:::

詳目顯示

回上一頁
題名:成長式自組織映射圖視覺化多維度混合型資料
作者:戴偉勝 引用關係
作者(外文):Wei-Shen Tai
校院名稱:國立雲林科技大學
系所名稱:資訊管理系博士班
指導教授:許中川
學位類別:博士
出版日期:2012
主題關鍵詞:自組織映射圖資料探勘混合型資料資料視覺化data miningSelf-Organizing Map (SOM)mixed-type datadata visualization
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:33
現今許多實務應用中,隨處可見大量包含數值型與類別型屬性的多維度混合型資料。因此,如何有效地處理進而分析這些混合型資料,儼然成為資料探勘領域的一項重要課題。一般而言,藉由視覺化模式的協助,複雜資料間的關係較容易被理解與分析。這使得具有將高維度資料特性視覺化呈現於低維度圖形能力的自組織映射圖,成為擷取大量資料之中重要資訊的一樣利器。
近年來,許多自組織映射圖的延伸模式不斷地被提出,冀期改善傳統自組織映射圖中固定圖形大小、拓樸維持與處理混合型資料的缺失。例如:成長式自組織映射圖採用彈性圖形結構概念以克服固定圖形大小的限制,以及應用將資料間圖形距離納入考量的修正函式,以增進預設圖形投射結果的拓樸維持程度。然而,目前為止沒有自組織映射圖模式提供一個可以同時解決上述問題的具體方案。為此,本研究提出一個成長式混合型自組織映射圖,藉由整合新提出的動態結構機制、視覺歸納修正與距離階層等方法以解決上述問題於單一模式中。實驗結果證實,本研究所提出的模式確能為上述問題提供一個新的解決之道,以妥善處理混合型資料以及於彈性結構圖形中呈現出資料的空間距離。
Nowadays, abundant multivariate mixed-type data including numeric as well as categorical attributes are ubiquitous in a variety of applications. Therefore, processing and analyzing such mixed-type data has become an important issue in data mining field. Via visualization models, one is able to understand and analyze those relationships between complicated data more effortlessly. Self-Organizing Map (SOM) possesses an effective visualization capability for presenting the characteristics of high-dimensional data on a low-dimensional map. One can efficiently extract valuable information from a large amount of data by means of SOM mapping results.
More recently, multitudinous variants of SOM were devised to improve deficiencies occurred in conventional SOMs such as fixed-size map, topological preservation and mixed-type data. To overcome the constraint of fixed-size map, diverse flexible map structures were proposed in many growing SOMs. On the other hand, a varied update function in which the distances of map-space between data were considered was used to enhance topological preservation of projected resultants on a predetermined map. Nevertheless, none of current models offers a plausible solution to solve the foregoing problems simultaneously. In this study, a Growing Mixed-type SOM (GMixSOM) is proposed to overcome the abovementioned deficiencies by integrating a new dynamic structure scheme, visualization-induced update and distance hierarchy in one model. Experimental results demonstrated that the proposed model is a feasible solution to manipulate multivariate mixed-type data and reflect the data-space distance between data on a map with a flexible structure.
1. Alahakoon, D., et al., 2000, "Dynamic self-organizing maps with controlled growth for knowledge discovery", Neural Networks, IEEE Transactions on, vol. 11, issue 3, pp. 601-614.
2. Aupetit, M., 2006, "Visualizing the trustworthiness of a projection", Proc. 14th European Symposium of Artificial Neural Networks (ESANN06), pp. 271-276.
3. Blackmore, J. and Miikkulainen, R., 1993, "Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map", Neural Networks, 1993., IEEE International Conference on, pp. 450-455.
4. Blackmore, J. M., 1995, Visualizing high-dimensional structure with the incremental grid growing neural network, University of Texas at Austin, Thesis.
5. Burzevski, V. and Mohan, C. K., 1996, "Hierarchical growing cell structures", Neural Networks, 1996., IEEE International Conference on, pp. 1658-1663.
6. CCS, 2010, http://www.acm.org/about/class/.
7. Cesario, E., et al., 2007, "Top-Down Parameter-Free Clustering of High-Dimensional Categorical Data", Knowledge and Data Engineering, IEEE Transactions on, vol. 19, issue 12, pp. 1607-1624.
8. Chakrabarti, S., et al., 2009, Data Mining: Know It All, Morgan Kaufmann, Burlington.
9. Chan, C.-K. K., et al., 2008, "Using Growing Self-Organising Maps to Improve the Binning Process in Environmental Whole-Genome Shotgun Sequencing", Journal of Biomedicine and Biotechnology, vol. 2008, pp. 1-10.
10. Chen, N. and Marques, N. C., 2010, "Extending learning vector quantization for classifying data with categorical values", Agents and Artificial Intelligence, Communications in Computer and Information Science, vol. 67, part 2, pp. 124-136.
11. Cheung, Y. M. and Law, L. T., 2007, "Rival-Model Penalized Self-Organizing Map", Neural Networks, IEEE Transactions on, vol. 18, issue 1, pp. 289-295.
12. Cottrell, M. and de Bodt, E., 1996, "A Kohonen map representation to avoid misleading interpretations", Proc. European Symposium on Artificial Neural Networks, pp. 103-110.
13. Cottrell, M., et al., 2004, "SOM-based algorithms for qualitative variables", Neural Networks, vol. 17, issue 8-9, pp. 1149-1167.
14. Das, G., et al., 1998, "Similarity of attributes by external probes", Knowledge Discovery and Data Mining, pp. 23-29.
15. Dunham, M. H., 2003, Data Mining: Introductory and Advanced Topics, Prentice Hall, Upper Saddle River, NJ.
16. Ester, M., et al., 1996, "A density-based algorithm for discovering clusters in large spatial databases with noise", Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), pp. 226-231.
17. Fayyad, U., et al., 2001, Information Visualization in Data Mining and Knowledge Discovery Morgan Kaufmann, San Francsco, CA.
18. Fayyad, U., et al., 1996, "From Data Mining to Knowledge Discovery in Databases", AI Magazine, vol. 17, issue 3, pp. 37-54.
19. Fodor, I. K., 2002, "A Survey of Dimension Reduction Techniques", Center for Applied Scientic Computing, Lawrence Livermore National Laboratory, Livermore, CA, Also available on the Internet at the address http://www.llnl.gov/CASC/sapphire/pubs/148494.pdf.
20. Forti, A. and Foresti, G. L., 2006, "Growing Hierarchical Tree SOM: An unsupervised neural network with dynamic topology", Neural Networks, vol. 19, issue 10, pp. 1568-1580.
21. Frank, A. and Asuncion, A., 2010, Irvine, CA: University of California, School of Information and Computer Science, http://archive.ics.uci.edu/ml.
22. Fritzke, B., 1991, "Unsupervised clustering with growing cell structures", Neural Networks, IJCNN-91-Seattle International Joint Conference on, pp. 531-536.
23. Fritzke, B., 1993, "Kohonen Feature Maps and Growing Cell Structures - a Performance Comparison", Advances in neural information processing system, vol. 5, pp. 1-8.
24. Fritzke, B., 1994, "Growing cell structures - A self-organizing network for unsupervised and supervised learning", Neural Networks, vol. 7, issue 9, pp. 1441-1460.
25. Fritzke, B., 1995, "Growing Grid - A self-organizing network with constant neighborhood range and adaption strength ", Neural Processing Letters, vol. 2, issue 5, pp. 1-5.
26. Garcia-Rodriguez, J. and Garcia-Chamizo, J. M., 2011, "Surveillance and human–computer interaction applications of self-growing models", Applied Soft Computing, vol. 11, issue 7, pp. 4413-4431.
27. GPC, 2010, http://www.gs1.org/gdsn/gpc.
28. Haiying, W., et al., 2004, "An integrative and interactive framework for improving biomedical pattern discovery and visualization", Information Technology in Biomedicine, IEEE Transactions on, vol. 8, issue 1, pp. 16-27.
29. Hamdi, M. S., 2011, "SOMSE: A semantic map based meta-search engine for the purpose of web information customization", Applied Soft Computing, vol. 11, issue 1, pp. 1310-1321.
30. Han, J. and Kamber, M., 2006, Data Mining: Concepts and Techniques, The Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann, San Francisco.
31. Hodge, V. J. and Austin, J., 2001, "Hierarchical growing cell structures: TreeGCS", Knowledge and Data Engineering, IEEE Transactions on, vol. 13, issue 2, pp. 207-218.
32. Hsu, A. and Halgamuge, S. K., 2008, "Class structure visualization with semi-supervised growing self-organizing maps", Neurocomputing, vol. 71, issue 16-18, pp. 3124-3130.
33. Hsu, C.-C., 2006, "Generalizing self-organizing map for categorical data", Neural Networks, IEEE Transactions on, vol. 17, issue 2, pp. 294-304.
34. Hsu, C.-C. and Lin, S.-H., 2012, "Visualized Analysis of Mixed Numeric and Categorical Data Via Extended Self-Organizing Map", Neural Networks and Learning Systems, IEEE Transactions on, vol. 23, issue 1, pp. 72-86.
35. ICD, 2010, http://www.cdc.gov/nchs/icd.htm.
36. Kaban, A. and Girolami, M., 2001, "A combined latent class and trait model for the analysis and visualization of discrete data", Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, issue 8, pp. 859-872.
37. Kohonen, T., 1990, "The self-organizing map", Proceedings of the IEEE, vol. 78, issue 9, pp. 1464-1480.
38. Kohonen, T., 1995, Self-organizing maps, Springer-Verlag, Berlin.
39. Kohonen, T., et al., 1996, "SOM_PAK: The Self-Organizing Map Program Package", Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland, Also available on the Internet at the address http://www.cis.hut.fi.
40. Kosara, R., et al., 2006, "Parallel Sets: interactive exploration and visual analysis of categorical data", Visualization and Computer Graphics, IEEE Transactions on,
vol. 12, issue 4, pp. 558-568.
41. Kraaijveld, M. A., et al., 1995, "A nonlinear projection method based on Kohonen''s topology preserving maps", Neural Networks, IEEE Transactions on, vol. 6, issue 3, pp. 548-559.
42. Liukkonen, M., et al., 2011, "Quality-oriented optimization of wave soldering process by using self-organizing maps", Applied Soft Computing, vol. 11, issue 1, pp. 214-220.
43. Lourenco, F., et al., 2004, "Binary-based similarity measures for categorical data and their application in Self-Organizing Maps", JOCLAD, 2004 - XI Jornadas de Classificacao e Anlise de Dados, pp.
44. Mayer, R., et al., 2007, "Visualising class distribution on self-organising maps", Lecture Notes in Computer Science, vol. 4669, pp. 359-368.
45. Nabney, I. T., et al., 2005, "Semisupervised learning of hierarchical latent trait models for data visualization", Knowledge and Data Engineering, IEEE Transactions on, vol. 17, issue 3, pp. 384-400.
46. Nurnberger, A. and Detyniecki, M., 2006, "Externally growing self-organizing maps and its application to e-mail database visualization and exploration", Applied Soft Computing, vol. 6, issue 4, pp. 357-371.
47. Palmer, C. R. and Faloutsos, C., 2003, Electricity Based External Similarity of Categorical Attributes, Advances in Knowledge Discovery and Data Mining.
48. Polzlbauer, G., et al., 2005, "Advanced visualization techniques for self-organizing maps with graph-based methods", In Proc. Int. Symp. On Neural Networks (ISSN05), pp. 75-80.
49. Rauber, A., et al., 2002, "The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data", Neural Networks, IEEE Transactions on, vol. 13, issue 6, pp. 1331-1341.
50. Ressom, H., et al., 2003, "Adaptive double self-organizing maps for clustering gene expression profiles", Neural Networks, vol. 16, issue 5-6, pp. 633-640.
51. Rogovschi, N., et al., 2008, "Probabilistic Mixed Topological Map for Categorical and Continuous Data", Machine Learning and Applications. ICMLA 2008: Seventh International Conference, pp. 224-231.
52. Samarasinghe, S., 2007, Neural networks for applied sciences and engineering : from fundamentals to complex pattern recognition, Auerbach, Boca Raton, FL.
53. Sammon, J. W., Jr., 1969, "A Nonlinear Mapping for Data Structure Analysis",
Computers, IEEE Transactions on, vol. C-18, issue 5, pp. 401-409.
54. Tasdemir, K. and Merenyi, E., 2009, "Exploiting data topology in visualization and clustering of Self-Organizing Maps", Neural Networks, IEEE Transactions on, vol. 20, issue 4, pp. 549-562.
55. Ultsch, A., 1993a, Self-organizing neural networks for visualization and classification, In Information and Classification, Springer Verlag, Berlin.
56. Ultsch, A., 1993b, "Self-Organizing Neural Networks for Visualization and Classification", Information and Classification, pp. 307-313.
57. Ultsch, A., 2003, "Maps for the visualization of high-dimensional data spaces", Workshop on Self-organizing Maps, pp. 225-230.
58. Ultsch, A., 2004, U*-matrix: a tool to visualize clusters in high dimensional data, CS Department, Philipps-University Marburg, CS Department.
59. Vathy-Fogarassy, A. and Abonyi, J., 2009, "Local and global mappings of topology representing networks", Information Sciences, vol. 179, issue 21, pp. 3791-3803.
60. Wang, H., et al., 2002, "Improving biomolecular pattern discovery and visualization with hybrid self-adaptive networks", NanoBioscience, IEEE Transactions on, vol. 1, issue 4, pp. 146-166.
61. Wickramasinghe, L. K. and Alahakoon, L. D., 2005, "Dynamic self organizing maps for discovery and sharing of knowledge in multi agent systems", Web Intelligence and Agent Systems, vol. 3, issue 1, pp. 31-47.
62. Wu, S. X. and Banzhaf, W., 2010, "The use of computational intelligence in intrusion detection systems: A review", Applied Soft Computing, vol. 10, issue 1, pp. 1-35.
63. Yin, H., 2002a, "Data visualisation and manifold mapping using the ViSOM", Neural Networks, vol. 15, issue 8-9, pp. 1005-1016.
64. Yin, H., 2002b, "ViSOM - a novel method for multivariate data projection and structure visualization", Neural Networks, IEEE Transactions on, vol. 13, issue 1, pp. 237-43.
65. Yin, H., 2003, Nonlinear Multidimensional Data Projection and Visualisation, Intelligent Data Engineering and Automated Learning, Springer, Berlin, Gemany.
66. Yu, J., 2011, "A hybrid feature selection scheme and self-organizing map model for machine health assessment", Applied Soft Computing, vol. 11, issue 5, pp. 4041-4054.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關博士論文
 
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE