:::

詳目顯示

回上一頁
題名:多義性基因概念的理解與評量之研究
作者:王敏男
校院名稱:國立高雄師範大學
系所名稱:科學教育研究所
指導教授:黃台珠 博士
廖麗貞 博士
學位類別:博士
出版日期:2010
主題關鍵詞:基因概念多義性理解評量
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
本研究主要針對基因概念的多義性,探討國、高中學生對基因概念的理解情形,以及如何應用與整合各種基因概念,並建構適當的評量架構來幫助教師的教學與學生的學習。本研究以立意取樣,選取高雄市國中學生1551人、高中學生1262人,以基因概念評量問卷施測;並選取已完成高中遺傳課程的高三學生36人,進行半結構式晤談以及繪製基因概念的概念圖。本研究的主要結論如下:
一、學生對於基因概念的理解,高中學生的表現優於國中學生,高三學生表現優於其他年級,國中各年級間無顯著差異。
二、各面向基因概念的難易度由易至難排列為:
1.改自Falk (1986) 的基因分類:工具的基因、物質的基因、表現的基因、調節的基因。
2.本體論的基因分類:過程的基因、物質的基因。
3.遺傳學的分類:傳統遺傳學的基因、近代遺傳學的基因。
三、多義性概念的評量架構包括:
1.概念多樣性指標:概念豐富度指標、概念均勻度指標。
2.概念應用能力指標。
3.總指標。
四、學生藉由「同化」與「調適」的過程,來處理新學習的基因概念。
五、學生選取解題所需的基因概念時,其方式具有多樣性。
Focusing on the polysemy of gene concepts, this study explores high school students’ understanding of gene concepts, the application and integration of various gene concepts and thereby constructs an assessment framework that may be helpful for both teachers and students. In the study, 1551 junior high school students and 1262 senior high school students from Kaohsiung City were chosen by means of purposive sampling and given the Gene Concept Assessment Questionnaire. In addition, 36 senior high students on the third grade, who had completed their high school genetics courses, were given semi-structured interviews and were asked to draw a concept map for gene concepts. The main conclusions of this study are as follows.
I.In terms of the understanding of gene concepts, senior high school students performed better than their junior high counterparts. For senior high, students on the third grade did better than those on the first and second grades. For junior high, however, no significant differences were observed among students of different grades.
II.Various gene concepts are arranged in order of comprehension difficulty they pose for students, starting from the least difficult one.
1.Gene concept classification adapted from Falk (1986): instrumental gene, material gene, expressing gene, and regulative gene.
2.Gene concept classification based on ontology: process versus matter.
3.Gene concept classification based on genetics: tranditional genetics versus modern genetics.
III.The assessment framework involves:
1.Concepts diversity: concepts richness and concepts evenness
2.Concept application ability
3.Summary index
IV.Students process new gene concepts through assimilation and accommodation.
V.In solving a problem, students may choose particular gene concepts out of various considerations.
中文部份
王貞惠 (2001):改善學生遺傳概念學習之研究—應用「巨觀」-「微觀」-「符號表徵」導向之概念改變模式。高雄市:國立高雄師範大學科學教育研究所碩士論文(未出版)。
吳幸宜譯,Gredler, M. E.著 (1994):學習理論與教學應用。台北市:心理出版社。
呂金燮 (2006):測評量與教學目標的連結。載於王文中等合著:教育測驗與評量—教室學習觀點。台北市:五南圖書出版股份有限公司。
邱美虹 (2000):概念改變研究的省思與啟示。科學教育學刊, 8(1), 1-34。
周惠民、林陳涌、任宗浩和李哲迪 (2007):科學教學與學習評量標準芻議。科學教育月刊, 298, 2-18。
胡文耕 (2002):生物學哲學。北京市:中國社會科學出版社。
柯元蘋 (2009):學生對基因相關概念了解之研究。台北市:國立台灣師範大學生命科學系碩士論文(未出版)。
張春興 (2002):教育心理學。台北市:東華書局。
陳世輝 (1994):兒童遺傳概念之研究。國科會專題研究計畫成果報告(NSC-83-0111-S-026-004),未出版。
陳瑞麟 (2001):《科學革命的結構》之後。載於傅大為等主編:孔恩評論集 (pp. 279-309)。台北市:巨流圖書股份有限公司。
教育部 (1995):高級中學課程標準。台北市:教育部。
教育部 (2003):國民中小學九年一貫課程綱要。台北市:教育部。
教育部 (2005):普通高級中學課程暫行綱要。台北市:教育部。
郭重吉主編 (2008):自然與生活科技第二冊。台南市:南一書局。
湯清二 (1990):迷思概念與科學教學改進研究(1)–以遺傳概念為例。彰師大學報, 1, 367–397。
湯清二 (2000):我國非主修生物大學生對DNA認知的瞭解與改善學習的策略探討。科學教育學刊, 8(1), 101-121。
黃台珠 (1990):中學生遺傳相關錯誤類型的探討。科學教育月刊, 133, 34–53。
黃台珠 (1993):中學生遺傳學習的現況及問題。高雄師大學報, 4, 269-300。
黃台珠、鄭世暖、林明輝、蘇懿生、張學文與趙大衛 (1994):國中生物遺傳教學的改進研究。高雄師大學報, 5, 113-135。
黃秀英 (1999):國中生物科文本調整與學生閱讀理解之研究。高雄市:國立高雄師範大學特殊教育學系碩士論文(未出版)。
楊坤原與陳進利(1990):中學生認知能力與遺傳學概念學習之相關研究。科學教育, 1, 61-75。
楊坤原與鄭湧涇 (1997):高一學生遺傳學解題表現與解題策略之研究。科學教育學刊, 5(4), 529–555。
劉嘉茹、邱鴻麟審訂,Lawson, A. E.著 (2007):學習、發展和發現的神經學基礎:科學和數學教學的啟示。台北市:高等教育文化事業有限公司。
鄭湧涇、林金盾主編(2008a):生物(下)。台北縣:康熹文化。
鄭湧涇、林金盾主編(2008b):選修生物(下)。台北縣:康熹文化。
鄭榮輝 (2006):一個基因,各自表述─談基因概念的模糊、複雜與多義性。中山女高學報, 6, 15-28。
鄭榮輝與林陳涌 (2006):基因是什麼?-不同科系大學生的基因概念調查分析。論文發表於中華民國第廿二屆科學教育學術研討會。台北市:國立台灣師範大學理學院。
薛靜瑩 (1998):國小、國中學生的遺傳先存概念。台北市:國立台灣師範大學生物研究所碩士論文(未出版)。

英文部份
Allchin, D. (2000). Mending Mendelism. The American Biology Teacher, 62(9), 632-639.
Bahar, M., Johnstone, A.H., & Hansell, M.H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education , 33(2), 84 - 86.
Bahar, M., Johnstone, A.H., & Sutcliffe, R. G. (1999). Investigation of students’ cognitive structure in elementary genetics through word association tests. Journal of Biological Education , 33(3), 134-141.
Banet, E. & Ayuso, E. (2000). Teaching genetics at secondary school: a strategy for teaching about the location of inheritance information. Science Education, 84(3), 313-351.
Batzli, L.E. (1999). Conceptual change strategies in teaching genetics. A thesis submitted to the faculty of graduate school of the University of Minnesota for the degree of doctor of philosophy.
Bringuier, J. (1980). Conversations with Jean Piaget. Chicago: University of Chicago Press.
Brown, C. R. (1990). Some misconceptions in meiosis shown by students responding to an advanced level practical examination question in biology. Journal of Biological Education, 24(3), 182-185.
Browning, M. E., & Lehman, J. D. (1988). Identification of student misconceptions in genetics problem solving via computer program. Journal of Research in Science Teaching, 25(9), 747-761.
Campbell, N. A., & Reece, J. B. (2005). Biology, 7th ed. San Francisco: Pearson education Inc..
Campbell, N. A., Reece, J. B., Urry L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2008). Biology, 8th ed. San Francisco: Benjamin Cummings. pp.347.
Cartier, J., Stewart, J., & Zoellner, B. (2006). Modeling & inquiry in a high school genetics class. The American Biology Teacher, 68(6), 334-340.
Carlson, E. A. (2004). Mendel’s legacy: the orgin of classical genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in sciences. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp.129-186). Minneapolis: University of Minnesota Press.
Chi, M. T. H., Slotta, J. D. & de Leeuw, N. (1994) From things to processes: a theory of conceptual change for learning science concepts, Learning and Instruction, 4, 27-43.
Collins, A. (1987). A description of the strategic knowledge of experts solving transmission genetics problems. Paper presented at the National Association for Research in Science Teaching, Washington, DC.
Donovan, J., & Venville, G. (2005). A concrete model for teaching about genes and DNA to young students. Teaching Science, 51(4), 29-31.
Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23, 5-12.
Falk, R. (1986). What is a gene? Study in History and Philosophy of Science, 17(2), 133-173.
Fisher, K. M. (1985). A misconception in biology: amino acids and translation. Journal of Research in Science Teaching, 22(1), 53-62.
Flodin, V. S. (2009). The necessity of making visible concepts with multiple meanings in science education: the use of the gene concept in a Biology textbook. Science & Education, 18,73–94.
Gericke, N. M. & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science and Education, 16, 849-881.
Hackling, M. (1982). An examination of secondary students’ understanding of inheritance concepts. The Australian Science Teachers Journal, 28(1), 13-20.
Hackling, M. W., & Treagust, D. (1984). Research data necessary for meaningful review of grade ten high school genetics curriculum. Journal of Research in Science Teaching, 21(2), 197-209.
Hickman, F. M., Kennedy, M. H., & McInerney, J. D. (1978). Human genetics education: Results of BSCS needs assessment survey. The American Biology Teacher, 39(2), 285-303, 308.
Keil, F. (1999). Conceptual change. In R. A. Wilson & F. C. Keil (1999). The MIT Encyclopedia of the Cognitive Sciences, 179-182. The MIT Press, Cambridge, MA.
Kinnear, J. F. (1986). Computer simulation and problem solving in genetics. Paper presented at the Annual Meeting of the American Educational Research Association, San Francisco, CA, April 16-20, 1986. (ERIC Document Reproduction Service ED 272 370).
Kirkpatrick, G., Orvis, K., & Pittendrigh, B. (2002). A teaching model for biotechnology and genomics education. Journal of Biological Education, 37(1), 31-35.
Kitcher, P. (1982). Genes. British Journal of Philosophy of Science, 33, 337-359.
Koch, H. (1986). A small-scale interview study of college freshmen’s knowledge of concepts, principles and processes in molecular genetics before and after laboratory instruction. (ERIC Document Reproduction Service ED 277 572).
Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: University of Chicago Press.
Kuhn, T. S. (1983). “Commensurability, Comparability, Communicability”, in P. D. Asquith and T. Nickles (Eds.) PSA 1982, Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association (East Lansing: Philosophy of Science Association), pp. 669-688.
Lazarowitz, R., & Penso, S. (1992). High school students’ difficulties in learning biology concepts. Journal of Biological Education, 26(3), 215-223.
Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance-do students see any relationship. International Journal of Science Education, 22(2), 177-195.
Lewis, J., Leach, J., & Wood-Robinson, C. (2000). All in the genes?-young people’s understanding of the nature of the genes. Journal of Biological Education, 34(2), 74-79.
Malacinski, G. M. & Zell, P. W.(1996). Manipulating the “Invisible” learning molecular biology using inexpensive models. The American Biology Teacher.58:428-432.
Martins, I., & Ogborn, J.(1997). Metaphorical reasoning about genetics. International Journal of Science Education, 19, 47-63.
Mertens, T. R., & Hendrix, J. R. (1990). The popular press, scientific literacy in human genetics, and bioethical decision-making. School Science and Mathematics, 90(4), 317-322.
Mertens, T. R., & Walker, J. O. (1992). A paper-&-pencil strategy for teaching mitosis & meiosis, diagnosing learning problems & predicting examination performance. The American Biology Teacher, 54(8), 470- 475.
Moll, M. B., & Allen, R. D. (1987). Student difficulties with Mendelian genetics problem. The American Biology Teacher, 49(4), 229-233.
Molles, Jr., M. C. (2002). Ecology concepts and applications, 2nd ed. McGraw-Hill Companies, Inc.
Pashley, M. (1994). A-level students: their problems with gene and allele. Journal of Biological Education, 28(2), 120-126.
Piaget, J., & Inhelder, B. (1969). The psychology of the child. New York: Basic Books.
Portin, P. (1993). The concept of the gene: short history and present status. Q. Rev. Biol. 68(2): 173-223.
Portin, P. (2000). The origin, development and present status of the concept of the gene: a short historical account of the discoveries. Current Genomics, 1, 29-40.
Portin, P. (2002). Historical development of the concept of the gene. Journal of Medicine and Philosophy, 27(3), 257-286.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science education, 66(2),211-227.
Saka, A., Cerrah, L., Akdeniz, A. R., & Ayas, A. (2006). A cross-age study of the understanding of three genetic concepts: how do they image the gene, DNA and chromosome? Journal of Science Education and Technology, 15(2), 192-202.
Simmons, P. E. (1987). Misconceptions of experts and novices during a genetics computer simulation. Paper presented at the Second International Seminar: Misconceptions and educational strategies in science and mathematics. Ithaca, NY, July 26-29, 1987.
Simmons, P. E., & Lunetta, V. N. (1993). Problem-solving behaviors during a genetics computer simulation: Beyond the expert/novice dichotomy. Journal of Research in Science Teaching, 30(2), 153-173.
Slack, S. J., & Stewart, J. (1990). High school students’ problem-solving performance on realistic genetics problems. Journal of Research in Science Teaching, 27(1), 55-67.
Smith, M. U., Sims, O. & Suthern, Jr. (1992). Cognitive development, genetics problem solving, and genetics instruction: a critical review. Journal of Research in Science Teaching, 29(7), 701-713.
Stewart, J. (1983). Student problem solving in high school genetics. Science Education, 67(4), 523-540.
Stewart, J., & Dale, M. (1989). High school students’ understanding of chromosome/gene behavior during meiosis. Science Education, 73(4), 501-521.
Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Tsui, C., & Treagust, D. (2003). Learning genetics with computer dragons. Journal of Biological Education, 37(2),96-98.
Tsui, C., & Treagust, D. (2004). Conceptual change in learning genetics: an ontological perspective. Research in Science & Technological Education, 22(2), 185-202.
Tudge, C. (2000). In Mendel’s footnotes: An introduction to the science and technologies of genes and genetics from the 19th Centry to the 22nd. London: Jonathan Cape.
Venville, G., & Donovan, J. (2005). Searching for clarity to teach the complexity of the gene concept. Teaching Science, 51(3), 20-24.
Venville, G., & Donovan, J. (2006). Analogies for life: a subjective view of analogies and metaphors used to teach about genes and DNA. Teaching Science, 52(1), 18-22.
Venville, G., & Treagust, D. (1998). Exploring conceptual change in genetics using a multidimensional Interpretive framework. Journal of Research in Science Teaching, 39(9), 1031-1055.
Venville, G., & Treagust, D. (2002). Teaching about the Gene in the Genetic Information Age. Australian Science Teachers Journal, 48(2), 20-24.
Von Glasersfeld, E. (1987). Constructivism. In Husen,T. & Postlethwaite, N. (Eds.) International Encyclopedia of Education, Supplement Vol 1, Oxford, Pergamon.
Wandersee, J. H., Fisher, K. M., & Moody, D. E. (2000). The nature of biology knowledge. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge. Dordrecht the Netherlands: Kluwer Academic Publishers.
Wood-Robinson, C., Lewis, J., & Leach, J. (2000). Young people's understanding of the nature of genetic information in the cells of an organism. Journal of Biological Education, 35(1), 29-36.



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關博士論文
 
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE