:::

詳目顯示

回上一頁
題名:高蒸發孔隙性建築表層與都市街區顆粒化構造之量化表徵與進化
作者:洪百燿
作者(外文):Pai-Yao Hung
校院名稱:國立臺北科技大學
系所名稱:設計學院設計博士班
指導教授:彭光輝
學位類別:博士
出版日期:2017
主題關鍵詞:水循環進化量化表徵顆粒化構造都市街區建築表層高蒸發孔隙性Water CyclingEvolutionQuantitative CharacterizationGranulationUrban BlocksPorous Surface LayerEvaporosity
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
本研究旨在論述,建築表層與都市街區可因顆粒化而呈現體分孔連通水透氣之高蒸發孔隙性構造,其各不同幾何尺度特徵構造的機理性能都有一些量化表徵與進化脈絡可循,這些量化表徵與進化甚至可推衍到都會城市尺度,值得發展與應用。水以重複大小循環的方式影響地球上的氣候,Kravcik等( 2007) 據此指出,善用蒸發降水循環修復氣候是水的新範式。依此思維,氣候環境治理的用水策略,焦點不應只在向下入滲,也應在向上蒸發;對都市熱島效應緩解的研究,在關注溫度與風道之餘,對海綿都市的研究,在保水之餘,都尤應著重確實影響濕熱的水蒸發。水蒸發效用的重點在提高蒸發率與增加蒸發量,主要受太陽輻射、溼度梯度、風速和供持水等環境因素與蒸發面材料孔隙結構及形貌面積等構造條件的影響,迄今文獻雖已有Li等(2014)加強透水面材蒸發冷卻之蒸發率實驗與甚多為農作而需管控水蒸發散量等之研究,但對蒸發面孔隙構造如何朝高蒸發性能化發展,甚少著墨。我國現行綠建築基準與評估系統中,基地保水設計尚無進一步積極利用保水以促進水蒸發的規定,熱島減緩效益因子型態也未將高蒸發孔隙性構造的水蒸發納為項目,值得多加檢討。為提升較全面的理解,本研究以建築表層與都市街區為範圍,從構造材料的基本出發,研究目的在於,透過顆粒化之概念與觀點,將顆粒細分區隔變形使孔隙連接以備具機理呈現性能視為一種構造進化,辨識釐清其在不同幾何尺度材料與形態上可彰顯蒸發孔隙性的各種特徵構造,探究其機理性能之量化表徵與進化脈絡,並推論其發展與應用。本研究在闡述了水蒸發與顆粒化構造之意義與價值,作了相關文獻回顧分析之後,研究階段與流程如下,首先,進行三項實驗分析,包括:選定6種多孔粒石顆粒作材料比表面積和孔結構分析,探究材料顆粒內蒸發之孔構造進化;量測23樣堆疊粒石及水隨天氣與時間變化的蒸發率,探究顆粒堆疊間蒸發之管構造進化;選定回收混凝土細粒當骨材,以純水泥漿澆築,定量形塑成截頂阿幾米德四面體標準單元堆疊區塊,量測蒸發率量,並與等體積之正立方體區塊作比較,探究堆疊區塊體蒸發之徑構造進化。其次,依實驗發現之機理類推,對設定都市街區不同顆粒化建築量體之表面積體積比作比較分析,探究建築表層蒸發面之網構造進化。再者,依前述分析結果,推論高蒸發孔隙性建築表層與都市街區顆粒化構造之發展與應用以及都會城市尺度可能衍生之表徵與進化。最後,綜整各階段之量化表徵,歸結各幾何尺度特徵構造機理與蒸發孔隙性能的進化脈絡。研究發現,量化表徵可循各特徵構造顆粒化之機理一一建立,至少包括: 比表面積、孔體積、孔徑大小、鋪層表面積與設定面積比、橫截面間隙比例、通氣孔隙率、容積比重、有效蒸發表層厚度、粒徑區間、表面間徑長、表面積體積比、堆疊容積體積孔隙率、蒸發率量、迎陽面密度、迎風面密度、天空視野率以及蒸發區密度等; 進化可由孔、管、徑、網、場、鄰、集等各特徵構造機理分別提升其通透性、密連性、近接性、展伸性、應對性、協調性與散佈性等高蒸發孔隙性能而達成;七個特徵構造個別機理與性能進化進階串聯,則可呈現從材料顆粒到都市構造全都依循體分孔連通水透氣原則而系統性整體連貫的進化脈絡。本研究結果,在學術上,可當作各種尺度建築表層與都市街區物理環境規劃設計的參據,促增水蒸發,促成水之大小循環平衡;在實務上,可增納為我國綠建築基準與評估系統的新項目,豐富綠建築、綠構造與綠建材的內涵;後續研究也可據以發展出高蒸發孔隙性都市的一些理論和觀點。
This dissertation aims to study the evaporosity tectonics of building surface layers and building blocks with granulation to promote the water evaporation through high surface area and interconnected capillaries. The mechanism for this evaporosity tectonics ranging different dimension scales is illustrated with an evolution development and its corresponding quantitative characterization. These quantitative characterization and evolution mechanisms proposed in this study are applicable to even larger dimensions such as metropolitan city and worth for further investigation. The weather on earth is highly influenced by the cycling of water in all scales. Kravick and coworkers (2007) pointed out that the proper utilization of water evaporation cycle to remedy the weather on earth is a new paradigm of water. Accordingly, the use of water in the management of weather and environment should go beyond the increase of water seepage into the earth. The water evaporation up to the air should be emphasized as well. Upon the effort to ease the urban heat island effect, the water evaporation should constitute the additional role beside the water retention in the ground emphasized by the sponge city idea. The effect of water evaporation can be enhanced by increasing the evaporation rate and mass. These factors are closely related to environmental effects such as sun radiation, humidity gradient, wind speed, etc. and structural characteristics such as porosity morphology, surface area. Recently, Li and coworkers (2014) proposed the use of porous surface on building to enhance to evaporation rate of water. More researches are on the control of water evaporation for agricultural plantations. The detailed study on the porosity structure of building surface to promote water evaporation is less seen in literatures. In addition, there is no regulation related to the enhancement of water evaporation in our green building standards and evaluation systems beside the water retention in building ground. The inclusion of high evaporation surface structure into the review items for counteracting heat island effect can be discussed. For a systematic study, this dissertation includes the investigation from the construction materials to building surfaces and urban city blocks. Through the concept and viewpoint of granulation, the morphology of the porosities and the interconnection among the granules to facilitate the water vaporization was studied and the mechanism was extended to building blocks and urban city in larger dimensions. A quantitative characterization through its tectonics evolution was employed in the analysis and application. The function of water evaporation and granulation in structural morphology was emphasized. Three experimental analyses were conducted in this study: the analysis of specific surface area and porosity morphology for 6 porous grain ensembles to explore the mechanism of evaporation related to the inside structure; the temporal evaporation rates of 23 stacking grain samples through days of weather exposure to compare the effects of different water transfer passage connections; the temporal evaporation rate of corner-truncated Archimedes tetragons made of recycled concrete aggregates and cement paste to com- pare with its cubic counterparts with the same volume and investigate the effects of water transfer routes. Furthermore, by using the disclosed water evaporation mechanisms from the previous analyses, the discussion was extended to the different outer surface areas of buildings in urban city with granulation concept. Finally, with the quantitative characterization results inferred from both the experiments and the building models with larger dimensions, the evolution of the evaporosity for different materials and building dimension scales was summarized. The quantitative characterization for the granulation of the material and building includes following items: specific surface area, porosity volume, size of porosity, area of surface layer, porosity ratio in cross- section, connected porosity ratio, specific volume, apparent evaporation surface layer thickness, particle size, evaporation rate, area ratio of sunny side, area ratio of upwind side, area ratio of panorama view and density of evaporation zone, etc. The evolution of evaporation mechanism in ascending dimensions can be described by pore, tube, path, network, field, neighborhood and ensemble, which correspondingly raise the evaporation performance by enhancing porosity, connectivity, contiguity, extensibility, alignment, conformity and dispersion. The 7 dimensional structures in sizes, from granule to urban city planning, can be cascaded sequentially to show the evolution in evaporation performance under consistent mechanism. The result of this study can be used academically as the guide line for the planning of building surface layer and urban physical environment to promote the water vaporization cycle and its equilibrium in civil architecture. For practical application point of view, the design guide line for increasing evaporosity can be adopted as the review items of green structures and construction materials. This study also serves as the starting point for the development of metropolitan city with high evaporosity.
參考文獻
1.Erell, E., Pearlmutter, D., & Williamson, T. (2011)。Urban Microclimate-Design the Spaces Between Buildings。New York: Earthscan。new window
2.Groat, L.,Wang, D.(2002)。Architectural Research Methods。John Wiley & Sons, Inc.
3.Hausladen,G., Liedl, P., & Saldanha,M. (2012)。Building to Suit the Climate-A Handbook。Basel: Birkhauser。
4.Jensen, M. E.,& Haise, H. R. (1963)。Estimating evapotranspiration from solar radiation. Proceedings of the American Society of Civil Engineers. Journal of the Irrigation and Drainage Division, 89, 15-41.
5.Kravcik, M., Pokorny, J., Kohutiar, J., Kovac, M., & Toth, E. (2007)。Water for the Recovery of the Climate – A New Water Paradigm. Košice, Slovakia: NGO People and Water。
6.Li, H., Harvey, J., & Ge, Z. (2014)。 Experimental investigation on evaporation rate for enhancing evaporative cooling effect of permeable pavement materials. Construction and Building Materials, 65, 367-375.
7.Schmidt, M. (2007)。The role of evaporation in urban and global climate change。Technische Universutat Berlin。
8.Wang, Y.(2012)。http://projectivecities.aaschool.ac.uk/portfolio/yuwei-wang-barcelona-block-city。
9.楊逸詠 (1998)。建築構法在綠建築技術中應用之研究。內政部建築研究所專題研究計畫MOIS871016。
10.周健、劉淼、李晉梅和王彬(譯) (2016)。混凝土與可持續發展(Jahren, P., & Sui, T.)。北京:化學工業出版社。(2016)
11.吳讓治 (2013)。成大建築還可為台灣作什麼。成大建築簡訊No.66。(2013)
12.邱國玉、熊育久(2014)。水與能:陸地蒸發散、熱環境及其能量收支。北京市:科學出版社。
13.孟慶林(2001)。自然氣候控制多孔含濕材料蒸發冷卻的熱濕特性。西安建築科技大學學報,33(4),頁325-328。
14.高世橋、劉海鵬(2010)。毛細力學。北京市:科學出版社。
15.馬錫彬(2011)。地學新論。北京市:氣象出版社。
16.叢振濤、楊大文和倪廣恆(2013)。蒸發原理與應用。北京市:科學出版社。
17. 吳瑞賢 (2001)。工程水文學。台北市:科技圖書公司。
18. 方偉達 (2001)。城鄉生態規劃設計與批判。台北市:六合出版社。
19. 顧慰祖 (2011)。同位素水文學。北京市:科學出版社。
20. 馬晶(譯) (2011)。氣候變化 (Allaby, M.)。上海:上海科學技術文獻出版社。
21. 陳正洪、葉夢姝和賈寧(譯) (2016)。笛卡爾論氣象 (Descartes, R.)。北京:氣象出版社。
22. 陳信雄 (2005)。應用土壤環境科學。台北市:科技圖書公司。
23. 宋中南、石雲興(2011)。透水混凝土及其應用技術。北京:中國建築工業出版社。
24. 尹偉倫、鄭彩霞和李鳳蘭(譯) (2011)。木本植物生理學(Pallardy, S.G.)。北京:科學出 版社。
25. 張路峰(譯)(2011)。城市街區(Burklin, T. & Peterek, M.)。北京:中國建築工業出版社。
26. 楊璐、柳美玉(譯) (2012)。城市分析(Schwalbach, G.)。北京:中國建築工業出版社。
27. 蔡豐懋(2005)。都市街廓量體型態改變對於都市風場與懸浮微粒PM10分布之影響。國立台北科技大學建築與都市設計研究所碩士論文。new window
28. 王威尊(2010)。街廓量體變化對都市氣候縮流及渠化效應被動效應之研究。國立台北科技大學建築與都市設計研究所碩士論文。
29. 林品儀(2011)。都市綠帶其蒸散作用在都市微氣候中對熱環境影響之研究。國立台北科技大學建築與都市設計研究所碩士論文。
30. 楊雅涵(2011)。建築物造型對於都市風場中空氣污染物擴散影響之研究。國立台北科技大學建築與都市設計研究所碩士論文。
31. 董子維(2011)。都市風場中街建蔽率改變對街谷中空氣污染擴散影響之探討。國立台北科技大學建築與都市設計研究所碩士論文。
32. 張書萃(2011)。太陽輻射、都市風場及蒸散作用對都市熱環境影響之研究。國立台北科技大學建築與都市設計研究所碩士論文。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關博士論文
 
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE