Arbor.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE