:::

詳目顯示

回上一頁
題名:兩週四次不同訓練模式搭配不同氧氣濃度對一般 人體循環與無氧代謝能力之影響
作者:蕭敬衡
作者(外文):XIAO,JING-HENG
校院名稱:國立體育大學
系所名稱:競技與教練科學研究所
指導教授:邱炳坤
學位類別:博士
出版日期:2021
主題關鍵詞:低氧訓練高濃度氧氣間歇訓練Hypoxic TrainingHigh Concentration OxygenInterval Training
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
目的: 本研究目的在於探討兩週四次不同訓練模式搭配不同氧氣濃度對於
一般人前測與後測有氧-無氧閾值 (2-4 mmol/l)、乳酸與心跳率的影響,以及第一次與第四次訓練的心跳率、最大乳酸、血氨與血氧飽和濃度適應情形。方法: 15名健康成年人為研究對象,以腳踏車測功儀進行階梯式負荷基礎耐力測試 (前測與後測),並以前4 mmol/l Watt測數據將15名受試者分為低氧持續組 (A-Training,氧氣濃度15 %)、常氧間歇組 (B-Training,氧氣濃度21 %) 與低氧高氧混合持續組 (C-Training,氧氣濃度前10分鐘15 %,後10分鐘80 %),並以變異數同質性檢定,確定三組之間4 mmol/l能力無顯著差異,並進行兩周共四次的訓練。結果: C-Training有氧閾值與後測達顯著差異,而無氧閾值三者未達顯著差異,但平均數來看C-Training改善較佳。第一次與第四次訓練,心跳率三組皆達顯著差異,且A-Training改善較佳。而最大乳酸值A、C-Training皆達顯著差異,且A-Training改善較佳。NH3三組皆未達顯著差異,但以C-Training改善較佳。結論: 一般人若要改善有氧閾值 (2 mmol/l)、無氧閾值 (4 mmol/l) 能力、NH3或是中低負荷強度的心跳率,建議使用低氧+高氧模式進行訓練,且總體生理壓力較小。若是要改善高強度負荷時的心跳率與乳酸值,建議使用低氧模式進行訓練,但總體SpO2較低,缺氧程度較高。
Purpose: The purpose of this study is to explore the effects of different training modes (four times two weeks) with different oxygen concentrations on the pre-test and post-test aerobic-anaerobic threshold (2-4 mmol/l), the lactate and heart rate, and the heart rate of first and fourth training sessions, maximum lactate, blood ammonia and blood oxygen saturation. The concentration adapts to the situation. Methods: Fifteen healthy adults were the subjects of the study. The stepped load basic endurance test (pre-test and post-test) was performed with a bicycle ergometer, and the previous 4 mmol/l Watt data were used to divide 15 subjects into hypoxia persistent group (A-Training, oxygen concentration 15%), normoxic intermittent group (B-Training, oxygen concentration 21%) and low oxygen and high oxygen mixed continuous group (C-Training, oxygen concentration 15% in the first 10 minutes, and 10 minutes later 80%), and the homogeneity test of variance is used to determine that no significant difference exists in the ability of 4 mmol/l between the three groups, and a total of four training sessions in two weeks. Results: C-Training aerobic threshold and post-measurement reached a significant difference, while the anaerobic threshold did not reach a significant difference, but the average C-Training improved better. In the first and fourth training session, the heart rate of the three groups all reached significant differences, with A-Training having better improvement. The maximum lactic acid value A and C-Training both reached significant differences, and A-Training has better improvement. The three groups of NH3 did not reach significant differences, but C-Training has better improvement. Conclusion: If average individuals want to improve the aerobic threshold (2 mmol/l), anaerobic threshold (4 mmol/l) capacity, NH3 or the heart rate of medium and low load intensity, it is recommended to use hypoxia + hyperoxia mode for training, which comes with less overall physiological stress. If one wants to improve the heart rate and lactate value during high-intensity load, it is recommended to use hypoxic mode for training, but the overall SpO2 is lower and the degree of hypoxia is higher.
方進隆 (1995)。體適能與全人健康。中華體育季刊, 9(3),62–69。
柳 楊 (1998)。冠心病的運動防治。冠心病的預防與治療。臺南市: 世一。
林啟川、莊林貴、周麗卿、許義章、張秋煉 (2001)。運動與健康體適能。北體學報,9,243–254。
黃鱗棋, 王錠堯, & 張嘉澤. (2008)。高濃度氧氣對高強度間歇運動負荷之血 酸 , 心跳率與 RPE 之影響。運動教練科學,(11),13–22。
陳佳慧、楊孟龍、王月琪、張嘉澤 (2009)。5天低濃度氧氣訓練對健康中年愛 好運動者耐力表現之影響(個案研究)。國際體育運動與健康休閒學術研討會,台北市銘傳大學。
張嘉澤 (2008)。訓練學。台北縣林口鄉 : 運動能力診斷協會。
張嘉澤 (2010)。運動能力診斷與訓練調整。台北縣林口鄉:台灣運動能力診斷
協會。
邱奕棠、蕭敬衡、王胤之、張嘉澤 (2012)。五天訓練對公路車選手體循環與新 陳代謝之個案研究。2012年國際運動教練科學研討會,國立體育大學。
林佳慧、曾炳憲、蔣立琦、曾雯琦、陳良城、蔣尚霖 (2013)。有氧運動訓練對左心室心衰竭患者心肺耐力及左心室功能之成效:前驅試驗。台灣復健醫學雜誌,41(4),251–262。
張嘉澤 (2013)。訓練學。台北縣林口鄉:台灣運動能力診斷協會。
陳志誠、成和正 (2015)。高強度間歇訓練對心肺適能及健康之影響。中華體育季刊,29(2),137–144。
陳德盛、張嘉澤、陳佳慧、蔣明雄 (2017)。無氧閾值能力對舉重選手專項力量耐力之關係。休閒觀光與運動健康學報,7(3),1-17。
方奕晴 (2019)。低溫應用在單次高強度運動對血液氣體調節與無氧閾值耐力之效果。未出版碩士論文,桃園縣,國立體育大學競技與教練科學研究所。
Akinobu, N., Masaaki, S., K, K., Aki, F., Akihiro, S., Atsumasa, U. (2010). Hypoxia increases muscle hypertrophy induced by resistance training. International Journal of Sports Phyciology and Performance, 5, 497–508.
American Heart Association, The Committee on Exercise (1990). Exercise testing and training of apparently healthy individual: a handbook for physicians: New York; American heart Association.
Arkhipenko, Y., Vdovina, I., Kostina, N., Sazontova, T., & Glazachev, O. (2014).
Adaptation to interval hypoxiahyperoxia improves exercise tolerance in
professional athletes: Experimental substantiation and applied approbation.
European Scientific Journal, 10(18), 135-154.
Bailey, D. M., Davies, B., & Baker, J. (2000). Training in hypoxia: Modulation of metabolic and cardiovascular risk factors in men. Medicine and Science in Sports and Exercise, 32(6), 1058–1066.
Berglund, B. (1992). High-altitude Training. Aspects of Haematologiecal Adaptation. Sports Medicine. 14, 289–303.
Billings, C. R., Bason, R., Mathews, D., & Fox, E. (1971). Cost of submaximal and maximal work during chronic exposure at 3800m. Journal of Applied Physiology, 30, 406–408.
British Columbia Ministry of Health and the Department of National Health and welfare (1991): PAR-Q validation report. British Columbia Ministry of Health, Revised.
Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586(1), 151–160.
Bayer, U., Glazachev, O. S., Likar, R., Burtscher, M., Kofler, W., Pinter, G., Stettner,
H., Demschar, S., Trummer, B., Neuwersch, S. (2017). Adaptation to intermittent
hypoxia-hyperoxia improves cognitive performance and exercise tolerance in
elderly. Advances in Gerontolog, 30, 255–261.
Cartee, G. D., Douen, A. G., Ramlal, T., Klip, A., & Holloszy, J. O. (1991). Stimulation of glucose transport in skeletal muscle by hypoxia. Journal of Applied Physiology, 70(4), 1593–1600.
Casas, H., Murtra, B., Casas, M., Ibáñez, J., Ventura, J. L., Ricart, A., …Rama, R.
(2001). Increased blood ammonia in hypoxia during exercise in humans. Journal of Physiology and Biochemistry., 57(4), 303-312.
Chang, M., Havlik, R. J., Corti, M. C., Chaves, P. H., Fried, L. P., & Guralnik, J. M. (2003). Relation of heart rate at rest and mortality in the Women's Health and Aging Study. The American Journal of Cardiology, 92(11), 1294–1299.
Conconi, F., M. Ferrari, P. G., Ziglio, P. Droghettl, L., Codeca. (1982). Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 52(4), 869–873.
Czuba, M., Waskiewicz, Z., Zajac, A., Poprzecki, S., Cholewa, J., & Roczniok, R. (2011). The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. Journal of Sports Science & Medicine, 10(1), 175–183.
Dudley, C. A., & Terjung, R. L. (1985). Influence of aerobic metabolism on IMP
accumulation in fast-twitch muscle. The American Journal of Physiology, 248, 37-
42.
Daussin, F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., ... Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: Relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295(1), R264–R272.
Dufour, S. P., Ponsot, E., Zoll. J., Doutreleau, S., Lonsdorfer-Wolf, E., Geny, B., … Lonsdorfer, J. (2006). Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. Journal of Applied Physiology, 100, 1238–1248.
Fuchs & Manfred, R. (1990). Höhentraining. Deutscher Sportbund Bundesaussch β Leistungssport. Münster Philippka, 49–50.
Fernandes, R. J., Sousa, M., Machado, L., & Vilas-Boas, J. P. (2011). Step length and individual anaerobic threshold assessment in swimming. International Journal of Sports Medicine, 32(12), 940-946.
Faiss., R. Le´ger., B. Vesin, J. M., Fournier, P. E., Eggel, Y., De´ riaz, O., & Millet, G.
P. (2013). Significant Molecular and Systemic Adaptations after Repeated Sprint
Training in Hypoxia., PLoS ONE, 8, e56522.
Fang, Y. C., Jang, J. T., Chen, C. H., & Chen, T. S. (2018). Effect of Hyperoxia and Cooling Application in High Intensity Interval Rowing Training. Asian Journal of Coaching Science, 2(1), 25-34.
Goodman, M. N., Lowenstein, J. M. (1977). The purine nucleotide cycle. Studies of
ammonia production by skeletal muscle in situ and in perfused preparations.
Journal of Biological Chemistry, 252(14), 5054-5060.
Geiser, J., Vogt, M., Billeter, R., Zuleger, C., Belforti, F., & Hoppeler, H. (2001). Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. International Journal of Sports Medicine, 22, 579–585.
Goodman, J. M., Liu, P. P., & Green, H. J. (2005). Left ventricular adaptations following short-term endurance training. Journal of Applied Physiology, 98, 454–460.
Glazachev O, Kopylov P, Susta D, Dudnik E, and Zagaynaya E. (2017) Adaptations following an intermittent hypoxiahyperoxia training in coronary artery disease patients: A controlled study. Clinical Cardiology, 40, 370–376.
Hammond, M. D., Gale, G. E., Kapitan, K. S., Ries, A., & Wagner, P. D. (1986). Pulmonary gas exchange inhumans during normobaric hypoxic exercise. Journal of Applied Physiology, 61(5), 1749–1757.
Haseler, L. J., Hogan, M. C., & Richardson, R. S. (1999). Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. Journal of Applied Physiology, 86(6), 2013–2018.
Helgerud, J., Hkydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., ... Hoff, J. (2007). Aerobic high-intensity intervals improve VO2max more than moderate training. Medicine & Science in Sports & Exercise, 39(4), 665–671.
Hendriksen, I.J.M., Meeuwsen, T. (2003). The effect of intermittent training in hypobaric hypoxia on sea-level exercise: a crossover study in humans. European Journal of Applied Physiology, 88(4-5), 396–403.
Hochachka, P. W., Stanley, C., Matheson, G. O., Mckenzie, D. C., Allen, P. S., & Parkhouse, W. S. (1991). Metabolic and work efficiencies during exercise during exercise in Andean natives. Journal of Applied Physiology, 70(4), 1720–2730.
Hoeger., W.K., & Sharon., A. (2005). Fitness and Wellness. Wadsworth: Cengage Learning Company.
Hollmann, H., Schürch, P., Heck, H., Liesen, H., Mader, A., Rost, R., & Hollmann, W. (1987). Kardiopulmonale Reaktionen und aerob-anaerobe Schwelle bei verschiedenen Belastungsformen. Deutschen Zeitschrift für Sportmedizin, 38(4), 144–156.
Hollmann., W., Rost., R. (1982). Belastungsuntersuchungen in der Praxis. Grundlagen Technik und Interpretation ergometrischer Untersuchungsverfahren. 120–126.
Hoff, J. (2005). Training and testing physical capacities for elite soccer players. Journal of Sports Sciences, 23(6), 573-582.
Houssière, A., Najem, B., Cuylits, N., Cuypers, S., Naeije, R., & Van De Borne, P. (2006). Hyperoxia enhances metaboreflex sensitivity during static exercise in humans. American Journal of Physiology-Heart and Circulatory Physiology, 291(1), H210–H215.
Inness, M. W. H., Billaut, F., Walker, E. J., Petersen, A. C., Alice, J., & Aughey, R. J. (2016). Heavy resistance training in hypoxia enhances 1RM squat performance. Frontiers in Physiology, 7, 502.
James, N. W., Adams., G. M., Wilson., A. F. (1985). Determination of anaerobic threshold by respiratory frequency. International Journal of Sports Medicine, 6(4), 283.
Kaijser, L. (1969). Limiting factors for aerobic muscle performance. The influence of varying oxygen pressure and temperature. Acta Physiologica Scandinavica Supplementum, 346, 1–96.
Kenney., W. L., Wilmore., J. W., & Costill., D. L. (2012). Physiology of Sport and Exercise (5th ed.). Champaign, IL: Human Kinetics.
Kindermann, W., Simon, G., & Keul, J. (1978). Dauertraining-Ermittlung der optimalen Trainingsherzfrequenz und Leistungsfähigkeit. Leistungssport, 8(1): 34–39.
Kaijser, L., Sundberg, C. J., Eiken, O. (1990). Muscle oxidative capacity and work
performance after training under local leg ischemia. The Journal of Applied Physiology
69, 785–787.
Kirkendall, D. T. (1990). Mechanisms of peripheral fatigue. Medicine and Science in Sports and Exercise, 22(4), 444-449.
Kohyama, A., Inoue, M., Doi, T., Kimura, H., Kitahata, H., & Saitoh, T. (1993). Left ventricular function during hypoxia. 1: Effect of blood glucose level. Masui. The Japanese Journal of Anesthesiology, 42(5), 713–720.
Kong, Z., Shi, Q., Nie, J., Tong, T. K., Song, L., Yi, L., et al. (2017). Highintensity interval training in normobaric hypoxia improves cardiorespiratory fitness in overweight chinese young women. Frontiers in Physiology. 8, 175.
Leach, R. M., Rees, P. J., & Wilmshurst, P. (1998). Hyperbaric oxygen therapy. THE BMJ, 317(7166), 1140–1143.
Linossier, M. T., Dormis, D., Arsac, L., Denis, C., Gay, J. P., Geyssant, A., & Lacur. J.
R. (2000). Effect of hyperoxia on aerobic and anaerobic performances and muscle
metabolism during maximal cycling exercise. Acta Physiologica Scandinavica,
168, 403-411.
Levine, B. D. (2002). Intermittent hypoxic training: fact and fancy. High Altitude
Medicine & Biology, 3, 177–193.
Little, J. P., Gillen, J. B., Percival, M. E., Safdar, A., Tarnopolsky, M. A., Punthakee, Z., ... Gibala, M. J. (2011). Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology, 111, 1554–1560.
Lowenstein, J. M. (1972). Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiological Reviews, 52(2), 382–414.
Lundby, C., & Jacobs., R. A. (2016). Adaptations of skeletal muscle mitochondria to
exercise training. Experimental Physiology, 101(1), 17–22.
Mader, A. H. (1976). Zur beurteilung der sportartspezifischen ausdauerleistungsfahigkeit im labor. Sportarzt sportmedizin, 27, 80–88.
McLellan, T. M., & Skinner, J. S. (1982). Blood lactate removal during active recovery related to the aerobic threshold. International Journal of Sports Medicine, 3, 224-229.
Manfred R., & Fuchs, U. (1990). Höhentraining. Trainer Bibliothek 27, Münster Philippka Verlag. 116–118.
Melissa, L., Macdougall, J. D., Tarnopolsky, M. A., Cipriano, N. & Green, H. J. (1997). Skeletal muscle adaptations to training under normobaric hypoxic versus
normoxic conditions. Medicine & Science in Sports & Exercise, 29, 238–243.
Mori, M., Kinugawa, T., Endo, A., Kato, M., Kato, T., Osaki, S., ... Shigemasa, C. (1999). Effect of hypoxic exercise conditioning on work capacity, lactate, hypoxanthine and hormonal factors in men. Clinical and Experimental Pharmacology and Phyciology, 26, 309–314.
Neumann, G. (1990). Umstellung und Anpassung der Funktionssysteme. In Das gross
Buch vom Laufen. Meyer&Meyer Verlag. 222-223.
Neumann, G. (1991). Zur Leistungsstru kturder Kurz-und Mittelzeitausdauer-Sportarten aus sport –medizinischer Sicht. Leistungssport, 21, 29–31.
Nummela, A., Hämäläinen, I., & Rusko, H. (2002). Effect of hyperoxia on metabolic responses and recovery in intermittent exercise. Scandinavian Journal of Medicine and Science in Sports, 12, 309–315.
Nalbandian, M., & Takeda, M. (2016). Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology, 5(38), 1-12.
Pessenhofer, H., Schwaberger, G., & Schmid, P. (1981). Zur Bestimmung des individuellen aerob-anaeroben Übergangs. Deutschen Zeitschrift für Sportmedizin, 32(1), 15–17.
Pansold B, Roth W, Zinner J, Hasart E, Gabriel B (1982) Die Laktat-Leistungs-Kurve—ein Grundprinzip sportmedizinischer Leistungsdiagnostik. Medizin und Sport, 22(4), 107–112.
Pedersen, E. M., Stenbog, E. V., Frund, T., Houlind, K., Kromann, O., Sorensen, K. E., … Hjortdal, V. E. (2002). Flow during Exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping. Heart, 87(6), 554–558.
Peeling, P., & Andersson, R. (2011). Effect of hyperoxia during the rest periods of interval training on perceptual recovery and oxygen re-saturation time. Journal of Sports Sciences, 29(2), 147–150.
Perry, C. G., Talanian, J. L., Heigenhauser, G. J., & Spriet, L. L. (2007). The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance. Journal of Applied Physiology, 102(3), 1022–1027.
Puype J, Van Proeyen K, Raymackers, J. M., Deldicque, L., & Hespel, P. (2013).
Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Medicine
& Science in Sports & Exercise. 45(11), 2166–74.
Pramsohler, S., Burtscher, M., Faulhaber, M., Gatterer, H., Rausch, L., Eliasson, A., et al. (2017). Endurance training in normobaric hypoxia imposes less physical stress for geriatric rehabilitation. Frontiers in Physiology. 8, 514.
Park, H, Y., Jung, W, S., Kim, J., & Lim, K. (2020). Twelve weeks of exercise modality in hypoxia enhances health-related function in obese older Korean men: A randomized controlled trial. Geriatrics and Gerontology International, 19, 311–6.
Romer, L. M., & Dempsey, J. A. (2006). Effects of exercise-induced arterial hypoxemia on limb muscle fatigue and performance. Clinical and Experimental Pharmacology and Physiology, 33, 391–394.
Schega, L., Peter, B., Brigadski, T., Leßmann, V., Isermann, B., Hamacher, D. (2016). Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. The Journal of Science and Medicine in Sport, 19, 941–945.
Sijie, T., Hainai, Y., Fengying, Y., & Jianxiong, W. (2012). High intensity interval exercise training in overweight young women. The Journal of Sports Medicine and Physical Fitness, 52(3), 255–262.
Smith, M. H., & Sharkey, B. J. (1984). Altitude training: who benefits? The Physician and Sports Medicine, 12, 48–62.
Stegemann, J. (1971). Leistungsphysiologie. Georg Thieme Verlag Stuttgart. New York.
Stellingwerff, T., LeBlanc, P. J., Hollidge, M. G., Heigenhauser, G. J., & Spriet, L. L. (2006). Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise. American Journal of Physiology-Endocrinology and Metabolism, 290(6), E1180–E1190.
Terrados, N., Jansson, E., Sylven, C. & Kaijser, L. (1990). Is hypoxia a stimulus for
synthesis of oxidative enzymes and myoglobin? The Journal of Applied
Physiology , 68, 2369–2372.
Tkatchouk, E., Kondrykinskaya, L., & Ehrenbourg, I. (1993). Interval hypoxic
training A method of improving occupational health/ Prod.24thCongress of the
International Commision on Occupational Health. France. Nice.
Tabata, I., Nishimura, K., Kouzaki, M., Hirai, Y., Ogita, F., Miyachi, M., & Yamamoto, K. (1996). Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Medicine and Science in Sports and Exercise, 28(10), 1327–1330.
Tjønna, A. E., Lee, S. J., Rognmo, Ø., Stølen, T. O., Bye, A., Haram, P. M., ... Wisløff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118, 346–354.
Tucker, R., Kayser, B., Rae, E., Rauch, L., Bosch, A., & Noakes, T. (2007). Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. European Journal of Applied Physiology, 101(6), 771–781.
Urhausen, A., & Kindermann, W. (1992). Biochemical monitoring of training. Clinical Journal of Sport Medicine, 2(1), 52–61.
Veale, J. P, & Pearce, A. J. (2009). Physiological Responses of Elite Junior Australian Rules Footballers During Match-Play. Journal of Sports Science and Medicine, 8(3), 314-319.
Weineck, J. (1996): Sportbiologie. Balingen: Perimed-spitta, 26-27.
Windecker, S., Allemann, Y., Billinger, M., Pohl, T., Hutter, D., Orsucci, T., … Seiler, C. (2002). Effect of endurance training on coronary artery size and function in healthy men: an invasive follow up study. American Journal Physiology Heart Circulation Physiology, 282, H2216-H2223.
Wisløff, U., Støylen, A., Loennechen, J. P., Bruvold, M., Rognmo, Ø., Haram, P. M., ... Skjærpe, T. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115, 3086–3094.
Wang, Y.-C. (2018). The effect on anaerobic threshold and heart rate variability of
acute one-day high-intensity-interval training with cooling and hyperoxia.
(Unpublished master’s thesis). National Taiwan Sport University, Taoyuan, Taiwan.
Yoshida, T., & Watari, H. (1993). Metabolic consequences of repeated exercise in long distance runners. European Journal of Applied Physiology and Occupational Physiology, 67(3), 261-265.
Zintl, F. (1994). Ausdauer training (Zusammengestellt nach Angeben von keul et al. 1986, Kindermann 1978, Badtke et al. 1987). Grundlagen, Methoden, Trainingssteuerung, 188–189.
Zouhal, H., Jacob, C., Delamarche, P., & Delamarche, A. G. (2008). Catecholamines
and the Effects of Exercise, Training and Gender. Sports Medicine, 38 (5), 401-423
Zhang, Y., & Chen, N. (2018). Autophagy is a promoter for aerobic exercise
performance during high altitude training. Oxidative Medicine and Cellular
Longevity, 3617508.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE