:::

詳目顯示

回上一頁
題名:不同游泳訓練週期對血漿兒茶酚胺之研究
作者:戴堯種 引用關係
作者(外文):Yao-Chung Tai
校院名稱:國立體育大學
系所名稱:教練研究所
指導教授:林正常
學位類別:博士
出版日期:2009
主題關鍵詞:游泳訓練週期腎上腺素正腎上腺素腎正比swimming training phasesepinephrinenorepinephrineE/NE
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:32
本研究目的在探討游泳週期訓練及高強度運動後,對兒茶酚胺的影響。調查項目包括腎上腺素(E)、正腎上腺素(NE)及腎上腺素與正腎上腺素比(腎正比, E/NE)的影響。游泳訓練週期為期17週區分為3階段,分別為準備期(prepare training phase, PT)8週、高強期(intense training phase, IT)6週及調整期(taper training phase, TT)3週,訓練份量在PT約為6000-8000公尺,IT約增量40﹪以上達8000-11000公尺,TT則降至IT的50﹪約4000至5000公尺。受試對象為12名15-18歲的青少年游泳選手(8男4女),在接受各階段訓練最後一天,進行10×100公尺捷泳及個人專項測驗,以運動自覺量表及心跳率監控是否達最大努力。訓練前30分鐘及測驗後3分鐘抽取12cc肘靜脈血,以氣相層析法(GC-MS)進行血液分析,並以重複量數三因子變異數分析檢定各訓練期腎上腺素及正腎上腺素的差異,顯著水準α值定為.05。結果發現,在各訓練階段狀態中,腎上腺素在準備期到高強期顯著增加(47.08 ± 14.62升至70.17 ± 25.28 pg/ml, p<.01)、在高強期到調整期達顯著減少(70.17 ± 25.28降至8.92 ± 12.35 pg/ml, p<.01),顯示腎上腺素伴隨訓練強度增減而升降;正腎上腺素只在高強期到調整期顯著減少(217.83 ± 88.65 降至175.50 ± 69.35 pg/ml, p<.01),顯示準備期與高強期訓練強度差異不大;腎正比均小於1,且運動表現均無差異,判斷選手在各訓練期情緒狀態應屬正常,但仍需進一步驗證。高強度運動後,腎上腺素在調整期顯著增加(38.92 ± 12.35升至72.08 ± 14.13 pg/ml, p<.01),正腎上腺素在準備期(209.58 ± 86.48升至345.92 ± 137.41 pg/ml)、高強期(217.83 ± 88.65升至406.50 ± 176.01 pg/ml)與調整期(175.50 ± 69.35升至360.67 ± 136.68 pg/ml)均顯著增加(p<.01),顯示正腎上腺素在神經傳導的敏感性較強,是身體調適的前兆;而腎正比在高強期顯著減少(0.35 ± 0.12降至0.20 ± 0.01, p<.01),也顯示兩者在高強度運動的協同作用,交感神經及能量動員比例上的變化,建議教練根據上述結果調整訓練量,以有效區隔準備期與高強期訓練之目的;或在下一週期訓練中,降低高強期訓練份量並加強選手營養增補。由於兒茶酚胺的反應十分敏感,且廣受年齡、訓練強度、運動型態、運動特殊性、血液採樣時間、水溫及環境溫度所影響,相關的影響仍待後續研究釐清。
The purpose of this study was to investigate the phases of swimming training induced catecholamines responses including plasma epinephrine (E), norepinephrine (NE), and E/NE in adolescent elite swimmers. Twelve high school swimmers, age between 15-18 years old, participated in seventeen weeks of swimming training for National High School Swimming Games. Training phases were divided into eight weeks of prepare training (PT), six weeks of intense training (IT) and three weeks of tapering training (TT). Subjects were assigned to swim 10×100m freestyle swimming test in the last day of each period, while blood biochemical parameters were measured 30min pre-training and 3min post-test. GC-MS were used to analyze those plasma data. The results indicated that E was significantly increased during PT (47.08 ± 14.62 to 70.17 ± 25.28 pg/ml, p<.01) and decreased during IT (70.17 ± 25.28 to 38.92 ± 12.35 pg/ml, p<.01), it proves that E is increased following the training intensity. NE was significantly decreased during IT (217.83 ± 88.65 to 175.50 ± 69.35 pg/ml, p<.01). E/NE was significantly different during PT and IT, but the performance of freestyle confirmed that the E/NE was not used to predict central fatigue. After 10×100m freestyle swimming test, E was increased in TT (38.92 ± 12.35 to 72.08 ± 14.13 pg/ml, p<.01), NE were significantly increased in all the training phases, E/NE was significantly decreased in IT (0.35 ± 0.12 to 0.20 ± 0.01, p<.01). In conclusion, the results suggest that training volume of PT and IT is not balance, to adjust the IT volume or nutritional supplement is necessary. E/NE was used to predict central fatigue should be considered. NE is more sensitive than E to active the sympatho-adrenergic to intense exercise, but the effect factors such as age, training intensities, training durations, exercise types, sport specificity, subjects of training level, blood sampling times remain more studies to clarify.
王錫崗(2004):人體生理學。台北:文京出版社,。
田野(2003):運動生理學高級教程。台北:高等教育出版社,
22-23。
李瑞娟、劉鎮國、黃順顯(2006):運動訓練對憂鬱症老鼠影響之生理機轉評估。政大體育研究,18,1-13。new window
林正常(2001):運動訓練法。台北:藝軒圖書出版社。
蔡崇濱(2005):運動訓練科學化。正修科技大學運動健康與休閒系演講文稿,未出版,高雄縣。
蘇東平(2003):九二一大地震引發創傷壓力症候群腦神經的生
理病變。2008年4月7日引自http://www1.vghtpe.gov.tw/
msg/% C0%A3%A4O% Fg%AD%D4%B8s920120.htm.
Anselme, F., K. Collomp, B. Mercier, S. Ahmaidi, & Prefaut, C.
(1992). Caffeine increases maximal anaerobic power and
blood lactate concentration. European Journal of Applied
Physiology and Occupational Physiology, 65, 188–191.
Armstrong, L. E. & VanHeest, J. L. (2002). The unknown
mechanism of the Overtraining syndrome: clues from depression and psychoneuroimmunology. Sports Medicine, 32(3), 185-209.
Atlaoui, D., Duclos, M., Gouarne, C., Lacoste, L., Barale, F., &
Chatard, J. C. (2006). 24-hr urinary catecholamine excretion, training and performance in elite swimmers. International Journal of Sports Medicine, 27(4), 314-321.

Bompa, O. T.,(1999). Periodization training for sports: programs
for peak strength in 35 sports, pp: 83~120. Human Kinetics
Publishers: Champaign, IL., U. S. A.
Botcazou, M., Zouhal, H., Jacob, C., Gratas-Delamarche, A.,
Berthon, P. M., Bentue-Ferrer, D., & Delamarche P. (2006).
Effect of training and detraining on catecholamine responses to sprint exercise in adolescent girls. European Journal of Applied Physiology, 97(1), 68-75.new window
Chwalbińska-Moneta, J., Kruk, B., Nazar, K., Krzemiński, K., Kaciuba-Uściłko, H., & Ziemba, A. (2005). Early effects of short-term endurance training on hormonal responses to graded exercise. Journal of Physiology and Pharmacology, 56(1), 87-99.new window
Collomp, K., Ahmaidi, S., Chatard, J. C., Audran, M., & Préfaut, C. (1992). Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. European Journal of Applied Physiology and Occupational Physiology, 64, 377–380.
Desgorces, F. D., Chennaoui, M., Gomez-Merino, D., Drogou, C., Bonneau, D., & Guezennec, C. Y. (2004). Leptin, catecholamines and free fatty acids related to reduced recovery delays after training. European Journal of Applied Physiology, 93(1-2), 153-158.
Febbraio, M. A., Lambert, D. L., Starkie, R. L., Proietto, J., & Hargreaves, M. (1998). Effect of epinephrine on muscle glycogenolysis during exercise in trained men. Journal of Applied Physiology, 84, 465-470.
Friedlander, A. L., Casazza, G. A., Horning, M. A., Huie, M. J., Piacentini, M. F., Trimmer, J. K., & Brooks, G. A. (1998). Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. Journal of Applied Physiology, 85(3), 1175-1186.
Galitzky, J., Reverte, M., Portillo, M., Carpéné, C., Lafontan, M., & Berlan. M. (1993). Coexistence of beta 1-, beta 2-, and beta 3-adrenoceptors in dog fat cells and their differential activation by catecholamines. The American Journal of Physiology, 264(3 Pt 1), E403-E412.new window
Greiwe, J. S., Hickner, R. C., Shah, S. D., Cryer, P. E., & Holloszy, J. O. (1999). Norepinephrine response to exercise at the same relative intensity before and after endurance exercise training. Journal of Applied Physiology, 86(2), 531-535.
Guezennec, Y., Leger, L., Lhoste, F., Aymonod, M., & Pesquies, P. C. (1986). Hormone and metabolite response to weight-lifting training sessions. Internationa Journal of Sports Medicine, 7(2), 100-105.
Guezennec, C. Y., Defer, G., Cazorla, G., Sabathier, C., & Lhoste, F. (1986). Plasma renin activity, aldosterone and catecholamine levels when swimming and running. European Journal of Applied Physiology, 54(6), 632-637.
Hedelin, R., Kentta, G., Wiklund, U., Bjerle, P., & Henriksson-Larsen, K. (2000). Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Medicine and Science in Sports and Exercise, 32(8), 1480-1484.

Haller, J., Makara, G. B., & Kruk, M. R. (1998). catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic and central noradrenergic systems. Neuroscience and Biobehavioral Reviews, 22(1), 85–97.new window
Halson, S. L., Bridge, M. W., Meeusen, R., Busschaert, B., Gleeson, M., Jones, D. A., & Jeukendrup, A. E. (2002). Time course of performance changes and fatigue markers during intensified training in trained cyclists. Journal of Applied Physiology, 93(3), 947-956.
Halson, S. L., & Jeukendrup, A. E. (2004). Does overtraining exist? An analysis of overreaching and overtraining research. Sports Medicine, 34(14), 967-981.
Hargreaves, M., Angus, D., Howlett, K., Marmy Conus, N., & Febbraio, M. (1996). Effect of heat stress on glucose kinetics during exercise. Journal of Applied Physiology, 81, 1594–1597.
Hooper, S. L., MacKinnon, L. T., Gordon, R. D., & Bachmann, A. W. (1993). Hormonal responses of elite swimmers to overtraining. Medicine and Science in Sports and Exercise, 25(6), 741-747.
Hooper, S. L., Mackinnon, L. T., & Howard, A. (1999). Physiological and psychometric variables for monitoring recovery during tapering for major competition. Medicine and Science in Sports and Exercise, 31(8), 1205-1210.


Howlett, K., Galbo, H., Lorensten, J., Bergeron, R., Zimmerman-Belsing, T., Bulow, J., Feldt-Rasmussen, U., & Kjær, M. (1999). Effect of adrenaline on glucose kinetics during exercise in adrenalectomised humans. The Journal of Physiology, 519, 911–921.
Hunter, G. R., Byrne, N. M., Gower, B. A., Sirikul, B., & Hills, A. P. (2006). Increased resting energy expenditure after 40 minutes of aerobic but not resistance exercise. Obesity, 14(11), 2018-2025.
Jackman, M., Wendling, M., Friars, D. P., & Graham, T. E. (1996). Metabolic, catecholamine, and endurance responses to caffeine during intense exercise. Journal of Applied Physiology, 81, 1658-1663.
Jacob, C., Zouhal, H., Prioux, J., Gratas-Delamarche, A., Bentue-Ferrer, D., & Delamarche, P. (2004). Effect of the intensity of training on catecholamine responses to supramaximal exercise in endurance-trained men. European Journal of Applied Physiology, 91(1), 35-40.new window
Jacobs, I., & Bell, D. G. (2004). Effects of acute modafinil ingestion on exercise time to exhaustion. Medicine and Science in Sports and Exercise, 36(6), 1078-1082.
Janský, L., Matousková, E., Vávra, V., Vybíral, S., Janský, P., Jandová, D., Knízková, I., & Kunc, P. (2006). Thermal, cardiac and adrenergic responses to repeated local cooling. Physiological Research, 55(5), 543-549.

Kirwan, J. P., Costill, D. L., Flynn, M. G., Mitchell, J. B., Fink,
W. J., Neufer, P. D., & Houmard, J. A. (1988). Physiological
responses to successive days of intense training in competitive swimmers. Medicine and Science in Sports and Exercise, 20(3), 255-259.
Kinderman, W., Schnabel, A., Schmitt,W. M., Biro, G., Cassens, J., & Weber, F. (1982). Catecholamines, growth hormone, cortisol, insulin, and sex hormones in anaerobic and aerobic exercise. European Journal of Applied Physiology, 49(3), 389-399.
Kitayama, I., Yaga, T., Kayahara, T., Nakano, K., Murase, S., Otani, M., & Nomura J. (1997). Long-term stress degenerates, but imipramine regenerates, noradrenergic axons in the rat cerebral cortex. Biological Psychiatry, 42(8), 687-696.
Kjaer, M. (1989). Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. International Journal of Sports Medicine, 10(1), 2-15.new window
Kjaer, M. (1998). Adrenal medulla and exercise training. European Journal of Applied Physiology and Occupational Physiology , 77(3), 195-199.




Knopfli, B., Calvert, R., Bar-Or, O., Villiger, B., & VonDuvillard, S. P. (2001). Competition performance and basal nocturnal catecholamine excretion in cross-country skiers. Medicine and Science in Sports and Exercise, 33(7), 1228-1232.
Kraemer, W. J., Fleck, S. J., Maresh, C. M., Ratamess, N. A., Gordon, S. E., Goetz, K. L., Harman, E. A., Frykman, P. N., Volek, J. S., Mazzetti, S. A., Fry, A. C., Marchitelli, L. J., & Patton, J. F.(1999). Acute hormonal responses to a single bout of heavy resistance exercise in trained power lifters and untrained men. Canadian Journal of Applied Physiology, 24, 524-537.
Kruse, H. J., Wieczorek, I., Hecker, H., Creutzig, A., & Schellong, S. M. (2002). Seasonal variation of endothelin-1, angiotensin II, and plasma catecholamines and their relation to outside temperature. The Journal of Laboratory and Clinical Medicine, 140(4), 236-241.
Lafontan, M., Bousquet-Melou, A., Galitzky, J., Barbe, P., Carpene, C., Langin, D., Valet, P., Castan, I., Bouloumie, A., & Saulnier-Blache, J-S. (1995). Adrenergic receptors and fat cells: differential recruitment by physiological amines and homologous regulation. Obesity Research, 3, 507S–514S.
Leibenluft, E., Fiero, P. L., & Rubinow, D. R. (1995). Effects of the menstrual cycle on dependent variables in mood disorder research. Archives of General Psychiatry, 52(7), 605-606.


Lehmann, M., Dickhuth, H. H., Gendrisch, G., Lazar, W., Thum, M., Kaminski, R., Aramendi, J. F., Peterke, E., Wieland, W., Keul, J. (1991). Training-overtraining. A prospective, experimental study with experienced middle- and long-distance runners. International Journal of Sports Medicine, 12(5), 444-452.
Lehmann, M., Gastmann, U., Petersen, K. G., Bachl, N., Seidel, A., Khalaf, A. N., Fischer, S., & Keul, J. (1992). Training-overtraining: performance, and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners. British Journal of Sports Medicine, 26(4), 233-242.
Lehmann, M. J., Lormes, W., Opitz-Gress, A., Steinacker, J. M., Netzer, N., Foster, C., & Gastmann, U. (1997). Training and overtraining: an overview and experimental results in endurance sports. The Journal of Sports Medicine and Physical Fitness, 37(1), 7-17.new window
Levitan, I. B. & Kaczmarek, L. K. (2001). The neuron: cell and molecular biology. 3ed, Oxford University Press, New York, 496-507.
Mackinnon, L. T., Hooper, S. L., & Jones, S. (1997). Hormonal, immunological and hematological responses to intensified training in elite swimmers. Medicine and Science in Sports and Exercise, 29, 1637-1645.
Maglischo, E. W. (2003). Swimming fastest. Champaign Illinois: Human Kinetics, 421-424.
Marion-Latard, F., Crampes, F., Zakaroff-Girard, A., De Glisezinski, I., Harant, I., Stich, V., Thalamas, C., Rivière, D., Lafontan, M., & Berlan M. (2003). Post-exercise increase of lipid oxidation after a moderate exercise bout in untrained healthy obese men. Hormone and Metabolic Research, 35(2), 97-103.
Mason, J. W., Mahler, J. T., Hartley, L. H., Mougey, E. H., Perlow, M. J., & Jones, L. G. (1976). Selectivity of corticosteroid and catecholamine responses to various natural stimuli. In: Serban G, editor. Psychopathology of human adaptation. New York: Plenum.
Mazzeo, R. S., & Marshall, P. (1989). Influence of plasma catecholamines on the lactate threshold during graded exercise. Journal of Applied Physiology, 67(4), 1319-1322.
McArdle, W, D., Katch, F, I., & Katch, V, L. (2001). Exercise physiology: energy, nutrition, and human performance. Baltimore: Lippincott Williams & Wilkins.
McMorris, T., Collard, K., Corbett, J., Dicks, M., & Swain, J. P. (2008). A test of the catecholamine hypothesis for an acute exercise-cognition interaction. Pharmacology, Biochemistry, and Behavior, 89(1), 106-115.new window
Mujika, I., Chatard, J. C., Padilla, S., Guezennec, C. Y., & Geyssant, A. (1996). Hormonal responses to training and its tapering off in competitive swimmers: relationships with performance. European Journal of Applied Physiology and Occupational Physiology, 74(4), 361-366.
Natelson, B. H. (2004). Stress, hormones and disease. Physiology & Behavior, 82, 139– 143.
Pequignot, J. M., Peyrin, L., Favier, R., & Flandrois, R. (1979). Adrenergic response to intense muscular activity in sedentary subjects as a function of emotivity and training. European Journal of Applied Physiology and Occupational Physiology, 40(2), 117-135.
Piacentini, M. F., Meeusen, R., & Buyse, L. (2004). Hormonal responses NA reuptake inhibitor. British Journal of Sports Medicine, 38(2), 129-133.
Pitsiladis, Y. P., Strachan, A. T., Davidson, I., & Maughan, R. J. (2002). Hyperprolactinaemia during prolonged exercise in the heat: evidence for a centrally mediated component of fatigue in trained cyclists. Experimental Physiology, 87(2), 215-226.
Pullinen, T., Mero, A., Huttunen, P., Pakarinen, A., & Komi, P. V. (2002). Resistance exercise-induced hormonal responses in men, women, and pubescent boys. Medicine and Science in Sports and Exercise, 34(5), 806-813
Ronsen, O., Kjeldsen-Kragh, J., Haug, E., Bahr, R., & Pedersen, B. K. (2002). Recovery time affects immunoendocrine responses to a second bout of endurance exercise. American Journal of Physiology. Cell Physiology, 283(6), C1612-C1620.
Schnabel, A., Kindermann, W., Schmitt, W. M., Biro, G., & Stegmann, H. (1982). Hormonal and metabolic consequences of prolonged running at the individual anaerobic threshold. International Journal of Sports Medicine, 3(3), 163-168.

Schneider, D. A., McLellan, T. M., & Gass, G. C. (2000). Plasma catecholamine and blood lactate responses to incremental arm and leg exercise. Medicine and Science in Sports and Exercise, 32(3), 608-613.
Schöfl, C., Becker, C., Prank, K., von zur Mühlen, A., &
Brabant, G. (1997). Twenty-four-hour rhythms of plasma catecholamines and their relation to cardiovascular parameters in healthy young men. European Journal of Endocrinology, 137, 675–683.
Spriet, L. L., Ren, J. M., & Hultman, E. (1988). Epinephrine infusion enhances muscle glycogenolysis during prolonged electrical stimulation. Journal of Applied Physiology, 64, 1439–1444.
Swiedrych, A., Stachowiak, J., & Szopa, J. (2004). The catecholamine potentiates starch mobilization in transgenic potato tubers. Plant Physiology and Biochemistry, 42, 103-109.
Trapp, E. G., Chisholm, D., & Boutcher, S. H. (2007). Metabolic response of trained and untrained females during high intensity intermittent cycle exercise. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 293(6), R2370-R2375.
Turner, M. J., Howley, E. T., Tanaka, H., Ashraf, M., Bassett, D. RJ, & Keefer, D. J. (1995). Effect of graded epinephrine infusion on blood lactate response to exercise. Journal of Applied Physiology, 79(4), 1206-1211.

Urhausen, A., Gabriel, H. H., & Kindermann, W. (1998). Impaired pituitary hormonal response to exhaustive exercise in overtrained endurance athletes. Medicine and Science in Sports and Exercise, 30(3), 407- 414.
Urhausen, A., Weiler, B., Coen, B., & Kindermann, W. (1994). Plasma catecholamines during endurance exercise of different intensities as related to the individual anaerobic threshold. European Journal of Applied Physiology and Occupational Physiology, 69(1), 16-20.new window
Uusitalo, A. L., Huttunen, P., Hanin, Y., Uusitalo, A. J., & Rusko, H. K.(1998). Hormonal responses to endurance training and overtraining in female athletes. Clinical Journal of Sport Medicine, 8(3), 178-186.
Viru, A. (1992). Plasma hormones and physical exercise. International Journal of Sports Medicine, 13(3), 201-209.
Vybúral, S., Lesna, I., Jansky, L., & Zeman, V. (2000). Thermoregulation in winter swimmers and physiological significance of human catecholamine thermogenesis. Experimental Physiology, 85(3), 321-326.
Watt, M. J., Howlett, K. F., Febbraio, M. A., Spriet, L. L., & Hargreaves, M. (2001). Adrenaline increases skeletal muscle glycogenolysis, PDH activation and carbohydrate oxidation during moderate exercise in humans. The Journal of Physiology, 534, 269–278.



Watt, M. J., & Hargreaves, M. (2002). Effect of epinephrine on glucose disposal during exercise in humans: role of muscle glycogen. American Journal of Physiology, Endocrinology and Metabolism, 283(3), E578-583.
Watt, M. J., Heigenhauser, G. J., O'Neill, M., & Spriet, L. L. (2003). Hormone-sensitive lipase activity and fatty acyl-CoA content in human skeletal muscle during prolonged exercise. Journal of Applied Physiology, 95(1), 314-321.new window
Zouhal, H., Rannou, F., Gratas-Delamarche, A., Monnier, M., Bentue-Ferrer, D., & Delamarche, P. (1998). Adrenal medulla responsiveness to the sympathetic nervous activity in sprinters and untrained subjects during a supramaximal exercise. International Journal of Sports Medicine, 19(3), 172-176.
Zouhal, H., Jacob, C., Delamarche, P., & Gratas-Delamarche, A. (2008). Catecholamines and the effects of exercise, training and gender. Sports Medicine, 38(5), 401-423.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE