:::

詳目顯示

回上一頁
題名:運動訓練與輕度低氧對肌纖維類型轉變和醣類代謝的交互影響
作者:吳明杰
作者(外文):Ming-Chieh Wu
校院名稱:國立體育大學
系所名稱:體育研究所
指導教授:蔡櫻蘭
郭家驊
學位類別:博士
出版日期:2011
主題關鍵詞:胰島素阻抗現象微血管增生肥胖insulin resistanceangiogenesisobesity
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:29
實驗一為探討兩週運動訓練過程中肌肉型態學的改變與MEF2A和AMPK-PGC-1α訊息蛋白的關連。依體重配對方式將SD鼠分成四組:控制組(SED)、單次運動(TR1)、運動7天(TR7)、運動14天(TR14),每組各10隻,運動介入採用每日90分鐘的游泳訓練。此實驗發現肌肉微血管增生於7天運動訓練後顯現,相同時間點的蹠肌檸檬酸合成酶活性、GLUT4和MEF2A蛋白表現量顯著高於控制組,但比目魚肌未有相同的結果。14天運動介入可導致蹠肌Type IIb向IIa肌纖維類型轉變, 然而肌肉PGC-1α和AMPKα蛋白表現與磷酸化未有變化。此結果證明運動訓練增加MEF2A蛋白可能為誘發肌纖維類型轉變的重要調節者。此外,肌肉型態適應的變化非為運動導致GLUT4蛋白增生的因素。實驗二為探討六週低氧訓練對於肥胖Zucker鼠的肌肉型態學和高胰島素症狀的影響。肥胖Zucker鼠隨機地細分成四組:控制組(CON)、運動訓練組(EX)、低氧組(HYP)、運動加低氧組(EX+HYP),每組各7隻。相同品系的瘦鼠亦有同樣的組別和數目。游泳訓練從每日30分鐘漸增至180分鐘,低氧刺激以常壓低氧方式使受試動物呼吸於14% O2 持續8小時。肥胖Zucker鼠的空腹胰島素濃度較高、葡萄糖耐受度和胰島素反應顯著較差。第六週實驗介入開始的檢測,肥胖鼠運動加低氧組的體重、空腹葡萄糖濃度、胰島素濃度、GAUC和IAUC皆顯著低於控制組,然而運動組僅有顯著改善GAUC。於實驗介入結束後,運動組蹠肌的微血管/肌纖維比值、微血管密度和Type IIa肌纖維百分比顯著高於控制組,而低氧訓練未呈現加成效應。此結果證實運動訓練合併低氧恢復有效地改善肥胖Zucker鼠的高胰島素症狀,此效應與體重下降有關,肌肉型態學的改變無明顯的改善效果。
Study I: The main purpose of this study was to determine, whether variations in fiber type composition and capillary density are involved with AMPK-PGC-1α signaling pathway and MEF2A protein levels, over the period of a training program. For this study, weight-matched SD rats were categorized into sedentary and trained groups (trained for 1, 7 and 14 days, n=10 in each group). Training consisted of swimming exercise for 90 min/day. Citrate synthase (CS) activity, GLUT4 and MEF2A protein levels were significantly greater in plantaris muscle of 7-day trained group compared to the sedentary group, while, no change in soleus muscle. Fiber type transformation from type IIb-to-IIa in plantaris was evidenced following the last bout of training program. However, no significant differences in AMPKα Thr172 phosphorylation and PGC-1α protein levels in both muscles. Our results suggest that the increased of MEF2A protein expression may play an essential role in fiber type transformation in trained rat muscles. Study II: It is unknown whether hypoxia training can effectively suppress overweight and hyperinsulinemia for the genetically obese animals. In this study, both lean and obese Zucker rats were randomly assigned into the following groups: control (CON, N=7), exercise training (EX, N=7), hypoxia (HYP, N=7), and exercise training with hypoxia recovery (EX+HYP, N=7). During a 6-week training period, rats underwent swimming progressively from 30 to 180 min/day and recovered under hypoxia (14% oxygen for 8 h/day). Obese Zucker rats exhibited substantially greater fasted insulin and exaggerated glucose and insulin responses following an oral glucose challenge compared with lean rats. At the beginning of the Week 6, body weight, fasting glucose, fasting insulin, area under curve of glucose and insulin in the EX+HYP group were significantly lower than those in the CON group for the obese rats. Only GAUC in the EX group was significantly lower than that in the CON group. At the end of the Week 6, capillaries to fiber ratio (C/F), capillary density (CD), and type IIa fiber proportion of plantaris muscle in the EX group were significantly greater than those in the CON group (P < 0.05), but no additive effect of hypoxia on exercise training was observed. Our data demonstrate that exercise training with prolonged hypoxia recovery provides strong metabolic benefits for the obese Zucker rats. This advantage was closely associated with effective weight reduction but less associated with alterations in skeletal muscle properties.
Abdelmalki, A., Fimbel, S., Mayet-Sornay, M. H., Sempore, B., & Favier, R. (1996). Aerobic capacity and skeletal muscle properties of normoxic and hypoxic rats in response to training. Pflügers Archiv: European Journal of Physiology, 431(5), 671-679.
Akimoto, T., Pohnert, S. C., Li, P., Zhang, M., Gumbs, C., Rosenberg, P. B., et al. (2005). Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. Journal of Biological Chemistry, 280(20), 19587-19593.
Akimoto, T., Ribar, T. J., Williams, R. S., & Yan, Z. (2004). Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulin-dependent protein kinase IV-deficient mice. American Journal of Physiology: Cell Physiology, 287(5), C1311-1319.
Allen, D. L., Harrison, B. C., Maass, A., Bell, M. L., Byrnes, W. C., & Leinwand, L. A. (2001). Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. Journal of Applied Physiology, 90(5), 1900-1908.
Arany, Z., Foo, S. Y., Ma, Y., Ruas, J. L., Bommi-Reddy, A., Girnun, G., et al. (2008). HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature, 451(7181), 1008-1012.
Armstrong, R. B., & Phelps, R. O. (1984). Muscle fiber type composition of the rat hindlimb. The American Journal Anatomy, 171(3), 259-272.
Aschenbach, W. G., Sakamoto, K., & Goodyear, L. J. (2004). 5' adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Medicine, 34(2), 91-103.
Banks, E. A., Brozinick, J. T. Jr., Yaspelkis, B. B. 3rd., Kang, H. Y., & Ivy, J. L. (1992). Muscle glucose transport, GLUT-4 content, and degree of exercise training in obese Zucker rats. American Journal of Physiology: Endocrinology and Metabolism, 263(5), E1010-1015.
Barnes, B. R., Ryder, J. W., Steiler, T. L., Fryer, L. G. D., Carling, D., & Zierath, J. R. (2002). Isoform-specific regulation of 5' AMP-activated protein kinase in skeletal muscle rrom obese Zucker (fa/fa) rats in response to contraction. Diabetes, 51(9), 2703-2708.
Becker-Zimmermann, K., Berger, M., Berchtold, P., Gries, F. A., Herberg, L., & Schwenen, M. (1982). Treadmill training improves intravenous glucose tolerance and insulin sensitivity in fatty Zucker rats. Diabetologia, 22(6), 468-474.
Bergeron, R., Previs, S. F., Cline, G. W., Perret, P., Russell Iii, R. R., Young, L. H., et al. (2001). Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes, 50(5), 1076-1082.
Bigard, A. X., Sanchez, H., Birot, O., & Serrurier, B. (2000). Myosin heavy chain composition of skeletal muscles in young rats growing under hypobaric hypoxia conditions. Journal of Applied Physiology, 88(2), 479-486.
Brooke, M. H., & Kaiser, K. K. (1970). Muscle fiber types: how many and what kind? Archives Neurology, 23, 369-379.
Brozinick, J. T. Jr., Etgen, G. J. Jr., Yaspelkis, B. B. 3rd., & Ivy, J. L. (1992). Contraction-activated glucose uptake is normal in insulin-resistant muscle of the obese Zucker rat. Journal of Applied Physiology, 73(1), 382-387.new window
Carlson, B. M., & Faulkner, J. A. (1983). The regeneration of skeletal muscle fibers following injury: a review. Medicine and Science in Sports and Exercise, 15(3), 187-198.
Cassin, S., Gilbert, R. D., Bunnell, C. E., & Johnson, E. M. (1971). Capillary development during exposure to chronic hypoxia. The American Journal of Physiology, 220(2), 448-451.
Chiu, L. L., Chou, S. W., Cho, Y. M., Ho, H. Y., Ivy, J. L., Hunt, D., et al. (2004). Effect of prolonged intermittent hypoxia and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats. Journal of Biomedical Science, 11(6), 838-846.
Cortez, M. Y., Torgan, C. E., Brozinick, J. T., Jr., & Ivy, J. L. (1991). Insulin resistance of obese Zucker rats exercise trained at two different intensities. American Journal of Physiology: Endocrinology and Metabolism, 261(5), E613-619.
Daugaard, J. R., Nielsen, J. N., Kristiansen, S., Andersen, J. L., Hargreaves, M., & Richter, E. A. (2000). Fiber type-specific expression of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes, 49(7), 1092-1095.
DeFronzo, R. A., Jacot, E. J., Jequier, E., Maeder, E., Wahren, J., & Felber, J. P. (1981). The effect of insulin on the disposal of intravenous glucose. Diabetes, 30, 1000-1007.
Deveci, D., Marshall, J. M., & Egginton, S. (2001). Relationship between capillary angiogenesis, fiber type, and fiber size in chronic systemic hypoxia. American Journal of Physiology: Heart and Circulatory Physiology, 281(1), H241-252.new window
Di Carlo, A., De Mori, R., Martelli, F., Pompilio, G., Capogrossi, M. C., & Germani, A. (2004). Hypoxia inhibits myogenic differentiation through accelerated MyoD degradation. Journal of Biological Chemistry, 279(16), 16332-16338.
Dill, R. P., Chadan, S. G., Li, C., & Parkhouse, W. S. (2001). Aging and glucose transporter plasticity in response to hypobaric hypoxia. Mechanisms of Ageing and Devlopment, 122(6), 533-545.
Dohm, G. L. (2002). Exercise Effects on Muscle Insulin Signaling and Action: Invited Review: Regulation of skeletal muscle GLUT-4 expression by exercise. Journal of Applied Physiology, 93(2), 782-787.
Douen, A. G., Ramlal, T., Rastogi, S., Bilan, P. J., Cartee, G. D., Vranic, M., et al. (1990). Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise- recruitable transporter pools in skeletal muscle. The Journal of Biological Chemistry, 265(23), 13427-13430.
Etgen, G. J., Jr., Jensen, J., Wilson, C. M., Hunt, D. G., Cushman, S. W., & Ivy, J. L. (1997). Exercise training reverses insulin resistance in muscle by enhanced recruitment of GLUT-4 to the cell surface. American Journal of Physiology: Endocrinology and Metabolism, 272(5), E864-869.
Etgen, G. J., Jr., Wilson, C. M., Jensen, J., Cushman, S. W., & Ivy, J. L. (1996). Glucose transport and cell surface GLUT-4 protein in skeletal muscle of the obese Zucker rat. American Journal of Physiology: Endocrinology and Metabolism, 271(2), E294-301.
Facchini, F. S., Hua, N., Abbasi, F., & Reaven, G. M. (2001). Insulin resistance as a predictor of age-related diseases. The Journal of Clinical Endocrinology and Metabolism, 86(8), 3574-3578.
Fitzsimons, D. P., Diffee, G. M., Herrick, R. E., & Baldwin, K. M. (1990). Effects of endurance exercise on isomyosin patterns in fast- and slow-twitch skeletal muscles. Journal of Applied Physiology, 68(5), 1950-1955.
Friedman, J. E., Sherman, W. M., Reed, M. J., Elton, C. W., & Dohm, G. L. (1990). Exercise training increases glucose transporter protein GLUT-4 in skeletal muscle of obese Zucker (fa/fa) rats. FEBS Lett, 268(1), 13-16.new window
Frisbee, J. C. (2005). Hypertension-independent microvascular rarefaction in the obese Zucker rat model of the metabolic syndrome. Microcirculation, 12(5), 383-392.
Gao, J., Sherman, W. M., McCune, S. A., & Osei, K. (1994). Effects of acute running exercise on whole body insulin action in obese male SHHF/Mcc-facp rats. Journal of Applied Physiology, 77(2), 534-541.
Garcia-Roves, P. M., Jones, T. E., Otani, K., Han, D. H., & Holloszy, J. O. (2005). Calcineurin does not mediate exercise-induced increase in muscle GLUT4. Diabetes, 54(3), 624-628.
Gaster, M., Staehr, P., Beck-Nielsen, H., Schroder, H. D., & Handberg, A. (2001). GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: Is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes, 50(6), 1324-1329.new window
Geng, T., Li, P., Okutsu, M., Yin, X., Kwek, J., Zhang, M., et al. (2010). PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. American Journal of Physiology: Cell Physiology, 298(3), C572-C579.
Goodyear, L. J. (2000). AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport? Exercise and Sport Sciences Reviews, 28(3), 113-116.
Gravholt, C. H., Nyholm, B., Saltin, B., Schmitz, O., & Christiansen, J. S. (2001). Muscle fiber composition and capillary density in Turner syndrome: evidence of increased muscle fiber size related to insulin resistance. Diabetes Care, 24(9), 1668-1673.
Handschin, C., Chin, S., Li, P., Liu, F., Maratos-Flier, E., LeBrasseur, N. K., et al. (2007). Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1 alpha muscle-specific knock-out animals. The Journal of Biological Chemistry, 282(41), 30014-30021.
Hardie, D. G. (2004). The AMP-activated protein kinase pathway - new players upstream and downstream. Journal of Cell Science, 117(23), 5479-5487.
Henriksen, E. J. (2002). Exercise effects of muscle insulin signaling and action: Invited review: effects of acute exercise and exercise training on insulin resistance. Journal of Applied Physiology, 93(2), 788-796.
Hickey, M. S., Carey, J. O., Azevedo, J. L., Houmard, J. A., Pories, W. J., Israel, R. G., et al. (1995). Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. American Journal of Physiology: Endocrinology and Metabolism, 268(3), E453-457.
Holmes, B. F., Kurth-Kraczek, E. J., & Winder, W. W. (1999). Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. Journal of Applied Physiology, 87(5), 1990-1995.
Holmes, B. F., Sparling, D. P., Olson, A. L., Winder, W. W., & Dohm, G. L. (2005). Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. American Journal of Physiology: Endocrinology And Metabolism, 289(6), E1071-E1076.
Hoppeler, H., & Vogt, M. (2001). Muscle tissue adaptations to hypoxia. The Journal of Experimental Biology, 204(18), 3133-3139.
Host, H. H., Hansen, P. A., Nolte, L. A., Chen, M. M., & Holloszy, J. O. (1998). Rapid reversal of adaptive increases in muscle GLUT-4 and glucose transport capacity after training cessation. Journal of Applied Physiology, 84(3), 798-802.
Howald, H., Hoppeler, H., Claassen, H., Mathieu, O., & Straub, R. (1985). Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflügers Archiv: European Journal of Physiology, 403(4), 369-376.
Ishihara, A., Itoh, K., Itoh, M., & Hirofuji, C. (2000). Effect of hypobaric hypoxia on rat soleus muscle fibers and their innervating motoneurons: a review. The Japanese Journal of Physiology, 50(6), 561-568.
Ishihara, A., Itoh, K., Oishi, Y., Itoh, M., Hirofuji, C., & Hayashi, H. (1995). Effects of hypobaric hypoxia on histochemical fibre-type composition and myosin heavy chain isoform component in the rat soleus muscle. Pflügers Archiv: European Journal of Physiology, 429(5), 601-606.
Itoh, K., Moritani, T., Ishida, K., Hirofuji, C., Taguchi, S., & Itoh, M. (1990). Hypoxia-induced fibre type transformation in rat hindlimb muscles. Histochemical and electro-mechanical changes. European Journal of Applied Physiology and Occupational Physiology, 60(5), 331-336.
Ivy, J. L. (2004). Muscle insulin resistance amended with exercise training: role of GLUT4 expression. Medicine and Science in Sports and Exercise, 36(7), 1207-1211.
Ivy, J. L., & Kuo, C. H. (1998). Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiologica Scandinavica, 162(3), 295-304.
Ivy, J. L., Zderic, T. W., & Fogt, D. L. (1999). Prevention and treatment of non-insulin-dependent diabetes mellitus. Exercise and Sport Sciences Reviews, 27, 1-35.
Jansson, E., Sjodin, B., & Tesch, P. (1978). Changes in muscle fibre type distribution in man after physical training. A sign of fibre type transformation? Acta Physiologica Scandinavica, 104(2), 235-237.
Jessen, N., Pold, R., Buhl, E. S., Jensen, L. S., Schmitz, O., & Lund, S. (2003). Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. Journal of Applied Physiology, 94(4), 1373-1379.
Kawada, S., & Ishii, N. (2008). Changes in skeletal muscle size, fibre-type composition and capillary supply after chronic venous occlusion in rats. Acta Physiologica, 192(4), 541-549.
Kern, M., Wells, J. A., Stephens, J. M., Elton, C. W., Friedman, J. E., Tapscott, E. B., et al. (1990). Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level. The Biochemical Journal, 270(2), 397-400.
Kibenge, M. T., & Chan, C. B. (2002). The effects of high-fat diet on exercise-induced changes in metabolic parameters in Zucker fa/fa rats. Metabolism, 51(6), 708-715.
King, P. A., Betts, J. J., Horton, E. D., & Horton, E. S. (1993). Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscle. American Journal of Physiology: Regulatory Integrative and Comparative Physiology, 265(2), R447-452.
King, P. A., Horton, E. D., Hirshman, M. F., & Horton, E. S. (1992). Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation. The Journal of Clinical Investigation, 90(4), 1568-1575.
Király, M. A., Bates, H. E., Kaniuk, N. A., Yue, J. T. Y., Brumell, J. H., Matthews, S. G., et al. (2008). Swim training prevents hyperglycemia in ZDF rats: mechanisms involved in the partial maintenance of beta-cell function. American Journal of Physiology: Endocrinology and Metabolism, 294(2), E271-283.
Kriketos, A. D., Pan, D. A., Lillioja, S., Cooney, G. J., Baur, L. A., Milner, M. R., et al. (1996). Interrelationships between muscle morphology, insulin action, and adiposity. American Journal of Physiology: Regulatory Integrative and Comparative Physiology, 270(6), R1332-1339.
Lash, J. M., Sherman, W. M., & Hamlin, R. L. (1989). Capillary basement membrane thickness and capillary density in sedentary and trained obese Zucker rats. Diabetes, 38(7), 854-860.
Lee, W. C., Chen, J. J., Ho, H. Y., Hou, C. W., Liang, M. P., Shen, Y. W., et al. (2003). Short-term altitude mountain living improves glycemic control. High Altitude Medicine and Biol, 4(1), 81-91.new window
Leonard, B. L., Watson, R. N., Loomes, K. M., Phillips, A. R., & Cooper, G. J. (2005). Insulin resistance in the Zucker diabetic fatty rat: a metabolic characterisation of obese and lean phenotypes. Acta Diabetologica, 42(4), 162-170.
Li, P., Akimoto, T., Zhang, M., Williams, R. S., & Yan, Z. (2006). Resident stem cells are not required for exercise-induced fiber-type switching and angiogenesis but are necessary for activity-dependent muscle growth. American Journal of Physiology: Cell Physiology, 290(6), C1461-1468.
Lillioja, S., Young, A. A., Culter, C. L., Ivy, J. L., Abbott, W. G., Zawadzki, J. K., et al. (1987). Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. The Journal of Clinical Investigation, 80(2), 415-424.
Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., et al. (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 418(6899), 797-801.
Marin, P., Andersson, B., Krotkiewski, M., & Bjorntorp, P. (1994). Muscle fiber composition and capillary density in women and men with NIDDM. Diabetes Care, 17(5), 382-386.
Mattson, J. P., Miller, T. A., Poole, D. C., & Delp, M. D. (2002). Fiber Composition and Oxidative Capacity of Hamster Skeletal Muscle. The Journal of Histochemistry and Cytochemistry, 50(12), 1685-1692.
McClelland, G. B., Hochachka, P. W., & Weber, J.-M. (1998). Carbohydrate utilization during exercise after high-altitude acclimation: A new perspective. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 10288-10293.
Megeney, L. A., Neufer, P. D., Dohm, G. L., Tan, M. H., Blewett, C. A., Elder, G. C., et al. (1993). Effects of muscle activity and fiber composition on glucose transport and GLUT-4. American Journal of Physiology: Endocrinology and Metabolism, 264(4), E583-593.
Mu, J., Brozinick, J. T., Valladares, O., Bucan, M., & Birnbaum, M. J. (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell, 7(5), 1085-1094.
Mu, X., Brown, L. D., Liu, Y., & Schneider, M. F. (2007). Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Physiological Genomics, 30(3), 300-312.
Netzer, N. C., Chytra, R., & Kupper, T. (2008). Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath, 12(2), 129-134.
Neubauer, J. A. (2001). Physiological and Genomic Consequences of Intermittent Hypoxia: Invited Review: Physiological and pathophysiological responses to intermittent hypoxia. Journal of Applied Physiology, 90(4), 1593-1599.
Oberbach, A., Bossenz, Y., Lehmann, S., Niebauer, J., Adams, V., Paschke, R., et al. (2006). Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care, 29(4), 895-900.
Ojuka, E. O., Jones, T. E., Nolte, L. A., Chen, M., Wamhoff, B. R., Sturek, M., et al. (2002). Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca2+. American Journal of Physiology: Endocrinology and Metabolism, 282(5), E1008-1013.
Ojuka, E. O., Nolte, L. A., & Holloszy, J. O. (2000). Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. Journal of Applied Physiology, 88(3), 1072-1075.
Panisello, P., Torrella, J. R., Esteva, S., Pages, T., & Viscor, G. (2008). Capillary supply, fibre types and fibre morphometry in rat tibialis anterior and diaphragm muscles after intermittent exposure to hypobaric hypoxia. European Journal of Applied Physiology, 103(2), 203-213.
Peterson, J. M., Bryner, R. W., & Alway, S. E. (2008). Satellite cell proliferation is reduced in muscles of obese Zucker rats but restored with loading. American Journal of Physiology: Cell Physiology, 295(2), C521-528.
Pilegaard, H., & Richter, E. A. (2008). PGC-1alpha: important for exercise performance? Journal of Applied Physiology, 104(5), 1264-1265.
Reaven, G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37(12), 1595-1607.
Ren, J. M., Semenkovich, C. F., Gulve, E. A., Gao, J., & Holloszy, J. O. (1994). Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. The Journal of Biological Chemistry, 269(20), 14396-14401.
Ripoll, E., Sillau, A. H., & Banchero, N. (1979). Changes in the capillarity of skeletal muscle in the growing rat. Pflügers Archiv: European Journal of Physiology, 380(2), 153-158.
Röckl, K. S., Witczak, C. A., & Goodyear, L. J. (2008). Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life, 60(3), 145-153.
Röckl, K. S. C., Hirshman, M. F., Brandauer, J., Fujii, N., Witters, L. A., & Goodyear, L. J. (2007). Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes, 56(8), 2062-2069.
Rodnick, K. J., Henriksen, E. J., James, D. E., & Holloszy, J. O. (1992). Exercise training, glucose transporters, and glucose transport in rat skeletal muscles. American Journal of Physiology: Cell Physiology, 262(1), C9-14.new window
Rose, A. J., & Richter, E. A. (2005). Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology, 20(4), 260-270.
Saengsirisuwan, V., Kinnick, T. R., Schmit, M. B., & Henriksen, E. J. (2001). Interactions of exercise training and lipoic acid on skeletal muscle glucose transport in obese Zucker rats. Journal of Applied Physiology, 91(1), 145-153.new window
Saengsirisuwan, V., Perez, F. R., Kinnick, T. R., & Henriksen, E. J. (2002). Effects of exercise training and antioxidant R-ALA on glucose transport in insulin-sensitive rat skeletal muscle. Journal of Applied Physiology, 92(1), 50-58.new window
Sillau, A. H., & Banchero, N. (1977). Effects of hypoxia on capillary density and fiber composition in rat skeletal muscle. Pflügers Archiv: European Journal of Physiology, 370(3), 227-232.
Simoneau, J. A., Lortie, G., Boulay, M. R., Marcotte, M., Thibault, M. C., & Bouchard, C. (1985). Human skeletal muscle fiber type alteration with high-intensity intermittent training. European Journal of Applied Physiology and Occupational Physiology, 54(3), 250-253.
Sriwijitkamol, A., Ivy, J. L., Christ-Roberts, C., DeFronzo, R. A., Mandarino, L. J., & Musi, N. (2006). LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training. American Journal of Physiology: Endocrinology and Metabolism, 290(5), E925-932.
Staron, R. S. (1997). Human skeletal muscle fiber types: delineation, development, and distribution. Canadian Journal of Applied Physiology, 22(4), 307-327.
Steen, M. S., Foianini, K. R., Youngblood, E. B., Kinnick, T. R., Jacob, S., & Henriksen, E. J. (1999). Interactions of exercise training and ACE inhibition on insulin action in obese Zucker rats. Journal of Applied Physiology, 86(6), 2044-2051.
Stuart, C. A., Howell, M. E., Baker, J. D., Dykes, R. J., Duffourc, M. M., Ramsey, M. W., et al. (2010). Cycle training increased GLUT4 and activation of mammalian target of rapamycin in fast twitch muscle fibers. Medicine and Science in Sports and Exercise, 42(1), 96-106.new window
Suwa, M., Nakano, H., & Kumagai, S. (2003). Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. Journal of Applied Physiology, 95(3), 960-968.
Takahashi, H., Kikuchi, K., & Nakayama, H. (1992). Effect of chronic hypoxia on skeletal muscle fiber type in adult male rats. The Annals of Physiologica Anthropology, 11(6), 625-630.
Thai, M. V., Guruswamy, S., Cao, K. T., Pessin, J. E., & Olson, A. L. (1998). Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. The Journal of Biological Chemistry, 273(23), 14285-14292.
Thayer, R., Collins, J., Noble, E. G., & Taylor, A. W. (2000). A decade of aerobic endurance training: histological evidence for fibre type transformation. The Journal of Sports Medicine and Physical Fitness, 40(4), 284-289.
Torgan, C. E., Brozinick, J. T., Jr., Kastello, G. M., & Ivy, J. L. (1989). Muscle morphological and biochemical adaptations to training in obese Zucker rats. Journal of Applied Physiology, 67(5), 1807-1813.
Torgan, C. E., Brozinick, J. T. Jr., Willems, M. E., & Ivy, J. L. (1990). Substrate utilization during acute exercise in obese Zucker rats. Journal of Applied Physiology, 69(6), 1987-1991.
Torgan, C. E., Etgen, G. J., Jr., Kang, H. Y., & Ivy, J. L. (1995). Fiber type-specific effects of clenbuterol and exercise training on insulin-resistant muscle. Journal of Applied Physiology, 79(1), 163-167.new window
Valdivia, E. (1958). Total capillary bed in striated muscle of guinea pigs native to the Peruvian mountains. American Journal of Physiology, 194(3), 585-589.
Wadley, G. D., Lee-Young, R. S., Canny, B. J., Wasuntarawat, C., Chen, Z. P., Hargreaves, M., et al. (2006). Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. American Journal of Physiology: Endocrinology and Metabolism, 290(4), E694-702.
Wallberg-Henrikss, H., & Zierath, J. R. (2001). GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice. Molecular Membrane Biology, 18(3), 205-211.
Wang, P. T., Chiang, I. T., Lin, C. Y., Hou, C. W., Chen, C. Y., Lee, H. H., et al. (2006). Effect of a two-month detraining on glucose tolerance and insulin sensitivity in athletes-link to adrenal steroid hormones. The Chinese Journal Physiology, 49(5), 251-257.
Waters, R. E., Rotevatn, S., Li, P., Annex, B. H., & Yan, Z. (2004). Voluntary running induces fiber type-specific angiogenesis in mouse skeletal muscle. American Journal of Physiology: Cell Physiology, 287(5), C1342-1348.
Wiesner, S., Haufe, S., Engeli, S., Mutschler, H., Haas, U., Luft, F. C., et al. (2010). Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity, 18(1), 116-120.new window
Williamson, D. L., Butler, D. C., & Alway, S. E. (2009). AMPK inhibits myoblast differentiation through a PGC-1alpha -dependent mechanism. American Journal of Physiology: Endocrinology and Metabolism, 297(2), E304-314.
Winder, W. W. (2001). Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. Journal of Applied Physiology, 91(3), 1017-1028.
Wright, D. C., Hucker, K. A., Holloszy, J. O., & Han, D. H. (2004). Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes, 53(2), 330-335.
Wu, H., Kanatous, S. B., Thurmond, F. A., Gallardo, T., Isotani, E., Bassel-Duby, R., et al. (2002). Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science, 296(5566), 349-352.
Wu, H., Naya, F. J., McKinsey, T. A., Mercer, B., Shelton, J. M., Chin, E. R., et al. (2000). MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. The EMBO Journal, 19(9), 1963-1973.
Wu, H., Rothermel, B., Kanatous, S., Rosenberg, P., Naya, F. J., Shelton, J. M., et al. (2001). Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. The EMBO Journal, 20(22), 6414-6423.
Xia, Y., Warshaw, J. B., & Haddad, G. G. (1997). Effect of chronic hypoxia on glucose transporters in heart and skeletal muscle of immature and adult rats. American Journal of Physiology: Regulatory Integrative and Comparative Physiology, 273(5), R1734-1741.
Youn, J. H., Gulve, E. A., & Holloszy, J. O. (1991). Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. American Journal of Physiology. Cell Physiology, 260(3), C555-561.
Zwetsloot, K. A., Westerkamp, L. M., Holmes, B. F., & Gavin, T. P. (2008). AMPK regulates basal skeletal muscle capillarization and VEGF expression, but is not necessary for the angiogenic response to exercise. The Journal of Physiology, 586(24), 6021-6035.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE