:::

詳目顯示

回上一頁
題名:高濃度氧氣對國中短跑選手在反覆性衝刺速度表現與生理代謝之影響
書刊名:大專體育學刊
作者:黃濬棋黃三峰 引用關係李玉麟 引用關係李丘威達
作者(外文):Huang, Jiun-chiHuang, San-fengLee, Yuh-linLee Chiou, Wei-da
出版日期:2010
卷期:12:2
頁次:頁69-77
主題關鍵詞:乳酸排除平均血壓SpO₂Lactate eliminationMean blood pressure
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:24
本研究主要目的在探討反覆性衝刺運動期間與結束後攝取常氧(21%)與高濃度氧氣(95%)對於國中短跑選手在衝刺速度表現與生理代謝反應之影響。方法:以6名國中短距離項目徑賽選手為本研究的對象(年齡15±0.63歲、身高166.83±5.23公分、體重54±4.34公斤、訓練年資1.83±0.75年),以平衡次序方式進行前、後共2次,中間間隔3天,每次5x50公尺衝刺賽跑測試,並於3分鐘的間歇休息期間與所有衝刺運動結束後的7分鐘內分別攝取常氧或高濃度氧氣。衝刺期間與結束後分別取得參加者的速度成績、乳酸、心跳率與SpO2等參數分別以相依樣本t考驗與重複量數單因子變異數分析,分別進行不同情況下與相同情況下不同時間點之分析,顯著水準p<.05。結果顯示:一、在常氧與高氧情況下的每次衝刺速度之間並未達顯著之差異(p>.05)。但是,若比較個別的情況下的5次衝刺速度則發現,在常氧下,第5次的速度顯著的低於第1、2與3次的速度表現(p<.05)。而高氧的情況,則5次的衝刺速度間則沒有顯著的差異產生。二、於衝刺期間,乳酸堆積的情形於常氧與高氧的情況下產生相同的曲線,並未達顯著的差異。但是,在所有衝刺結束後7分鐘的恢復期中,則於高氧的情況下獲得較佳的乳酸排除效果。三、SpO2則在大部分的檢測點發現,於高氧情況下顯著的高於常氧情況下(p<.05)。四、心跳率與平均血壓則在常氧與高氧等情況下未達顯之差異,並且在整個過程中擁有相同的曲線變化。本研究結論:依據本研究的結果顯示,在反覆性的衝刺運動間歇休息中攝取高濃度氧氣,既使在乳酸堆積量與常氧下比較沒有差異,但是,可獲得較佳的運動速度維持與表現。並且於運動後恢復期間攝取高濃度氧氣具有較佳的乳酸排除效果。
The purpose of this study was to compare the effects of inhaling either hyperoxic (95%) or normoxic (21%) gas at intervals and recovery period of repeated sprint exercise on performance and physiological responses. We hypothesized that 1.95% O2 at intervals would benefit to sprint performance at repeated sprint exercise and, 2. to eliminate the lactate in the recovery period after all sprint trials. Six junior high school male sprinters (age: 15±0.63 yr, height: 166.83±5.23 cm; weight: 54±4.34 kg; training: 1.83±0.75 yr) were participated in two sessions of 5 x 50 m sprint trials with three minutes resting intervals, and subjected to either 95% O2 or 21% O2 during all resting intervals and seven minutes recovery period after all sprint exercises were observed. No significant differences on speed of same trails' sprinting between hyperoxia and normoxia were observed when compared within each session. Speed at last trial (5th sprinting) was significantly dropped than 1st, 2nd and 3rd sprinting trials (p<.05) under normoxia, but same situation was not observed under hyperoxia. 2. The lactate accumulations had same curve pattern within all sprint trials between hyperoxia and normoxia, but within recovery period of each session the elimination rate of lactate was more efficient under hyperoxia compared to normoxia. 3. The SpO2 were significantly higher at most checking points under hyperoxia than normoxia. 4. Heart rate and blood pressure were not significantly changed between hyperoxia and normoxia, and same curve pattern within all checking points were also observed. The data showed that sprint quality was maintained under hyperoxia although the accumulations of lactate were not significant differences from normoxia within all interval sprint trials, and hyperoxia in the recovery period also showed more efficient on blood elimination rate.
期刊論文
1.Billat, L. V.(2001)。Interval training for performance: A scientific and empirical practice. Special recommendations for middle-and long-distance running. Part II: Anaerobic interval training。Sports Medicine,31(2),75-90。  new window
2.Burgomaster, K. A.、Heigenhauser, G. J. F.、Gibala, M. J.(2006)。Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance。Journal of Applied Physiology,100(6),2041-2047。  new window
3.Burgomaster, K. A.、Hughes, S. C.、Heigenhauser, G. J. F.、Bradwell, S. N.、Gibala, M. J.(2005)。Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans。Journal of Applied Physiology,98(6),1985-1990。  new window
4.Gibala, M. J.、Little, J. P.、van Essen, M.、Wilkin, G. P.、Burgomaster, K. A.、Safdar, A.、Tarnopolsky, M. A.(2006)。Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance。The Journal of Physiology,575(3),901-911。  new window
5.Houssière, A.、Najem, B.、Cuylits, N.、Cuypers, S.、Naeije, R.、van de Borne, P.(2006)。Hyperoxia enhances metaboreflex sensitivity during static exercise in humans。American Journal of Physiology, Heart and Circulatory Physiology,219(1),H210-H215。  new window
6.Knight, D. R.、Poole, D. C.、Hogan, M. C.、Bebout, D. E.、Wagner, P. D.(1996)。Effect of inspired O2 concentration on leg lactate release during incremental exercise。Journal of Applied Physiology,81(1),246-251。  new window
7.Perry, C. G. R.、Reid, J.、Perry, W.、Wilson, B. A.(2005)。Effects of hyperoxic training on performance and cardiorespiratory response to exercise。Medicine and science in sports and exercise,37(7),1175-1179。  new window
8.Plet, J.、Pedersen, P. K.、Jensen, F. B.、Hansen, J. K.(1992)。Increased working capacity with hyperoxia in humans。European Journal of Applied Physiology,65(2),171-177。  new window
9.黃鱗棋、李玉麟、張嘉澤(2008)。高強度間歇運動負荷前中後持續攝取高濃度氧氣對新陳代謝與體循環之影響。國立臺灣體育大學論叢,19卷1 期,49-62 頁。new window  延伸查詢new window
10.Prieur, F., Benoit, H., Busso, T., Castells, J., Geyssant,A.,、Denis, C.(2002)。Effects of moderate hyperoxia on oxygen consumption during submaximal and maximal exercise。European Journal of Applied Physiology,88,235-242。  new window
11.Stellingwerff, T.、Glazier, L.、Watt, M. J.、LeBlanc, P. J.、Heigenhauser, G. J. F.、Spriet, L. L.(2005)。Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise。Journal of Applied Physiology,98(1),250-256。  new window
12.Stellingwerff, T.、LeBlanc, P. J.、Hollidge, M. G.、Heigenhauser, G. J. F.、Spriet, L. L.(2006)。Hyperoxia decreases muscle glycogenolysis,lactate production, and lactate efflux during steady-state exercise。American Journal of Physiology: Endocrinology and Metabolism,290(6),E1180-E1190。  new window
圖書論文
1.Hollmann, W.、Strueder, H. K.、Rojas Vega, S.(2002)。Einfluss von respiraorischem Stress auf die Prolaktinsekretion bei ausdauersportlern。BISp-Jahrbuch。  new window
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE