:::

詳目顯示

回上一頁
題名:建構基於數據與視覺化模型之都市熱環境三維資訊系統
作者:陳家興
作者(外文):CHEN, CHIA-HSING
校院名稱:國立臺北科技大學
系所名稱:設計學院設計博士班
指導教授:吳可久
學位類別:博士
出版日期:2023
主題關鍵詞:都市熱島熱島垂直結構都市氣候因子視覺化模型儀錶板格式塔理論空間形構法則物聯網機器學習Urban Heat IslandVertical Structure of Heat IslandUrban Climate FactorsVisual ModelDashboardGestalt TheorySpace SyntaxInternet of ThingsMachine Learning
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
全球暖化導致都市環境溫度上升,形成都市熱島效應,對居民健康、能源和環境產生循環負面影響。過去相關研究主要集中於都市地表和冠層上的熱島特徵,缺乏對冠層熱島的深入研究且無法確實反映複雜的都市地理現象與環境因子所形成之熱環境。本研究透過物聯網技術建構小型都市探針裝置,透過行人、車載與無人機作為載具,蒐集都市峽谷地面至空中環境數據並建立數據模擬方式。透過機器學習中多維Kmeans對三維環境數據進行自動化熱區分群,分群結果以空間型構法則之空間便捷圖方法進行分析,計算各群空間之相互關係與便捷值。使用格式塔完型理論建立視覺模型,三維地理資訊視覺化與雲端技術建構都市熱環境介面。從數據蒐集、數據處理到數據展示發展都市熱環境三維資訊視覺化互動系統,提供使用者易於使用之複雜環境數據介面。本研究提供都市環境領域研究人員一套有效的創新研究工具,可突破過往的研究限制,蒐集到真實且高時間解析度之熱環境數據,進而透過視覺化界面提供多個視覺角度洞見隱藏於數據後之樣態以發現問題。提供相關人員制定更有效的環境調節策略,對淨零減碳與永續發展做出貢獻。
Global warming has resulted in increased urban temperatures, leading to the formation of urban heat islands, which negatively impact residents' health, energy consumption, and the environment. Previous studies have predominantly focused on surface-level heat island characteristics in urban areas while needing more in-depth investigation of canopy-level heat islands and the ability to accurately reflect the complex interactions between urban geography and environmental factors. This study aims to address these limitations by employing IoT technology to construct a device of small-scale urban probes, utilizing pedestrians, vehicles, and unmanned aerial vehicles as carriers to collect ground-to-air environmental data in urban canyons and establishing a data simulation method. Multidimensional K-means clustering in machine learning is applied to automate the thermal zoning of three-dimensional environmental data, and the clustering results are analyzed using the spatial integration analysis method based on the Space Syntax, which calculates the interrelationships and integration values among different clusters. A visual model is constructed based on the Gestalt Principles to enable three-dimensional geographic information visualization and cloud-based technology to develop an urban heat environment interface. This research presents a data-driven, three-dimensional information visualization and interactive system for urban heat environments, encompassing data collection, processing, and visualization, which offers users a user-friendly interface for complex environmental data. The study provides urban environmental researchers with an effective and innovative research tool that overcomes previous limitations, enabling accurate and high-temporal-resolution thermal environmental data collection. Moreover, through the visualization interface, multiple visual perspectives are provided to uncover hidden patterns and identify issues within the data. This research contributes to developing more effective environmental regulation strategies and promotes net-zero carbon and sustainable development.
Abbassi, Y., Ahmadikia, H., & Baniasadi, E. (2020). Prediction of pollution dispersion under urban heat island circulation for different atmospheric stratification. Building and Environment, 168, 106374. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106374
Allegrini, J. (2018). A wind tunnel study on three-dimensional buoyant flows in street canyons with different roof shapes and building lengths. Building and Environment, 143, 71-88. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.06.056
Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1-26. https://doi.org/https://doi.org/10.1002/joc.859
Ascensão, A., Costa, L., Fernandes, C., Morais, F., & Ruivo, C. (2019). 3D Space Syntax Analysis: Attributes to Be Applied in Landscape Architecture Projects. Urban Science, 3(1), 20. https://www.mdpi.com/2413-8851/3/1/20
Bell, N. O., Bilbao, J. I., Kay, M., & Sproul, A. B. (2022). Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050. Renewable and Sustainable Energy Reviews, 162, 112363. https://doi.org/https://doi.org/10.1016/j.rser.2022.112363
Bui, T. A., Lee, P. J., Lum, K. Y., Loh, C., & Tan, K. (2020). Deep Learning for Landslide Recognition in Satellite Architecture. IEEE Access, 8, 143665-143678. https://doi.org/10.1109/ACCESS.2020.3014305
Calvo, L., Christel, I., Terrado, M., Cucchietti, F., & Pérez-Montoro, M. (2022). Users' Cognitive Load: A Key Aspect to Successfully Communicate Visual Climate Information [Article]. Bulletin of the American Meteorological Society, 103(1), E1-E16. https://doi.org/10.1175/BAMS-D-20-0166.1
Caprì, S., Ignaccolo, M., Inturri, G., & Le Pira, M. (2016). Green walking networks for climate change adaptation. Transportation Research Part D: Transport and Environment, 45, 84-95. https://doi.org/https://doi.org/10.1016/j.trd.2015.08.005
Card, S., Mackinlay, J., & Shneiderman, B. (1999). Readings in Information Visualization: Using Vision To Think.
Carpentieri, M., Robins, A. G., & Baldi, S. (2009). Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection [Article]. Boundary-Layer Meteorology, 133(2), 277-296. https://doi.org/10.1007/s10546-009-9425-z
Case, D. (2003). Looking for Information—A Survey of Research on Information Seeking, Needs, and Behavior. Inf. Res., 8.
Cetin, M. (2020). Climate comfort depending on different altitudes and land use in the urban areas in Kahramanmaras City. Air Quality, Atmosphere & Health, 13(8), 991-999. https://doi.org/10.1007/s11869-020-00858-y
Chan, K., & Uncles, M. (2022). Digital media consumption: Using metrics, patterns and dashboards to enhance data‐driven decision‐making [Article]. Journal of Consumer Behaviour, 21(1), 80-91. https://doi.org/10.1002/cb.1994
Chen, C. H., & Wu, K. C. (2019, 2019). Urban light environment profile information collection and 3D space syntax visualization interface development. 12th International Space Syntax Symposium, SSS 2019,
Chen, T., Yang, H., Chen, G., Lam, C. K. C., Hang, J., Wang, X., Liu, Y., & Ling, H. (2021). Integrated impacts of tree planting and aspect ratios on thermal environment in street canyons by scaled outdoor experiments. Science of the Total Environment, 764, 142920. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.142920
Chen, Y., Lv, Z., Huang, B., Zhang, P., & Zhang, Y. (2019). Automatic Extraction of Built-Up Areas from Very High-Resolution Satellite Imagery Using Patch-Level Spatial Features and Gestalt Laws of Perceptual Grouping. Remote Sensing, 11(24), 3022. https://www.mdpi.com/2072-4292/11/24/3022
da Silva, S. L. E. F. (2021). Newton’s cooling law in generalised statistical mechanics. Physica A: Statistical Mechanics and its Applications, 565, 125539. https://doi.org/https://doi.org/10.1016/j.physa.2020.125539
de Jesus, E. G. V., de Amorim, A. L., Groetelaars, N. J., & Fernandes, V. O. (2018). MODELING CITIES FOR 3D_GIS PURPOSES. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4, 135-142. https://doi.org/10.5194/isprs-archives-XLII-4-135-2018
de la Losa, A., & Cervelle, B. (1999). 3D Topological modeling and visualisation for 3D GIS. Computers & Graphics, 23(4), 469-478. https://doi.org/https://doi.org/10.1016/S0097-8493(99)00066-7
Dineva, K., & Atanasova, T. (2022). Cloud Data-Driven Intelligent Monitoring System for Interactive Smart Farming [Article]. Sensors (14248220), 22(17), 6566. https://doi.org/10.3390/s22176566
Downs, R. M., & Stea, D. (2011). Cognitive Maps and Spatial Behaviour: Process and Products. In The Map Reader (pp. 312-317). https://doi.org/https://doi.org/10.1002/9780470979587.ch41
Fabrikant, S., & Lobben, A. (2009). Introduction: Cognitive Issues in Geographic Information Visualization. Cartographica, 44, 139-143. https://doi.org/10.3138/carto.44.3.139
Feichtinger, M., de Wit, R., Goldenits, G., Kolejka, T., Hollósi, B., Žuvela-Aloise, M., & Feigl, J. (2020). Case-study of neighborhood-scale summertime urban air temperature for the City of Vienna using crowd-sourced data. Urban Climate, 32, 100597. https://doi.org/https://doi.org/10.1016/j.uclim.2020.100597
Feng, W., Zhen, M., Ding, W., & Zou, Q. (2022). Field measurement and numerical simulation of the relationship between the vertical wind environment and building morphology in residential areas in Xi’an, China. Environmental Science and Pollution Research, 29(8), 11663-11674. https://doi.org/10.1007/s11356-021-16522-6
Ferrer-Cid, P., Barcelo-Ordinas, J. M., Garcia-Vidal, J., Ripoll, A., & Viana, M. (2020). Multisensor Data Fusion Calibration in IoT Air Pollution Platforms. IEEE Internet of Things Journal, 7(4), 3124-3132. https://doi.org/10.1109/JIOT.2020.2965283
Ghadban, M., Baayoun, A., Lakkis, I., Najem, S., Saliba, N., & Shihadeh, A. (2020). A novel method to improve temperature forecast in data-scarce urban environments with application to the Urban Heat Island in Beirut. Urban Climate, 33. https://doi.org/10.1016/j.uclim.2020.100648
Göçer, Ö., Göçer, K., Başol, A. M., Kıraç, M. F., Özbil, A., Bakovic, M., Siddiqui, F. P., & Özcan, B. (2018). Introduction of a spatio-temporal mapping based POE method for outdoor spaces: Suburban university campus as a case study. Building and Environment, 145, 125-139. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.09.012
Gungor, S., Cetin, M., & Adiguzel, F. (2021). Calculation of comfortable thermal conditions for Mersin urban city planning in Turkey. Air Quality, Atmosphere & Health, 14(4), 515-522. https://doi.org/10.1007/s11869-020-00955-y
Hacıefendioğlu, K., Başağa, H. B., & Demir, G. (2021). Automatic detection of earthquake-induced ground failure effects through Faster R-CNN deep learning-based object detection using satellite images. Natural Hazards, 105(1), 383-403. https://doi.org/10.1007/s11069-020-04315-y
Harbola, S., & Coors, V. (2018). GEO-VISUALISATION AND VISUAL ANALYTICS FOR SMART CITIES: A SURVEY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W11, 11-18. https://doi.org/10.5194/isprs-archives-XLII-4-W11-11-2018
Heidarinejad, M., Gracik, S., Sadeghipour Roudsari, M., Khoshdel Nikkho, S., Liu, J., Liu, K., Pitchorov, G., & Srebric, J. (2016). Influence of building surface solar irradiance on environmental temperatures in urban neighborhoods. Sustainable Cities and Society, 26, 186-202. https://doi.org/https://doi.org/10.1016/j.scs.2016.06.011
Hillier, B., & Hanson, J. (1984). The Social Logic of Space. Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511597237
Horgan, L. (2022). The Everyday of Future-Avoiding: Administering the Data-Driven Smart City. Information & Culture, 57(2), 169. https://doi.org/10.7560/IC57204
Hu, L.-T., & Bentler, P. M. (1995). Evaluating model fit. In Structural equation modeling: Concepts, issues, and applications. (pp. 76-99). Sage Publications, Inc.
Hu, Y., Hou, M., Jia, G., Zhao, C., Zhen, X., & Xu, Y. (2019). Comparison of surface and canopy urban heat islands within megacities of eastern China. ISPRS Journal of Photogrammetry and Remote Sensing, 156, 160-168. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.08.012
Huan, L. I., Hua, L. U., Jensen, C. S., Bo, T., & Cheema, M. A. (2023). Spatial Data Quality in the Internet of Things: Management, Exploitation, and Prospects [Article]. ACM Computing Surveys, 55(3), 1-41. https://doi.org/10.1145/3498338
Huang, C. H., Du, Y. R., & Tsai, H. H. (2019). Urban planning elements affect thermal environment from solar radiation in subtropics [???researchoutput.researchoutputtypes.contributiontojournal.article???]. International Journal of Smart Grid and Clean Energy, 8(6), 763-772. https://doi.org/10.12720/sgce.8.6.763-772
Huang, F., Zhan, W., Wang, Z.-H., Voogt, J., Hu, L., Quan, J., Liu, C., Zhang, N., & Lai, J. (2020). Satellite identification of atmospheric-surface-subsurface urban heat islands under clear sky. Remote Sensing of Environment, 250, 112039. https://doi.org/https://doi.org/10.1016/j.rse.2020.112039
Huang, L. (2020). Space of preattentive shape features. Journal of Vision, 20(4), 10-10. https://doi.org/10.1167/jov.20.4.10
Ienco, D., Gbodjo, Y. J. E., Gaetano, R., & Interdonato, R. (2020). Weakly Supervised Learning for Land Cover Mapping of Satellite Image Time Series via Attention-Based CNN. IEEE Access, 8, 179547-179560. https://doi.org/10.1109/ACCESS.2020.3024133
Jakubiec, J., Doelling, M., Heckmann, O., Thambiraj, R., & Jathar, V. (2017). Dynamic Building Environment Dashboard: Spatial Simulation Data Visualization in Sustainable Design. Technology|Architecture + Design, 1, 27-40. https://doi.org/10.1080/24751448.2017.1292791
Jankowski, J. (2011). A taskonomy of 3D web use Proceedings of the 16th International Conference on 3D Web Technology, Paris, France. https://doi.org/10.1145/2010425.2010443
Jiang, L., & Narayanan, R. M. (2004). Integrated spectral and spatial information mining in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 673-685. https://doi.org/10.1109/TGRS.2004.824221
Karimimoshaver, M., Khalvandi, R., & Khalvandi, M. (2021). The effect of urban morphology on heat accumulation in urban street canyons and mitigation approach. Sustainable Cities and Society, 73, 103127. https://doi.org/https://doi.org/10.1016/j.scs.2021.103127
Keim, D., Qu, H., & Ma, K.-L. (2013). Big-Data Visualization [Periodical]. IEEE Computer Graphics and Applications, Computer Graphics and Applications, IEEE, IEEE Comput. Grap. Appl., 33(4), 20-21. https://doi.org/10.1109/MCG.2013.54
Keim, D. A. (2002). Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics, 8(1), 1-8. https://doi.org/10.1109/2945.981847
Kim, G., Kim, A., & Kim, Y. (2019). A new 3D space syntax metric based on 3D isovist capture in urban space using remote sensing technology. Computers, Environment and Urban Systems, 74, 74-87. https://doi.org/10.1016/j.compenvurbsys.2018.11.009
Klein, B. (2016). Managing the Scalability of Visual Exploration Using Game Engines to Analyse UHI Scenarios. Procedia Engineering, 169, 272-279. https://doi.org/https://doi.org/10.1016/j.proeng.2016.10.033
Kristina, D., & Tatiana, A. (2022). Cloud Data-Driven Intelligent Monitoring System for Interactive Smart Farming [article]. Sensors, 22(6566), 6566-6566. https://doi.org/10.3390/s22176566
Kumar, V. V., & Sasikala, G. (2022). Internet of Things (IoT) Enabled Air Quality Monitoring System for Conventional and UAV Application [article]. Nature Environment and Pollution Technology, 21(1), 71-81. https://doi.org/10.46488/NEPT.2022.v21i01.008
Lee, D. J. L., Lee, J., Siddiqui, T., Kim, J., Karahalios, K., & Parameswaran, A. (2020). You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems. IEEE Transactions on Visualization and Computer Graphics, 26(1), 1267-1277. https://doi.org/10.1109/TVCG.2019.2934666
Lee, H., & Mayer, H. (2021). Solar elevation impact on the heat stress mitigation of pedestrians on tree-lined sidewalks of E-W street canyons – Analysis under Central European heat wave conditions. Urban Forestry & Urban Greening, 58, 126905. https://doi.org/https://doi.org/10.1016/j.ufug.2020.126905
Lee, H., Mayer, H., & Kuttler, W. (2019). To what extent does the air flow initialisation of the ENVI-met model affect human heat stress simulated in a common street canyon? International Journal of Biometeorology, 63(1), 73-81. https://doi.org/10.1007/s00484-018-1637-9
Li, J., Wang, J., & Wong, N. H. (2016). Urban Micro-climate Research in High Density Cities: Case Study in Nanjing. Procedia Engineering, 169, 88-99. https://doi.org/https://doi.org/10.1016/j.proeng.2016.10.011
Li, J., Zhang, T., Liu, Q., & Yu, M. (2017). Predicting the visualization intensity for interactive spatio-temporal visual analytics: a data-driven view-dependent approach [Article]. International Journal of Geographical Information Science, 31(1), 168-189. https://doi.org/10.1080/13658816.2016.1194424
Lin, Y., Ichinose, T., Yamao, Y., & Mouri, H. (2020). Wind velocity and temperature fields under different surface heating conditions in a street canyon in wind tunnel experiments. Building and Environment, 168, 106500. https://doi.org/https://doi.org/10.1016/j.buildenv.2019.106500
Liu, X., Liu, C.-H., & Li, Y. (2020). The Effects of Computer-Assisted Learning Based on Dual Coding Theory. Symmetry, 12(5), 701. https://www.mdpi.com/2073-8994/12/5/701
Liu, X., Shi, X.-Q., He, H.-D., Li, X.-B., & Peng, Z.-R. (2021). Vertical distribution characteristics of particulate matter beside an elevated expressway by unmanned aerial vehicle measurements. Building and Environment, 206, 108330. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108330
Lock, O., Bednarz, T., Leao, S. Z., & Pettit, C. (2020). A review and reframing of participatory urban dashboards. City, Culture and Society, 20, 100294. https://doi.org/https://doi.org/10.1016/j.ccs.2019.100294
Lu, M., Song, D., Shi, D., Liu, J., & Wang, L. (2022). Effect of High-Rise Residential Building Layout on the Spatial Vertical Wind Environment in Harbin, China. Buildings, 12(6), 705. https://www.mdpi.com/2075-5309/12/6/705
Lugassi, R., Blank, A., Rogozovsky, I., Ohneiser, K., Ansmann, A., Linzon, Y., & Chudnovsky, A. (2022). From laboratory to in-situ 3D measurements of complex pollution states in the city: Introducing a general concept using compact multisensory assemblies on UAVs. Atmospheric Environment, 281, 119146. https://doi.org/https://doi.org/10.1016/j.atmosenv.2022.119146
Mahajan, S. (2022). Design and development of an open-source framework for citizen-centric environmental monitoring and data analysis [Article]. Scientific Reports, 12(1), 1-14. https://doi.org/10.1038/s41598-022-18700-z
Marsal-Llacuna, M.-L. (2020). The people's smart city dashboard (PSCD): Delivering on community-led governance with blockchain. Technological Forecasting and Social Change, 158, 120150. https://doi.org/https://doi.org/10.1016/j.techfore.2020.120150
McCoy, M. D., & Ladefoged, T. N. (2009). New Developments in the Use of Spatial Technology in Archaeology. Journal of Archaeological Research, 17(3), 263-295. https://doi.org/10.1007/s10814-009-9030-1
Medeiros, M. M. d., & Maçada, A. C. G. (2022). Competitive advantage of data-driven analytical capabilities: the role of big data visualization and of organizational agility [Article]. Management Decision, 60(4), 953-975. https://doi.org/10.1108/MD-12-2020-1681
Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study Urban Heat Island – Abilities and limitations. Building and Environment, 45(10), 2192-2201. https://doi.org/https://doi.org/10.1016/j.buildenv.2010.04.001
Nardecchia, F., Di Bernardino, A., Pagliaro, F., Monti, P., Leuzzi, G., & Gugliermetti, L. (2018). CFD Analysis of Urban Canopy Flows Employing the V2F Model: Impact of Different Aspect Ratios and Relative Heights [Article]. Advances in Meteorology, 1-16. https://doi.org/10.1155/2018/2189234
Navas-Carrillo, D., Del Espino Hidalgo, B., Navarro-de Pablos, F. J., & Pérez Cano, M. T. (2018). THE URBAN HERITAGE CHARACTERIZATION USING 3D GEOGRAPHIC INFORMATION SYSTEMS. THE SYSTEM OF MEDIUM-SIZED CITIES IN ANDALUSIA. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W10, 127-134. https://doi.org/10.5194/isprs-archives-XLII-4-W10-127-2018
Neal, M. (2020). THE HISTORY MAPS [Article]. Popular Mechanics, 30-39. https://stanford.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=aph&AN=143845954
Ng, E., Ren, C., Mills, G., Mochida, A., Yuan, C., Matzarakis, A., Mayer, H., Katzschner, L., Baumuller, J., Oke, T., Stewart, I., Thorsson, S., Lindberg, F., Chapman, L., Huang, B., Jusuf, S., Lau, K., Lindley, S., Moriyama, M., & Cavan, G. (2015). The Urban Climatic Map: A Methodology for Sustainable Urban Planning.
Ochola, E. M., Fakharizadehshirazi, E., Adimo, A. O., Mukundi, J. B., Wesonga, J. M., & Sodoudi, S. (2020). Inter-local climate zone differentiation of land surface temperatures for Management of Urban Heat in Nairobi City, Kenya. Urban Climate, 31, 100540. https://doi.org/https://doi.org/10.1016/j.uclim.2019.100540
Oke, T. (1982). The energetic basis of urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1-24. https://doi.org/10.1002/qj.49710845502
Oke, T., Mills, G., Christen, A., & Voogt, J. (2017). Urban Climates. https://doi.org/10.1017/9781139016476
Oke, T. R. (1976). The distinction between canopy and boundary‐layer urban heat islands. Atmosphere, 14(4), 268-277. https://doi.org/10.1080/00046973.1976.9648422
Oke, T. R. (1995). The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects. In J. E. Cermak, A. G. Davenport, E. J. Plate, & D. X. Viegas (Eds.), Wind Climate in Cities (pp. 81-107). Springer Netherlands. https://doi.org/10.1007/978-94-017-3686-2_5
Paul, N., & Nisbett, G. (2022). The Numbers Game: How Local Newspapers Used Statistics and Data Visualizations to Cover the Coronavirus Pandemic [Article]. Howard Journal of Communications, 33(3), 297-313. https://doi.org/10.1080/10646175.2021.1986753
Pignatelli, M., Torabi Moghadam, S., Genta, C., & Lombardi, P. (2023). Spatial decision support system for low-carbon sustainable cities development: An interactive storytelling dashboard for the city of Turin. Sustainable Cities and Society, 89, 104310. https://doi.org/https://doi.org/10.1016/j.scs.2022.104310
Pirolli, P., & Card, S. (1995). Information foraging in information access environments Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Denver, Colorado, USA. https://doi.org/10.1145/223904.223911
Rai, A. K., Mandal, N., Singh, A., & Singh, K. K. (2020). Landsat 8 OLI Satellite Image Classification using Convolutional Neural Network. Procedia Computer Science, 167, 987-993. https://doi.org/https://doi.org/10.1016/j.procs.2020.03.398
Ricci, A., Burlando, M., Repetto, M. P., & Blocken, B. (2022). Static downscaling of mesoscale wind conditions into an urban canopy layer by a CFD microscale model. Building and Environment, 225, 109626. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109626
Roldán, J. J., Joossen, G., Sanz, D., Del Cerro, J., & Barrientos, A. (2015). Mini-UAV Based Sensory System for Measuring Environmental Variables in Greenhouses. Sensors, 15(2), 3334-3350. https://www.mdpi.com/1424-8220/15/2/3334
Rydvanskiy, R., & Hedley, N. (2020). 3D Geovisualization Interfaces as Flood Risk Management Platforms: Capability, Potential, and Implications for Practice. Cartographica: The International Journal for Geographic Information and Geovisualization, 55(4), 281-290. https://doi.org/10.3138/cart-2020-0003
Saito, K., Said, I., & Shinozaki, M. (2017). Evidence-based neighborhood greening and concomitant improvement of urban heat environment in the context of a world heritage site - Malacca, Malaysia. Computers, Environment and Urban Systems, 64, 356-372. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2017.04.003
Santos, A. S., Faccini, L. G., Goncales, I., Marte, C. L., & Cintra, J. P. (2022). A practical approach for high-resolution air quality mapping using IoT mobile devices. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04513-0
Sardain, A., Tang, C., & Potvin, C. (2016). Towards a dashboard of sustainability indicators for Panama: A participatory approach. Ecological Indicators, 70, 545-556. https://doi.org/https://doi.org/10.1016/j.ecolind.2016.06.038
Schuetz, C., Been, J., & Chan-Park, C. Y. (2020). Here and hereafter: Preparing business students for a data-driven world [Article]. Journal of Business & Finance Librarianship, 25(3/4), 291-314. https://doi.org/10.1080/08963568.2020.1847550
Schüll, N. D. (2019). The Data-Based Self: Self-Quantification and the Data-Driven (Good) Life [Article]. Social Research, 86(4), 909-930. https://libsearch.ntut.edu.tw/ntut/sendurl_api_v3eds.jsp?pr=hy&url=https://search.ebscohost.com/login.aspx?direct=true&db=ofs&AN=141849293&lang=zh-tw&site=eds-live
Segal, J. W., Chipman, S. F., & Glaser, R. (1985). Thinking and Learning Skills (Vol. Volume 1: Relating Instruction To Research). (Routledge)
Shneiderman, B. (1996, 3-6 Sept. 1996). The eyes have it: a task by data type taxonomy for information visualizations. Proceedings 1996 IEEE Symposium on Visual Languages,
Singh, M., Singh, K., & Sethi, A. S. (2020). Analytical hierarchy process and TOPSIS for selecting best parameters of green manufacturing [JOURNAL]. Measuring Business Excellence, 24(3), 345-365. https://doi.org/10.1108/MBE-08-2019-0076
Soares, F., Lopes, J. A., & Almeida, P. (2010). A Monte Carlo method to evaluate electric vehicles impacts in distribution networks. https://doi.org/10.1109/CITRES.2010.5619777
Stewart, I. D. (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31(2), 200-217. https://doi.org/https://doi.org/10.1002/joc.2141
Sun, D., & Zhang, Y. (2018). Influence of avenue trees on traffic pollutant dispersion in asymmetric street canyons: Numerical modeling with empirical analysis. Transportation Research Part D: Transport and Environment, 65, 784-795. https://doi.org/https://doi.org/10.1016/j.trd.2017.10.014
Treisman, A. (1985). Preattentive processing in vision. Computer Vision, Graphics, and Image Processing, 31(2), 156-177. https://doi.org/https://doi.org/10.1016/S0734-189X(85)80004-9
Tsai, H.-H., & Huang, C.-H. (2018). Surveying the Thermal Properties of an Urban Heat Island Vertical Structure Influenced by Subtropical Solar Radiation. International Conference on Environment and Natural Science (ICENS),
Tsoka, S., Theodosiou, T., Tsikaloudaki, K., & Flourentzou, F. (2018). Modeling the performance of cool pavements and the effect of their aging on outdoor surface and air temperatures. Sustainable Cities and Society, 42, 276-288. https://doi.org/https://doi.org/10.1016/j.scs.2018.07.016
Turgut, M., & Uygan, C. (2014). Spatial ability training for undergraduate mathematics education students : Designing tasks with SketchUp ®.
Turner, A., Penn, A., & Hillier, B. (2005). An Algorithmic Definition of the Axial Map. Environment and Planning B: Planning and Design, 32(3), 425-444. https://doi.org/10.1068/b31097
Villa, T. F., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and Validation of a UAV Based System for Air Pollution Measurements. Sensors, 16(12), 2202. https://www.mdpi.com/1424-8220/16/12/2202
von Richthofen, A., Zeng, W., Asada, S., Burkhard, R., Heisel, F., Arisona, S., & Schubiger, S. (2017). Urban Mining: Visualizing the Availability of Construction Materials for Re-use in Future Cities. https://doi.org/10.1109/iV.2017.34
Wang, L., Ye, W., Duan, M., & Zhang, Y. (2013). Real-time rendering of flames on arbitrary deformable objects. Science China Information Sciences, 56(8), 1-9. https://doi.org/10.1007/s11432-013-4893-7
Wang, W., Yao, X., & Shu, J. (2020). Air advection induced differences between canopy and surface heat islands. Science of the Total Environment, 725, 138120. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138120
Wang, Z., Yuan, Y., Chang, L., Sun, X., & Luo, X. (2019). A Graph-Based Visual Query Method for Massive Human Trajectory Data. IEEE Access, 7, 160879-160888. https://doi.org/10.1109/ACCESS.2019.2948304
Ware, C. (2004). Information Visualization: Perception for Design: Second Edition. In.
Ware, C. (2021). Information Visualization. Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/C2016-0-02395-1
Wilson, T. (2000). Human Information Behavior. Informing Science, 3, 49-55. https://doi.org/10.28945/576
Wong, K. K. Y. (2015). Economic Value of 3D Geographic Information. EuroSDR and the Department of Computer Science, University College London: London, UK.
Wu, K.-C., Chen, C.-H., & Hsu, C.-H. (2022). Three-dimensional visualization of thermal environments in urban canyons. Geocarto International, 37(27), 16261-16282. https://doi.org/10.1080/10106049.2022.2107713
Wu, Z., & Ren, Y. (2019). A bibliometric review of past trends and future prospects in urban heat island research from 1990 to 2017. Environmental Reviews, 27(2), 241-251. https://doi.org/10.1139/er-2018-0029
Xie, X., Liu, C.-H., & Leung, D. Y. C. (2007). Impact of building facades and ground heating on wind flow and pollutant transport in street canyons. Atmospheric Environment, 41(39), 9030-9049. https://doi.org/https://doi.org/10.1016/j.atmosenv.2007.08.027
Xie, X., & Zhu, Z. (2018). Effects of Heat Intensity and Inflow Wind on the Reactive Pollution Dispersion in Urban Street Canyon. Journal of Shanghai Jiaotong University (Science), 23(1), 109-116. https://doi.org/10.1007/s12204-018-2030-x
Xiong, K., Yang, Z., & He, B.-J. (2022). Spatiotemporal heterogeneity of street thermal environments and development of an optimised method to improve field measurement accuracy. Urban Climate, 42, 101121. https://doi.org/https://doi.org/10.1016/j.uclim.2022.101121
Xu, Z., & Coors, V. (2012). Combining system dynamics model, GIS and 3D visualization in sustainability assessment of urban residential development. Building and Environment, 47, 272-287. https://doi.org/https://doi.org/10.1016/j.buildenv.2011.07.012
Yang, C., Yan, F., & Zhang, S. (2020). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265, 110563. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110563
Yang, H., Chen, G., Wang, D., Hang, J., Li, Q., & Wang, Q. (2021). Influences of street aspect ratios and realistic solar heating on convective heat transfer and ventilation in full-scale 2D street canyons. Building and Environment, 204, 108125. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108125
Yang, S.-B., Hlee, S., Lee, J., & Koo, C. (2017). An empirical examination of online restaurant reviews on Yelp.com. International Journal of Contemporary Hospitality Management, 29(2), 817-839. https://doi.org/10.1108/IJCHM-11-2015-0643
Yasmin, Q. T., Farah Hasseb, J., & Monim, H. A.-J. (2020). A Study of Canopy Urban Heat Island of Baghdad, Iraq [A Study of Canopy Urban Heat Island of Baghdad, Iraq]. Asian Journal of Atmospheric Environment, 14(3), 280-288. https://doi.org/10.5572/ajae.2020.14.3.280
Young, G. W., & Kitchin, R. (2020). Creating design guidelines for building city dashboards from a user's perspectives. International Journal of Human-Computer Studies, 140, 102429. https://doi.org/https://doi.org/10.1016/j.ijhcs.2020.102429
Zhang, J., Senousi, A. M., Zhao, P., Law, S., & Liu, X. (2023). Exploring 3D spatial morphology using multilayered space syntax, network science and wi-fi log data. Urban Informatics, 2(1), 1. https://doi.org/10.1007/s44212-023-00023-7
Zhang, L., & Chiaradia, A. (2019). From axial to pedestrian path-centre line: The case of 3D pedestrian network in Hong Kong, Central. 12th International Space Syntax Symposium, SSS 2019,
Zheng, T., Bergin, M. H., Hu, S., Miller, J., & Carlson, D. E. (2020). Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach. Atmospheric Environment, 230, 117451. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117451
Zhu, Z., Shirowzhan, S., & Pettit, C. J. (2022). Investigation of Development Applications: A GIS Based Spatiotemporal Analysis in the City of Sydney Area 2004–2022. Buildings, 12(10).
Ziter, C. D., Pedersen, E. J., Kucharik, C. J., & Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences, 116(15), 7575-7580. https://doi.org/doi:10.1073/pnas.1817561116
于海军, 李盛阳, & 张涛. (2021). A Space-Time Interactive Visualization Approach for Managing Remote Sensing Data. Journal of Information Science and Engineering, 37(2), 395-412. https://doi.org/10.6688/jise.202103_37(2).0008
中華民國經濟部. (2023). 認識淨零排放. Retrieved 2023/01/08 from https://www.go-moea.tw/
台灣電力公司. (2023). 歷年發購電量占比. Retrieved 2023/01/08 from https://www.taipower.com.tw/tc/page.aspx?mid=212&cid=120&cchk=f3a1b1e0-03e5-45fa-b72e-b28c5cb94f37
吳思寰. (2021). 不同都市型態對冠層熱島之影響狀況探討 國立臺北科技大學]. 台北市. https://hdl.handle.net/11296/wc6c6a
束博. (2022). 以人本尺度探討綠覆及遮蔽率對行人步道熱環境之影響模式 中國文化大學]. 台北市. https://hdl.handle.net/11296/cxb4ys
周永望, 田朝前, & 李敏. (2014). 基于三维空间句法的城市空间通视性分析. 计算机工程与应用(1), 240-241,250. https://doi.org/10.3778/j.issn.1002-8331.1305-0062
陳建雄, 張文智, & 張文德. (2007). “尋路績效自我評鑑量表”之發展 [The Development of Self Evaluation Scale on Wayfinding Performance]. 測驗學刊, 54(2), 355-376. https://doi.org/10.7108/pt.200712.0355
陳家興, 蔡欣樺, & 吳可久. (2021). 基於無人機遙測都市熱島效應之空間分析方法 [The Spatial Analysis Method of Urban Heat Island Effect Based on Remote Sensing of Drone]. 建築學報(115), 57-72. https://doi.org/10.3966/101632122021030115004
彭敏鈞. (2022). 探討亞熱帶氣候都市熱島環境熱舒適度地圖儀錶板介面設計 國立臺北科技大學]. 台北市. https://hdl.handle.net/11296/a4j53u
趙忠明, 嚴泰來, & 周天穎. (2019). 空間信息技術原理及其應用. 科學出版社.
蔡欣樺. (2020). 以深度學習模型探討亞熱帶都市熱島垂直結構熱特性 國立臺北科技大學]. 台北市. https://hdl.handle.net/11296/4463f5
蔡欣樺, & 黃志弘. (2018). 亞熱帶都市景觀規劃特徵對熱島垂直結構影響之探討 聯合年會暨論文研討會,
戴雅佩. (2021). 都市熱島因子整合資訊視覺化分析 國立臺北科技大學]. 台北市. https://hdl.handle.net/11296/gw6357
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE