:::

詳目顯示

回上一頁
題名:多個低階決策單位二階層規劃應用之研究-以預算分配為例
作者:楊有恆
作者(外文):Yang, Yeou-Herng
校院名稱:國立交通大學
系所名稱:科技管理研究所
指導教授:虞孝成
學位類別:博士
出版日期:2011
主題關鍵詞:灰關&;#63895;分析灰關&;#63895;分析灰關&;#63895;分析灰關&;#63895;分析灰關&;#63895;分析灰關&;#63895;分析bilevel programmingmulti-followerbudget allocationgrey relational analysisgeneralized data envelopment analysis (GDEA)heuristic algorithm
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:26
過去許多學者們為解決當時社會上所發生的一些經濟與管理問題,促使了數學規劃相關理論的發展與突破,而層級結構的規劃模式可以清楚描繪出組織體系之間的決策模式與運作過程,促使多層級規劃的概念逐漸展開。而二階層規劃係為解決二個層級結構間分權式決策的尋優問題,可視為一個多層級規劃的特殊型式,在上階層之決策者稱為領導者,而在下階層之決策者稱為追隨者。通常在真實的環境中,在下階層結構中會出現超過一個以上的追隨者,這種型式的層級結構則被稱為多個低階決策單位之二階層規劃。此種規劃所產生的問題,係上階層領導者的決策不僅會受到這些下階層追隨者的決策影響,同時也會被這些下階層決策單位之間的相互關係所影響。
因此,在本篇論文中,試圖建構一種屬於一個高階決策與多個低階決策系統的二階層預算分配模型,並針對此預算分配模型,分別探討多個低階決策系統之間合作、非合作與部分合作變數所衍生的關連性問題。而本文新設計的二階層預算分配運作機制,係上階層領導者從所有下階層決策單位提出的全部計畫中,挑選出能為組織創造最大價值的計畫,並給予合理的預算支援,惟上階層領導者在尋優的決策過程中,應同時考量並兼顧下階層各單位的良性競爭與均衡發展,以避免資源的錯置或不當浪費。
本論文最後將採取兩個階段來解決上述所建構多個低階決策單位之二階層預算分配的尋優問題。第一階段係上階層領導者運用改良式資料包絡法,從全部的計畫中初步篩選出具有效率的計畫,此為預算分配前之重要決策程序;第二階段則運用灰關聯方法處理多個低階決策單位之間的關係,並發展出一種啟發式演算法,試圖求解有關合作、非合作與部分合作之決策變數所衍生的二階層預算分配問題,以獲得上、下兩個階層所有的決策者均可接受的可行有效解,俾提供上階層領導者作出最適當的決策,而這個新發展的演算法比過去的典型演算方式更為簡單容易。
The bilevel programming (BLP) problem can be viewed as an uncooperative, two-person game in unbalanced economic markets. The BLP problem is a special case of multilevel programming (MLP) problems with a two-level structure. A decision maker at the upper level is known as the leader, and, at the lower level, is known as the follower. Usually, in a real world situation, there is more than one follower in the lower level; this type of the hierarchical structure is called a bilevel multi-follower (BLMF) decision-making model. Therefore, the leader’s decision will be affected not only by the reactions of the followers, but also by the relationships among the followers.
In this thesis, the budget allocation model is a bilevel decision-making system with one single upper level decision maker and multiple lower level decision-making units. There are two types of BLMF models for the budget allocation that has been developed; one is a classical module that uses the uncooperative variable, and the other is a new module with partial cooperative variables. In the new bilevel budget allocation models, the upper level chooses the better projects from multiple proposals to maximize the value of the lower level projects and to minimize the ratio of the funding differences among the divisions.
The budget distribution problems are solved using two-stage methods. In stage one, a new generalized data envelopment analysis (GDEA), an improvement of data envelopment analysis (DEA), is developed. It is an important procedure of distribution to guarantee the quality of the proposals from the upper level decision maker. In the next stage, the grey relational analysis and a new heuristic algorithm take advantage of solving this problem and present a feasible solution of this particular model. The algorithm is efficient, and solutions are acceptable for real world situations. It is simpler than the classical solution methods are.
1.Ben-Ayed O., Boyce D. E., Blair, C. E., “A General Bilevel Linear Programming Formulation of the Network Design Problem,” Transportation Research, B22, pp. 311-318, 1988.new window
2.Bialas Wayne F., “Multilevel Mathematical Programming: An Introduction,” Department of Industrial Engineering, State University of New York at Buffalo, From: http://www.acsu.buffalo.edu/~bialas/IE664.html, 2002.
3.Bialas Wayne F., Karwan Mark H., “Mathematical Methods for Multilevel Planning,” Research Report No.79-2, the Operations Research Program, Department of Industrial Engineering, State University of New York at Buffalo, 1979.
4.Bialas Wayne F., Karwan Mark H., “Multilevel Linear Programming,” Technical Report 78-1, the Operations Research Program, Department of Industrial Engineering, State University of New York at Buffalo, 1978.
5.Bialas Wayne F., Karwan Mark H., “Multilevel Optimization: A Mathematical Programming Perspective,” the Operations Research Program, Department of Industrial Engineering, State University of New York at Buffalo, 1980.
6.Bialas Wayne F., Karwan Mark H., “On Two-Level Optimization,” IEEE Transactions on Automatic Control, AC-27 (1), pp. 211-214, 1982.new window
7.Bialas Wayne F., Karwan Mark H., “Two-Level Linear Programming,” Management Science, 30 (8), pp. 1004-1020, 1984.
8.Bialas Wayne F., Karwan Mark H., Shaw J. P., “A Parametric Complementary Pivot Approach for Two-level Linear Programming,” Research Report 80-2, the Operations Research Program, Department of Industrial Engineering, State University of New York at Buffalo, 1980.
9.Cao D., Leung L. C., “A Partial Cooperation Model for Non-Unique Linear Two-Level Decision Problems,” European Journal of Operational Research, 140, pp. 134-141, 2002.
10.Charnes A., Cooper W. W., Rhodes E. L., “Measuring the efficiency of decision making units,” European Journal of Operational Research, 2 (6), pp. 429-444, 1978.
11.Chenggen Shi, Guangquan Zhang, Jie Lu, “On the Definition of Linear Bilevel Programming Solution,” Applied Mathematics and Computation, 160, pp. 169-176, 2005.
12.Chenggen Shi, Hong Zhou, Jie Lu, Guangquan Zhang, Zhongwei Zhang, “The Kth-best Approach for Linear Bilevel Multifollower Programming with Partial Shares Variables among Followers,” Applied Mathematics and Computation, 188, pp. 1686-1698, 2007.
13.Chenggen Shi, Jie Lu, Guangquan Zhang, “An Extended Kth-best Approach for Linear Bilevel Programming,” Applied Mathematics and Computation, 164, pp. 843-855, 2005.
14.Chenggen Shi, Jie Lu, Guangquan Zhang, “An Extended Kuhn-Tucker Approach for Linear Bilevel Programming,” Applied Mathematics and Computation, 162, pp. 51-63, 2005.
15.Chenggen Shi, Jie Lu, Guangquan Zhang, Hong Zhou, “An Extended Branch and Bound Algorithm for Linear Bilevel Programming,” Applied Mathematics and Computation, 180, pp. 529-537, 2006.
16.Cook W. D., Kress M., “Data envelopment model for aggregating preference ranking,” Management Science, 36 (11), pp. 1302-1310, 1990.
17.Dantzig G. B., Thapa M. N., Linear Programming 1: Introduction, New York Springer, 1997.new window
18.Dauer J. P., Yi-Hsin Liu, “Solving multiple objective linear programs in objective space,” European Journal of Operational Research, 46, pp. 350-357, 1990.
19.Ernest H. Forman, Mary Ann Selly, Decision by Objectives, World Scientific Publishing Co., Singapore, 2001.
20.Franklin Liu, Hao H. P., “Ranking of units on the DEA frontier with common weights,” Computers and Operations Research, 35 (5), pp. 1624-1637, 2008.
21.George L., Nemhauser, Laurence A., Wolsey, Integer and Combinatorial Optimization, John Wiley & Sons, Canada, 1988.
22.Gui-Ling Li, Mao-Xian Zhao, “The Further Research on the Optimal Solution of Bi-level Programming Problem,” Journal of Shandong University of Science and Technology (Natural Science), 25 (3), pp. 100-102, 2006.
23.Jie Lu, Chenggen Shi, Guangquan Zhang, “On Bilevel Multi-Follower Decision Making: General Framework and Solutions”, Information Science - An International Journal, 176, pp. 1607-1627, 2006.
24.Jonathan F. Bard, “Coordination of a Multidivisional Organization through Two levels of Management,” OMEGA, 11 (5), pp. 457-468, 1983.

25.Jonathan F. Bard, James E. Falk, “An Explicit Solution to the Multi-Level Programming Problem,” Computers and Operations Research, 9 (1), pp. 77-100, 1982.new window
26.Jonathan F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Netherlands, 1998.
27.Kornai J., Liptak T. H., “Two-Level Planning,” Econometrica, 33 (1), pp. 141-168, 1965.new window
28.Land A. H., Doig A. G., "An automatic method of solving discrete programming problems." Econometrica, 28 (3), pp. 497-520, 1960.
29.Omar B. A., Blair E. C., “Computational Difficulties of Bilevel Linear Programming,” Operations Research, 38 (4), pp. 556-560, 1990.
30.Pierre Hansen, Brigitte Jaumard, Gilles Savard, “New Branch-and-Bound Rules for Linear Bilevel Programming,” SIAM Journal on Scientific and statistical Computing, 13 (5), pp. 1194-1217, 1992.
31.Richard O. Mason, Swanson E. Burton, “Measurement for Management Decision: A Perspective,” the California Management Review, 21 (3), pp. 14, 1979.
32.Roy A. Bauer, Collar, Emilio, Tang, “Victor the Silverlake Project: Transformation at IBM,” Oxford University Press, New York, 1992.
33.Saati S., “Determining a common set of weights in DEA by solving a linear program,” Journal of Industrial Engineering International, 4 (6), pp. 51-56, 2008.
34.Shuh-Tzy Hsu, An-Der Huang, Ue-Pyng Wen, “Linear Multi-Division Bi-level Programming Problem,” Journal of the Chinese of Industrial Engineers, 10 (4), pp. 257-262, 1993.
35.Toshihide Ibaraki, Naoki Katoh, Resource Allocation Problems: Algorithmic Approaches, The MIT Press, Cambridge and Massachusetts London, England, 1988.
36.Ue-Pyng Wen, Shuh-Tzy Hsu, “Linear Bilevel Programming Problems – A Review,” Operational Research Society, 42 (2), pp. 125-133, 1991.
37.Wayne L. Winston, Introduction to Mathematical Programming: Applications and Algorithms, PWS-KENT Publishing Company, New York, 1991.
38.Yibing Lv, Tiesong Hu, Guangmin Wang and Zhongping Wan, “A Penalty Function Method Based on Kuhn-Tucker Condition for Solving Linear Bilevel Programming,” Applied Mathematics and Computation, 188, pp. 808-813, 2007.
39.Yi-Hsin Liu and Stephen M. Hart, “Characterizing an Optimal Solution to the Linear Bi-level Programming Problem,” European Journal of Operational Research, 73 (1), pp. 164-166, 1994.new window
40.Yi-Hsin Liu and Thomas H. Spencer, “Solving a Bilevel Linear Program When the Inner Decision Maker Controls Few Variables,” European Journal of Operational Research, 81 (3), pp. 644-651, 1995.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top