:::

詳目顯示

回上一頁
題名:高強度間歇訓練中不同氧氣濃度恢復對壓力與耐力指標的影響
作者:王錠堯
作者(外文):Ting-Yao Wang
校院名稱:國立體育大學
系所名稱:教練研究所
指導教授:詹貴惠
學位類別:博士
出版日期:2012
主題關鍵詞:氧氣濃度硫酸巴比妥酸反應物細胞凋亡皮質醇肌酸激酶oxygen concentrationthiobarbituric acid reactive substancesapoptosiscortisolcreatine kinase
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:45
目的:探討高強度間歇訓練 (high-intensity interval training, HIT) 的恢復期以常氧 (20.9%)、低氧 (16%) 或高氧 (60%) 進行恢復時對於:一、HIT中之訓練強度指標心跳率、血乳酸與血糖,以及HIT後血液之氧化壓力生物指標硫酸巴比妥酸反應物 (thiobarbituric acid reactive substances, TBARS)、淋巴球粒線體膜電位下降(mitochondrial transmembrane potential decline, MTP decline)、細胞凋亡與壞死、代謝壓力生物指標皮質醇及機械壓力生物指標肌酸激酶 (creatine kinase, CK) 的影響。二、5次HIT後對HIT中之訓練強度指標及HIT後各項壓力生物指標的適應情形。三、兩週共6次的HIT後對VO2max、換氣閾值、跑步經濟性、最大攝氧量速度及力竭時間等耐力指標的影響。方法:以24名健康男性 (年齡:22.1±2.5 歲;身高:173.5±6.5 公分;體重:73.9±9.6 公斤) 為受試者,隨機將受試者分配至不同氧氣濃度恢復的組別。訓練前、後,受試者各進行一次漸增強度跑步測試至力竭,以測量受試者的VO2max、換氣閾值、跑步經濟性、最大攝氧量速度及力竭時間,並計最大攝氧量速度。之後進行為期兩週共6次強度為90% VO2max、運動期4 min、恢復期2 min、共7回合的HIT,訓練中的恢復期受試者依組別以60% (Hyper組) 或20.9% (Nor組) 或16% (Hypo組) 的氧氣濃度進行恢復。第1、6次HIT在訓練前與訓練之第1、4、7回合後 (1x、4x、7x) 立即測量心跳率,並測量血乳酸與血糖;訓練前、後立即與訓練後1、2、48小時 (1 h、2 h、48 h) 亦由採集血液以測量皮質醇、TBARS、CK以及淋巴球MTP decline、細胞凋亡與壞死的狀況。所得結果以重複量數單因子ANOVA比較單次HIT組內各時間點訓練強度與壓力指標的差異;以單因子ANCOVA比較單次HIT組間各時間點訓練強度與壓力指標的差異及兩週訓練後耐力指標的差異;另以相依樣本t檢定比較第1、6次HIT相同時間點的訓練強度與壓力指標差異,顯著水準訂為α = .05。結果:一、HIT中使用不同氧氣濃度恢復不影響HIT中運動期的訓練強度指標。Hypo組HIT後2 h的CK活性與1 h的TBARS濃度即與訓練前無差異,且在1 h時的細胞凋亡顯著低於Hyper組 (15.16% ± 5.22% vs. 22.70% ± 8.18%, p < .05);Hyper組在HIT後不會造成皮質醇上升,且在1 h時顯著低於Hypo組 (249.8 ± 107.0 nmol/L vs. 362.7 ± 158.2 nmol/L, p < .05)。二、5次HIT適應後,三組訓練中的心跳率都顯著下降,Hypo組訓練前、後與1 h時的TBARS亦都顯著下降 (p < .05)。三、Hypo組訓練後可以有效增進VO2max、換氣閾值與力竭時間 (p < .05),Hyper組則無改變。結論:HIT中以16%低氧恢復可降低氧化壓力及機械壓力,經過適應後可降低訓練所產生的氧化壓力,且可增進耐力指標,因此高強度間歇訓練的恢復期採用低氧恢復可降低訓練產生的傷害及提升有氧能力。
Purpose: To investigate the effects of recovery with normoxia (20.9%), hypoxia (16%) or hyperoxia (60%) during high-intensity interval training (HIT) on: 1. The training intensity markers (heart rate, blood lactate acid and glucose), as well as biomarkers of oxidative stress [thiobarbituric acid reactive substances (TBARS), lymphocyte mitochondrial transmembrane potential decline (MTP decline), apoptosis and necrosis], metabolic stress (cortisol) and mechanical stress (creatine kinase, CK) after one single bout of HIT. 2. The adaption of training intensity, oxidative stress, metabolic stress and mechanical stress markers after 5 times HIT. 3. The effects of endurance determinants (VO2max, VT, RE, vVO2max and time to fatigue) after 6 times HIT in two weeks. Methods: Twenty four healthy males (age: 22.1±2.5 yrs, height: 173.5±6.5 cm, weight: 73.9±9.6 kg) randomly assigned to hypoxia (16%, Hypo), normoxia (20.9%, Nor) or hyperoxia (60%, Hyper) groups. Participants were asked to perform an incremental running test to fatigue before and after the experiment intervention to measure VO2max, VT, RE and time to fatigue and calculate vVO2max. After the pre-test, participant performed 6 times HIT (7 reptitions, 4-min interval at 90% VO2max, 2-min rest between intervals) with different oxygen concentration provided in rest intervals. In the 1st and 6th HIT, the heart rate, La and Glu were measured before and after the 1st, 4th and 7th reptition during HIT. Blood sample were also collected to measure cortisol, TBARS, CK, lymphocyte MTP decline, apoptosis and necrosis before and immediately, 1 h, 2 h and 48 h after HIT. Training intensity and exercise induced stress biomarkers in single bout of HIT within group were compared by one way ANOVA with repeated measurment. Training intensity, exercise induced stress biomarkers in single bout HIT and endurance determinants after 2 weeks training between groups were compared by one way ANCOVA. Paired t-test was used to compare training intensity and exercise induced stress biomarkers between 1st and 6th HIT. The significant level was set as α = .05. Results: 1. The training intensity markers during HIT were not affected by different oxygen concentration recovery. The CK activity of 2 h and TBARS concentration of 1 h after HIT were no significant difference to before training in Hypo group. The apoptosis of 1 h after HIT in Hypo group was significantly lower than in Hyper group (15.16%±5.22% vs. 22.70%±8.18%, p < .05). In Hyper group, the cortisol concentration did not elevate after HIT. The cortisol of 1 h after HIT in Hyper group significantly lower than in Hypo group (249.8±107.0 nmol/L vs. 362.7±158.2 nmol/L, p < .05). 2. After 5 times adaption of HIT, the heart rate during training in three groups were significantly decreased. The TBARS concentrations of before and immediately, 1 h after HIT in Hypo group were significantly decreased (p < .05). 3. The VO2max、VT and time to fatigue in Hypo group were significantly improved after traing (p < .05), but there was no change in Hyper group. Conclusion: Recovery by 16% hypoxia during HIT could decrease oxidative and mechanical stress as well as decrease the oxidative stress from HIT after adaption. It can also improve endurance determinants. Using hypoxia recovery during HIT may reduce exercise induced damage and increase aerobic capacity.
譚健民(2009)。粒線體與細胞凋亡。生物醫學,2,250-268。
Adams, R. P., Cashman, P. A., & Young, J. C. (1986). Effect of hyperoxia on substrate utilization during intense submaximal exercise. Journal of Applied Physiology, 61, 523-529.
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell (4th ed., pp.1010-1026). New York: Garland Science.
Armstrong, R. B. (1990). Initial events in exercise-induced muscular injury. Medicine and Science in Sports and Exercise, 22, 429-435.
Bailey, D. M., Davies, B., & Young, I. S. (2001). Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clinical Science, 101, 465-75.
Balsom, P. D., Seger, J. Y., Sjodin, B., & Ekblom, B. (1992). Maximal intensity intermittent exercise: effect of recovery duration. International Journal of Sports Medicine, 13, 528-533.
Bannister, R. G., & Cunningham, D. J. (1954). The effects on the respiration and performance during exercise of adding oxygen to the inspired air. The Journal of Physiology, 125, 118-137.
Baumann, S., Krueger, A., Kirchhoff, S., & Krammer, P. H. (2002). Regulation of T cell apoptosis during the immune response. Current Molecular Medicine, 2, 257-272.
Bentley, D. J., Newell, J., & Bishop, D. (2007). Incremental exercise test design and analysis: implications for performance disgnostics in endurance athletes. Sports Medicine, 37, 575-586.new window
Billat, V. L. (2001a). Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Medicine, 31, 13-31.
Billat, V. L. (2001b). Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Medicine, 31, 75-90.
Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2, 92-98.
Brooks, G. A., Butterfield, G. E., Wolfe, R. R., Groves, B. M., Mazzeo, R. S., Sutton, J. R., Wolfel, E. E., & Reeves, J. T. (1991). Increased dependence on blood glucose after acclimatization to 4300 m. Journal of Applied Physiology, 70, 919-927.
Brosnan, M. J., Martin, D. T., Hahn, A. G., Gore, C. J., & Hawley, J. A. (2000). Impaired interval exercise responses in elite female cyclists at moderate simulated altitude. Journal of Applied Physiology, 89, 1819-1824.
Burgomaster, K. A., Cermak, N., Phillips, S. M., Benton, C., Bonen, A., & Gibala, M. J. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 292, R1970-R1976.
Burgomaster, K. A., Heigenhauser, G. J. F., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time trial performance. Journal of Applied Physiology, 100, 2041-2047.
Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J. F., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98, 1985-1990.
Child, R. B., Wilkinson, D. M., Fallowfield, J. L., & Donnelly, A. E. (1998). Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Medicine and Science in Sports and Exercise, 30, 1603-1607.
Cartee, G. D., Douen, A. G., Ramlal, T., Klip, A., & Holloszy, J. O. (1991). Stimulation of glucose transport in skeletal muscle by hypoxia. Journal of Applied Physiology, 70, 1593-1600.
Clanton, T. L., & Klawitter, P. F. (2001). Physiological and genomic consequences of intermittent hypoxia invited review: adaptive responses of skeletal muscle to intermittent hypoxia: the known and the unknown. Journal of Applied Physiology, 90, 2476-2487.
Clarkson, P. M., &Tremblay, I. (1988). Exercise-induced muscle damage, repair, and adaptation in humans. Journal of Applied Physiology, 65, 1-6.
Clarkson, P. M., & Thompson, H. S. (2000). Antioxidants: what role do they play in physical activity and health? The American Journal of Clinical Nutrition, 72, 637-646.
Connett, R. J., Honig, C. R., Gayeski, T. E. J., & Brooks, G. A. (1990). Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. Journal of Applied Physiology, 68, 833-842.
Davies, K. J., Quintanilha, A. T., Brooks, G. A., & Packer, L. (1982). Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communication, 107, 1198-1205.
Dhabhar, F. S., Miller, A. H., Stein, M., McEwen, B. S., & Spencer, R. L. (1994). Diurnal and acute stress-induced changes in distribution of peripheral blood leukocyte subpopulations. Brain, Behavior and Immunity, 8, 66-79.
Edge, J., Bishop, D., & Goodman, C. (2006). The effects of training intensity on muscle buffer capacity in females. European Journal of Applied Physiology, 96, 97-105.
Finaud, J., Lac, G., & Filaire, E. (2006). Oxidative Stress: relationship with exercise and training. Sports Medicine, 36, 327-358.
Fletcher, E. C. (2000). Effect of episodic hypoxia on sympathetic activity and blood pressure. Respiratory Physiology, 119, 189-197.
Fletcher, E. C., Lesske, J., Qian, W., Miller, C. C. I., & Unger, T. (1992). Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension, 19, 555-561.
Franch, J., Aslesen, R., & Jensen, J. (1999). Regulation of glycogen synthesis in rat skeletal muscle after glycogen-depleting contractile activity: effects of adrenaline on glycogen synthesis and activation of glycogen synthase and glycogen phosphorylase. Biochemistry Journal, 344, 231-235.
Geiser, J., Vogt, M., Billeter, R., Zuleger, C., Belforti, F., & Hoppeler, H. (2001). Training high–living low: changes of aerobic performance and muscle structure with training at simulated altitude. International Journal of Sports Medicine, 22, 579-585.
Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptions to short-term high-intensity interval training: a little pain for a lot of gain? Medicine and Science in Sports and Exercise, 36, 58-63.
Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., Raha, S., & Tarnopolsky, M. A. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. The Journal of Physiology, 575, 901–911.
Gollnick, P. D., Armstrong, R. B., Saltin, B., Saubert, C. W., Sembrowich, W. L., & Sheperd, R. E. (1973). Effect of training on enzyme activity and fiber composition of human skeletal muscle. Journal of Applied Physiology, 34, 107-111.
Green, H. J., Sutton, J. R., Wolfel, E. E., Reeves, J. T., Butterfield, G. E., & Brooks, G. A. (1992). Altitude acclimatization and energy metabolic adaptation in skeletal muscle during exercise. Journal of Applied Physiology, 73, 2701-2708.
Hawley, J. A., Myburgh, K. H., Noakes, T. D., & Dennis, S. C. (1997). Training techniques to improve fatigue resistance and enhanced endurance performance. Journal of Sports Science, 15, 325-333.
Hendriksen, I. J., & Meeuwsen, T. (2003). The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a cross-over study in humans. European Journal of Applied Physiology, 88, 396-403.
Hoppeler, H., Vogt, M., Weibel, E. R., & Fluck, M. (2003). Response of skeletal muscle mitochondria to hypoxia. Experimental Physiology, 88, 109-119.
Hsu, T. G., Hsu, K. M., Kong, C. W., Lu, F. J., Cheng, H., & Tsai, K. (2002). Leukocyte mitochondria alterations after aerobic exercise in trained human subjects. Medicine and Science in Sports and Exercise, 34, 438-442.
Hunter, G. R., Bamman, M. M., Larson-Meyer, D. E., Joanisse, D. R., McCarthy, J. P., Blaudeau, T. E., & Newcomer, B. R. (2005). Inverse relationship between exercise economy and oxidative capacity in muscle. European Journal of Applied Physiology, 94, 558-568.
Ishii, Y., Deie, M., Adachi, N., Yasunaga, Y., Sharman, P., Miyanaga, Y., & Ochi, M. (2005). Hyperbaric oxygen as an adjuvant for athletes. Sports Medicine, 35, 739-746.
Jenkins, R. R. (1988). Free radical chemistry: relationship to exercise. Sports Medicine, 5, 156-170.
Ji, L. L. (1996). Exercise, oxidative stress, and antioxidants. The American Journal of Sports Medicine, 24, S20-S24.
Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports Medicine, 29, 373-386.
Kadiiska, M. B., Gladen, B. C., Baird, D. D., Germolec, D., Graham, L. B., Parker, C. E. et al. (2005). Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radical Biology and Medicine, 38, 698-710.
Katayama, K., Sato, Y., Mrotome, Y., Shima, N., Ishida, K., Mori, S., & Miyamura, M. (1999). Ventilatory chemosensitive adaptations to intermittent hypoxic exposure with endurance training and detraining. Journal of Applied Physiology, 86, 1805-1811.
Kerr, J. F. R., Wyllie, A. H., & Curie, A. R. (1972). A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26, 239-257.
Kiens, B. (1997). Effect of endurance training on fatty acid metabolism: local adaptations. Medicine and Science in Sports and Exercise, 29, 640-645.
Kjaer, M., Bangsbo, J., Lortie, G., & Galbo, H. (1988). Hormonal response to exercise in human: influence of hypoxia and physical training. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 254, R197-R203.
Kjaer, M., Hanel, B., Worm, L., Perko, G., Lewis, S. F., Sahlin, K., Galbo, H., & Secher, N. H. (1999). Cardiovascular and neuroendocrine responses to exercise in hypoxia during impaired neural feedback from muscle. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 277, R76-R85.
Kuwano, K., & Hara, N. (2000). Signal transduction pathways of apoptosis and inflammation induced by the tumor necrosis factor receptor family. American Journal of Respiratory Cell and Molecular Biology, 22, 147-149.
Khani, S., & Tayek, J. A. (2001). Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clinical Science, 101, 739-747.
Kraemer, W. J., Fleck, S. J., Callister, R., Shealy, M., Dudley, G. A., Maresh, C. M., Marchitelli, L., Cruthirds, C., Murray, T., & Falkel, J. E. (1989). Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Medicine and Science in Sports and Exercise, 21, 146-153.
Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training. Sports Medicine, 32, 53-73.
Lundby, C., & Van Hall, G. (2002). Substrate utilization in sea level residents during exercise in acute hypoxia and after 4 weeks of acclimatization to 4100 m. Acta Physiologica Scandinavica, 176, 195-201.
Mars, M., Govender, S., Weston, A., Naicker, V., & Chuturgoon, A. (1998). High intensity exercise: a cause of lymphocyte apoptosis? Biochemical and Biophysical Research Communications, 249, 366-370.
Mazzeo, R. S. (2008). Physiological responses to exercise at altitude: an update. Sports Medicine, 38, 1-8.
Maughan, R. J., Donnelly, A. E., Glaeeson, M., Whiting, P. H., Walker, K. A., & Clough, P. J. (1989). Delayed-onset muscle damage and lipid peroxidation in man after a downhill run. Muscle and Nerve, 12, 332-336.
Melissa, L., MacDougall, J. D., Tarnopolsky, M. A., Cipriano, N., & Green, H. J. (1997). Skeletal muscle adaptation to training under normobaric hypoxic versus normoxic conditions. Medicine and Science in Sports and Exercise, 29, 238-243.
Moller, P., Loft, S., Lundby, C., & Olsen, N. V. (2001). Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. The FASEB Journal, 15, 1181-1186.
Mooren, F. C., Blöming, D., Lechtermann, A., Lerch, M. M., & Völker, K. (2002). Lymphocyte apoptosis after exhaustive and moderate exercise. Journal of Applied Physiology, 93, 147-153.
Mooren, F. C., Lechterman, A., Fromme, A., Thorwesten, L., & Völker, K. (2001). Alteration in intracellular calcium signaling of lymphocytes after exhaustive exercise. Medicine and Science in Sports and Exercise, 33, 242-248.
Mooren, F. C., Lechtermann, A., & Völker, K. (2004). Exercise-induced apoptosis of lymphocytes depends on training status. Medicine and Science in Sports and Exercise, 36, 1476-1483.
Mooren, F. C. & Völker, K. (2005). Molecular and cellular exercise physiology. Champaign, IL: Human Knectic.
Narkiewicz, K., van de Borne, P. J., Cooley, R. L., Dyken, M. E., & Somers, V. K. (1998). Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation, 98, 772-776.
Parolin, M. L., Spriet, L. L., Hultman, E., Hollidge-Horvat, M. G., Jones, N. L., & Heigenhauser, G. J. (2000). Regulation of glycogen phosphorylase and PDH during exercise in human skeletal muscle during hypoxia. American Journal of Physiology- Endocrinology and Metabolism, 278, E522-E534.
Pedersen, B. K., & Steensberg, A. (2002). Exercise and hypoxia: effects on leukocytes and interleukin-6-shared mechanisms? Medicine and Science in Sports and Exercise, 34, 2004-2012.
Pedersen, B. K., Kappel, M., Klokker, M. (1997). Possible role of stress hormones in exercise-induced immunomodulation. In B. K. Pedersen, (ed), Exercise Immunology (pp. 39-60). Heidelberg: Springer-Verlag.
Perry, C. G., Reid, J., Perry, W., & Wilson, B. A. (2005). Effects of hyperoxic training on performance and cardiorespiratory response to exercise. Medicine and Science in Sports and Exercise, 37, 1175-1179.
Perry, C. G., Talanian, J. L., Heigenhauser, G. J., & Spriet, L. L. (2007). The effects of training in hyperoxia vs. Normoxia on skeletal muscle enzyme activities and exercise performance. Journal of Applied Physiology, 102, 1022-1027.
Phaneuf, S., & Leeuwenburgh, C. (2001). Apoptosis and exercise. Medicine and Science in Sports and Exercise, 33, 393-396.
Pialoux, V., Mounier, R., Ponsot, E., Rock, E., Mazur, A., Dufour, S., Richard, R., Richalet, J. P., Coudert, J., & Fellmann, N. (2006). Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. European Journal of Clinical Nutrition, 60, 1345-1354.
Plet, J., Pedersen, P. K., Jensen, F. B., & Hansen, J. K. (1992). Increased working capacity with hyperoxia in human. European Journal of Applied Physiology and Occupational Physiology, 65, 171-177.
Roels, B., Millet, G. P., Marcoux, C. J., Coste, O., Bentley, D. J., & Candau, R. B. (2005). Effects of hypoxic interval training on cycling performance. Medicine and Science in Sports and Exercise, 37, 138-146.
Roels, B., Thomas, C., Bentley, D. J., Mercier, J., Hayot, M., & Millet, G. (2007). Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. Journal of Applied Physiology, 102, 79-86.
Rossiter, H. B., Howe, F. A., Ward, S. A., Kowalchuk, J. M., Griffiths, J. R., & Whipp, B. J. (2000). Intersample fluctuations in phosphocreatine concentration determined by 31P-magnetic resonance spectroscopy and parameter estimation of metabolic responses to exercise in human. The Journal of Physiology, 528, 359-369.
Rowbottom, D. G., & Green, K. J. (2000). Acute exercise effects on the immune system. Medicine and Science in Sports and Exercise, 32, S396-S405.
Sawyer, B. J., Blessinger, J. R., Irving, B. A., Weltman, A., Patrie, J. T., & Gaesser, G. A. (2010). Walking and running economy: inverse association with peak oxygen uptake. Medicine and Science in Sports and Exercise, 42, 2122-2127.
Schneider, D. A., Phillips, S. E., & Stoffolano, S. (1993). The simplified V-slope method of detecting the gas exchange threshold. Medicine and Science in Sports and Exercise, 25, 1180-1184.
Sica, A. L., Greenberg, H. E., Ruggiero, D. A., & Scharf, S. M. (2000). Chronic-intermittent hypoxia: a model of sympathetic activation in the rat. Respiratory Physiology, 121, 173-184.
Simon, H. U., Haj-Yehia, A., & Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5, 415-418.
Smith, M. L., & Muenter, N. K. (2000). Effects of hypoxia on sympathetic neural control in humans. Respiratory Physiology, 121, 163-171.
Spina, R. J., Chi, M. M., Hopkins, M. G., Nemeth, P. M., Lowry, O. H., & Holloszy, J. O. (1996). Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. Journal of Applied Physiology, 80, 2250-2254.
Stanley, W. C., & Connett, R. J. (1991). Regulation of muscle carbohydrate metabolism during exercise. Journal of the Federation of American Societies for Experimental Biology, 5, 2155-2159.
Stellingwerff, T., Glazier, L., Watt, M. J., LeBlanc, P. J., Heigenhauser, G. J. F., & Spriet, L. L. (2005). Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise. Journal of Applied Physiology, 98, 250-256.
Stellingwerff, T., LeBlanc, P. J., Hollidge, M. G., Heigenhauser, G. J. F., & Spriet, L. L. (2006). Hyperoxia decreases muscle glycogenolysis, lactate prodution, and lactate efflux during steady-state exercise. American Journal of Physiology- Endocrinology and Metabolism, 290, E1180-E1190.
Strüder, H. K., Hollmann, W., Donike, M., Platen, P., & Weber, K. (1996). Effect of O2 availability on neuroendocrine variables at rest and during exercise: O2 breathing increases plasma prolactin. European Journal of Applied Physiology and Occupational Physiology, 74, 443-449.
Talanian, J. L., Galloway, S. D., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102, 1439-1447.
Thompson, E. B. (1998). Special topic: apoptosis. In J. F. Hoffman (Eds.). Annul Review of Physiology. Palo Alto, CA: Annul Reviews, pp. 525-532.
Truijens, M. J., Toussaint, H. M., Dow, J., & Levine, B. D. (2003). Effect of high intensity hypoxic training on sea-level swimming performance. Journal of Applied Physiology, 94, 733-743.
Ueda, S., Masutani, H., Nakamura, H., Tanaka, T., Ueno, M., & Yodoi, J. (2002). Redox control of cell death. Antioxidants and Redox Signaling, 4, 405-414.
Urso, M. L., & Clarkson, P. M. (2003). Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189, 41-54.
Vives, C. J. L., Pujades, M. A., Garcia, M. A., Sosa, M. A., Cambiazzo, S., Linares, M., Dibarrart, M. T. & Calvo, M. A. (1995). Increased susceptibility of microcytic red blood cells to in vitro oxidative stress. European Journal of Heamatology, 55, 327-331.
Vogt, M., Puntschart, A., Geiser, J., Zuleger, C., Billeter, R., & Hoppeler, H. (2001). Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. Journal of Applied Physiology, 91, 173-182.
Wang, J. S., & Huang, Y. H. (2005). Effects of exercise intensity on lymphocyte apoptosis induced by oxidative stress in men. European Journal of Applied Physiology, 95, 290-297.
Wang, T. Y., Ho, C. F., Chan, K. H., Lee, W. C., & Hsu, M. C. (in press). Effects of consecutive 7-day high- versus moderate-intensity training on endurance determinants and muscle damage in basketball players. International SportMed Journal.
Wang, T. Y.,Ho, J. F., Lee, W. J., & Jang, J. T. (2008). Two weeks effect of high- and moderate-intensity training on aerobic- and anaerobic endurance. Medicine and Science in Sports and Exercise, 40, Supplement s43.
Ward, A., Ebbeling, C. B., & Ahlquist, L. E. (1995). Indirect methods for estimation of aerobic power. In P. J. Maud & C. Foster (Eds.). Physiological Assessment of Human Fitness. Campaign, IL: Human Kinetics. pp. 37-54.
Welch, H. G. (1982). Hyperoxia and human performance: a brief review. Medicine and Science in Sports and Exercise, 14, 253-262.
Welch, H. G. (1987). Effects of hypoxia and hyperoxia on human performance. Exercise and Sport Science Reviews, 15, 191-221.
Welch, H. G., Bonde-Petersen, F., Graham, T., Klausen, K., & Secher, N. (1977). Effects of hyperoxia on leg blood flow and metabolism during exercise. Journal of Applied Physiology, 42, 385-390.
Westgarth-Taylor, C., Hawley, J. A., Rickard, S., Myburgh, K. H., Noakes, T. D., & Dennis, S. C. (1997). Metabolic and performance adaptations to interval training in endurance-trained cyclists. European Journal of Applied Physiology, 75, 298-304.
Wilber, R. L. (2001). Current trends in altitude training. Sports Medicine, 31, 249-265.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE