:::

詳目顯示

回上一頁
題名:應用認知診斷模型於國中多項式單元概念與錯誤類型之實徵研究
作者:顧乃棻
作者(外文):Gu,Nai-Fen
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:張靜嚳
郭伯臣
學位類別:博士
出版日期:2016
主題關鍵詞:認知診斷模型概念錯誤類型多項式cognitive diagnostic modelsconceptionerror patternpolynomial
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:19
摘要
認知診斷評量能提供診斷訊息幫助教師瞭解學生的學習狀況,瞭解其是否精熟學習單元的概念或是具有某些迷思概念而產生特定的錯誤類型,使得教師能作更好的教學設計,實施更有效的補救教學,以改善學生的學習成效。認知診斷測驗需要認知診斷模型(cognitive diagnosis model, CDM)來分析學生的作答資料,目前認知診斷文獻中,大部份提出的認知診斷模型為診斷概念的模型,少部份則為診斷錯誤類型的模型,而近期的發展則有同時診斷概念與錯誤類型的模型。本研究目的在於應用不同認知診斷模型於國二多項式單元概念與錯誤類型之分析,透過設計適用於DINA(deterministic inputs, noisy“and”gate model)、Bug-DINO(bug deterministic input, noisy“or”gate model)及SISM(simultaneously identifying skills and misconceptions model)的認知診斷測驗來進行實徵研究。受試者有效樣本為423人,透過比較這些診斷模型在多項式單元相關的概念與錯誤類型之診斷成效及其內涵。研究上的重要發現為同時診斷概念與錯誤類型的SISM模型辨識率優於單獨診斷概念的DINA模型及單獨診斷錯誤類型的Bug-DINO模型。
Abstract
Cognitive diagnostic assessment(CDA)can provide diagnostic information to help teachers realizing students’learning status that whether they master the skills or possess some specific misconceptions in the learning unit. This can also help teachers to design better classroom instruction, and more effectively to perform remediation to improve student learning. Students’responses of tests for CDA are analyzed by cognitive diagnostic models(CDM). In CDM literature, most models are for diagnosing skills, a few are for diagnosing misconceptions. Recently, models for simultaneously diagnosing skills and misconceptions have also been proposed. An empirical study was conducted for comparing the performance of the used models. Finally, some practical implications of empirical findings are discussed. The present study aims to apply different cognitive diagnosis model to polynomials unit diagnostic test designed for DINA(deterministic inputs, noisy“and”gate model), Bug-DINO(bug deterministic input, noisy“or”gate model), and SISM(simultaneously identifying skills and misconceptions model). Effective subjects are 423 people. An important discovery is that the identification rate of SISM model is better than DINA model and Bug-DINO model.
參考文獻
中文部分
萬勇、于全訓(1991)。傳统測驗理論與項目反應理論。山東師範大學學報:自然科學版,6(3),42-46。
王力平(2015)。結構方程模型誤設程度量化方法之探討(未出版之碩士論文)。國立臺灣師範大學,臺北市。
王文君(2014)。補救教學現場的省思與建議。臺灣教育評論月刊,3(8),83-88。
王春源、郭重吉、黃曼麗(1992)。物質變化相關概念診斷測驗工具之發展。科學教育,3,241-266。
王苑菘、鄒慧英(2015)。特質階層法於臺灣 PISA2006 數學評量之認知診斷分析。測驗學刊,62(1),69-93。new window
劉聲濤、戴海崎、周駿(2006)。新一代測驗理論—認知診斷理論的源起與特徵。心理學探新,26(4),73-77。
余明杰、李茂能、楊德清(2016)。國小四年級學童數常識三階段診斷測驗工具的發展與應用之研究。科學教育學刊,24(1),89-114。new window
吳裕益、林月仙(2000)。國小中低年級數學診斷測驗之編製及理論模式之驗證研究。 測驗年刊,47(2),1-15。new window
吳慧珉、郭伯臣、許天維、陳婉寧(2015)。以可能值方法為基礎之多向度能力值垂直等化探究。測驗學刊,62(2),95-126。new window
張瀟、沙如雪(2013)。認知診斷 DINA 模型研究進展。中國考試,1,32-37。
李青春、胡學誠(2009)。一個針對基礎數學學習者的線上評量與迷思概念導正工具。臺中教育大學學報:數理科技類,23(1),1-28。new window
李祐宗(2012)。國中補救教學示例—從拼圖學因式分解。科學教育,348,37-45。
李敦仁、余民寧(2007)。學習表現的知識結構評量研究:以教育統計學學科知識為例。教育研究與發展期刊,3,113-148。new window
楊志傳、龔耀先(1997)。漢語閱讀技能診斷測驗(CRSDT)的初步編制。中國臨床心理學雜誌,5(3),156-163。
楊志明(2003)。標準參照測驗及其等級線信度的概化理論分析。心理學探新,23(3),52-56。
單肇基、陳紹基(1981)。對初中多項式教學的探討。華南師院學報(自然科學版),1,15。
周大桂(2005)。數學概念的理解。安徽電氣工程職業技術學院學報,10(3),120-122。
林財庫、林慧潔(2003)。高雄市國中小學生氣體迷思概念的認知類型、層次、頻率分佈及認知發展的分析研究。科學教育學刊,11(3),297-330。new window
林葙葙、林娟如(2014)。幼兒數學認知診斷評量工具初探。教育學誌,32,1-44。new window
陸毅民(2010)。“單項式乘多項式”教學案例。中學生數理化:學研版,11,26。
陳慧麟、趙冠芳(2013)。認知診斷的應用—語言測試研究的新階段。外語測試與教學,2,1-9。
陳瑾、徐建平和趙微(2009)。認知診斷理論及其在教育中的應用。教育測量與評價:理論版,2,20-22。
俞克斌、施淑娟、許天維(2012)。高中數學之電腦化適性診斷與學習系統─以矩陣單元為例。測驗統計年刊,20,77-113。new window
俞曉琳(1998)。項目反應理論與經典測驗理論之比较。南京師大學報(社會科學版),4,74-77。
施辰緯(2015)。高中數學多項式問題之教材(未出版之碩士論文)。中原大學,桃園市。
趙必華(2002)。概化理論及其在標準参照測驗信度中的應用。内蒙古師範大學學報:教育科學版,15(5),21-23。
趙宇(1997)。“多項式除以單項式”教學設計。寧夏教育,5,34。
趙守盈、石豔梅、朱丹(2013)。項目反應理論在大規模選拔性考試試題質量評價中的應用。教育學報,1,71-77。
趙智勇(1995)。“多項式的乘法”的教學設計及評述。數學教師,12,4。
夏惠賢(2002)。多元智力理論與項目學習。全球教育展望,31(9),20-26。
涂冬波、蔡豔、丁樹良(2012)。認知診斷理論、方法與應用。北京:北京師範大學出版社。
耿红梅(2011)。高中數學中齊次多項式的運用。考試周刊,72,84-85。
蘇玲(2014)。基於認知診斷理論對高一新生化學用語輔導的研究。九江職業技術學院學報,2,86-91。
高強華(2015)。九年一貫社會領域學習之教學統整單元設計與校本課程創新設計。臺灣教育評論月刊,4(6),155-161。
張少同(2003)。青少年的數學概念學習研究─子計劃七:青少年的統計概念發展研究。行政院國家科學委員會研究報告(編號:NSC 91-2521),未出版。
張嵐雄(2011)。國中生在多項式乘除運算的主要錯誤類型及其補救教學之研究(未出版之碩士論文)。臺灣師範大學,臺北市。
張景媛(1994)。數學文字題錯誤概念分析及學生建構數學概念的研究。教育心理學報,27,175-200。new window
張新仁(1992)。認知心理學對教學的影響。教育研究,28,13-31。new window
張銘秋、謝秀月、徐秋月(2010)。PISA 科學素養之試題認知成份分析。課程與教學,13(1),1-20。new window
許天維、郭伯臣、吳慧珉、葉昶成(2013)。單向度試題反應理論之可能值方法於等化設計下之模擬實驗探究。測驗統計年刊,21,1-24。new window
許家驊、邱上真、張新仁(2003)。多階段動態評量對國小學生數學學習促進與補救效益之分析研究。教育心理學報,35(2),141-166。new window
許慧玉(2001)。卷宗評量與紙筆測驗對國小四年級學生數學概念─數學溝通能力及數學學習態度之實驗研究(未出版之碩士論文)。國立嘉義大學,嘉義市。
郭磊(2013)。認知診斷理論及其應用。心理技術與應用,2,27-31。
陳怡如、吳慧珉、黃碧雲(2004)。電腦化適性診斷測驗之研究。測驗統計年刊,12,61-99。new window
龔利(2015)。項目反應理論在考試系统試題庫中的應用。湖北工業職業技術學院學報,15(2),103-104。
曾世杰、陳瑋婷、陳淑麗(2013)。大學生以瞬識字及字母拼讀直接教學法對國中英語低成就學生的補救教學成效研究。課程與教學,16(1),1-33。new window
曾浲群(2012)。從學生思维發展的視角設計問題—對 “多項式乘以多項式”教學片斷的分析。中小學數學:初中版,9,39。
黃玉幸(2016)。國民中小學補救教學實施方案之評析。臺灣教育評論月刊,5(2),86-89。
黃國禎、朱蕙君、王榕榆(2008)。以答題信心為基礎之線上診斷評量系統。師大學報:教育類,53(1),1-24。new window
黃敏雄(2015)。學生數學表現的城鄉差異。教育研究集刊,61(4),33-61。new window
黃寶葵、劉曼麗(2012)。對國小六年級數學低成就學童在分數乘除法錯誤類型的探討。科學教育月刊,355,39-52。
楊智為、卓淑瑜、郭伯臣、陳亭宇(2011)。DINA 與 G-DINA 模式參數不變性探討。測驗統計年刊,19,1-15。new window
楊德清和洪郁雯(2009)。新臺灣之子數學學習之個案研究。科學教育學刊,17(3),179-201。
趙曉美(2015)。補救教學vs.有效教學。臺灣教育評論月刊,4(4),21-25。
劉晏如、施淑娟(2010)。資訊融入數學合作學習對國中二年級多項式與其加減單元學生學習成效之影響。數位教學暨資訊實務研討會發表之論文,高雄市。
蔡秉恆、黃天佑(2005)。直覺法則對兒童數學概念影響之研究。南大學報:數理與科學類,39(1),91-110。
蔡楠(2014)。認知診斷理論述評。現代企業教育,12,483-484。
蔡職鴻、劉曼麗(2012)。對國小三年級數學低成就學童在分數迷思概念之探討。科學教育,353,18-31。
賴姿伶、余民寧(2015)。應徵者與在職者在多分題人格測驗的作答差異之研究:試題層次與試題組合層次的分析。人力資源管理學報,15(4),91-120。new window
薛慶友、傅潔琳(2015)。數位學習平台的應用特色與評析。臺灣教育評論月刊,4(4),77-84。
謝立文、李德仁(2013)。羅許分析在編製運動賽會服務品質量表之應用。大專體育學刊,15(2),169-181。new window
謝名娟、謝如山(2013)。多層面Rasch分析在數學實作評量的應用。教育心理學報,45(1),1-18。
謝青龍(1995)。從迷思概念到另有架構的概念改變。科學教育月刊,180,23-29。
謝哲仁、謝佩君(2013)。線性規劃動態電腦輔助教材設計及其補救教學個案研究。科學與工程國際期刊,3(3),41-57。
龔心怡(2016)。因應差異化教學的評量方式:多元評量停、看、聽。臺灣教育評論月刊,5(1),211-215。


英文部份
Ackerman, T., Henson, R., Luecht, R., Willse, J., & Templin, J. (2012). Applying computer based assessment using diagnostic modeling to benchmark tests. In R. Lissitz & H. Jiao (Eds.). Computers and their impact on state assessments (pp. 227-244). Charlotte, NC: Information Age Publishing.
Ashlock, R. B. (1994). Error patterns in computation. New York: Macmillan.
Azevedo, R. (2015). Defining and measuring engagement and learning in science: Conceptual, theoretical, methodological, and analytical issues. Educational Psychologist, 50(1), 84-94.
Bindi, M., Miglietta, F., Gozzini, B., Orlandini, S., & Seghi, L. (2015). A simple model for simulation of growth and development in grapevine (Vitis vinifera L.). 2. Model validation. VITIS-Journal of Grapevine Research, 36(2), 73.
Birenbaum, M., Tatsuoka, C., & Xin, T. (2005). Large‐scale diagnostic assessment: Comparison of eighth graders’ mathematics performance in the United States, Singapore and Israel. Assessment in Education: Principles, Policy & Practice, 12(2), 167-181.
Braasch, J. L., Goldman, S. R., & Wiley, J. (2013). The influences of text and reader characteristics on learning from refutations in science texts. Journal of Educational Psychology, 105(3), 561.
Brennan, R. L. (1992). Generalizability theory. Educational Measurement: Issues and Practice, 11(4), 27-34.
Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive science, 2(2), 155-192.
Byrd, C. E., McNeil, N. M., Chesney, D. L., & Matthews, P. G. (2015). A specific misconception of the equal sign acts as a barrier to children's learning of early algebra. Learning and Individual Differences, 38, 61-67.
Carraher, D.W., & Schliemann, A. D. (2007) Early Algebra and Algebraic Reasoning. In F. Lester (Eds), Second Handbook of Research on Mathematics Teaching and Learning: A project of the National Council of Teachers of Mathematics. Vol II. (pp. 669-705).Charlotte, NC: Information Age Publishing.
Chang, H.-H. (2015). Psychometrics behind computerized adaptive testing. Psychometrika, 80(1), 1-20.
Chang, K.-E., Liu, S.-H., & Chen, S.-W. (1998). A testing system for diagnosing misconceptions in DC electric circuits. Computers & Education, 31(2), 195-210.
Chen, T.-A., O'Connor, T. M., Hughes, S. O., Beltran, A., Baranowski, J., Diep, C., & Baranowski, T. (2015). Vegetable parenting practices scale. Item response modeling analyses. Appetite, 91, 190-199.
Cheng, Y. (2010). Improving cognitive diagnostic computerized adaptive testing by balancing attribute coverage: The modified maximum global discrimination index method. Educational and Psychological Measurement, 70(6), 902-913.
Chiu, C.-Y. (2013). Statistical Refinement of the Q-matrix in Cognitive Diagnosis. Applied Psychological Measurement, 37(8), 598-618.
Chiu, C., Seo, M., & Douglas, J. (2009). Cluster analysis for cognitive diagnosis: An application to the 2001 PIRLS reading assessment. IERI Monograph Series: Issues and Methodologies in Large-scale Assessment, 2, 137-159.
Çokluk, Ö., Gül, E., & Doğan-Gül, Ç. (2016). Examining differential item functions of different item ordered test forms according to item difficulty levels. Educational Sciences: Theory & Practice, 16(1).new window
Corter, J. E., Rho, Y. J., Zahner, D., Nickerson, J. V., & Tversky, B. (2009). Bugs and biases: Diagnosing misconceptions in the understanding of diagrams. Proceedings of the Cognitive Science Society, 756-761.
Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. New York: CBS College Publishing.new window
Cui, Y., & Li, J. (2015). Evaluating person fit for cognitive diagnostic assessment. Applied Psychological Measurement, 39(3), 223-238.
Davier, M. (2005). A general diagnostic model applied to language testing data. ETS Research Report Series, 2005(2), 1-35.
Davier, M. (2014). The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67(1), 49-71.
De La Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353.
de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73(4), 595-624.
DeVellis, R. F. (2006). Classical test theory. Medical care, 44(11), 50-59.new window
DiBello, L. V., Henson, R. A., & Stout, W. F. (2015). A family of generalized diagnostic classification models for multiple choice option-based scoring. Applied Psychological Measurement, 39(1), 62-79.
Dongbo, T., Yan, C., & Dai Haiqi, Q. S. (2008). A review on cognitive diagnostic models under modern test theory. Psychological Exploration, 2, 14.new window
Drasgow, F. (2015). Technology and Testing: Improving educational and psychological measurement: Routledge.
Dugdale, S. (1993). Functions and graphs–Perspectives on student thinking. In T. A. Romberg, T. P. Carpenter, & E. Fennema (Eds.), Integrating research on the graphical representation of functions (pp. 101-130).
Eason, S. H. (1989). Why generalizability theory yields better results than classical test theory. Retrieved from ERIC database. (ED314434)new window
Embretson, S. E. (1993). Psychometric models for learning and cognitive processes. In N. Frederiksen, R. J. Mislevy, 8c 1. I. Bejar (Eds), Test theory for a new generation of tests (pp. 125-150). Hillsdale, NJ: Lawrence Erlbaum Associates.new window
Embretson, S. E., & Yang, X. (2013). A multicomponent latent trait model for diagnosis. Psychometrika, 78(1), 14-36.
Eymur, G., & Geban, Ö. (2016). The collaboration of cooperative learning and conceptual change: Enhancing the students’ understanding of chemical bonding concepts. International Journal of Science and Mathematics Education, 1-19.
Feltovich, P. J., Spiro, R. J., & Coulson, R. L. (1993). Learning, teaching, and testing for complex conceptual understanding. In N. Frederiksen & I. Bejar (Eds.), Test theory for a new generation of tests (pp. 181-217). Hillsdale, NJ: Erlbaum.new window
Frederiksen, N., Glaser, R., Lesgold, A. M., & Shafto, M. G. (1990). Diagnostic monitoring of skills and knowledge acquisition. Hillsdale, NJ: Erlbaum.
Frederiksen, N., Mislevy, R. J., & Bejar, I. I. (2012). Test theory for a new generation of tests. New York, NY: Routledge.new window
Gable, R. A., Enright, B. E., & Hendrickson, J. M. (1991). A practical model for curriculum-based assessment and instruction in arithmetic. Teaching Exceptional Children, 24(1), 6-9.
Gierl, M. J., Alves, C., & Majeau, R. T. (2010). Using the attribute hierarchy method to make diagnostic inferences about examinees’ knowledge and skills in mathematics: An operational implementation of cognitive diagnostic assessment. International Journal of Testing, 10(4), 318-341.
Gierl, M. J., & Cui, Y. (2008). Defining characteristics of diagnostic classification models and the problem of retrofitting in cognitive diagnostic assessment, 6, 263-268.
Gierl, M. J., Leighton, J. P., & Hunka, S. M. (2005). Using the attribute hierarchy method to make diagnostic inferences about examinees’ cognitive skills. In J. P. Leighton and M. J. Gierl (Eds.), Cognitive diagnostic assessment for education (pp. 242-274). Cambridge: Cambridge University Press.
Goodlad, J. I. (1964). School curriculum reform in the United States. In D. J. Flinders & S. J. Thornton (Eds), The curriculum studies reader (pp. 45-54). New York, NY: Routledge.
Groß, J., Robitzsch, A., & George, A. (2016). Cognitive diagnosis models for baseline testing of educational standards in math. Journal of Applied Statistics, 43(1), 229-243.
Gulliksen, H., & Tucker, L. R. (1961). A general procedure for obtaining paired comparisons from multiple rank orders. Psychometrika, 26(2), 173-183.
Hambleton, R. K. (1991). Fundamentals of item response theory (Vol. 2). London: Sage publications.
Hansen, M., & Cai, L. (2013). A hierarchical item response model for cognitive diagnosis. Multivariate behavioral research, 48(1), 158-158.
Harding L, Alderson JC, Brunfaut T 2015. Diagnostic assessment of reading and listening in a second or foreign language: Elaborating on diagnostic principles. Language Testing, 32(3), 317-336.
Haussler, D., Kearns, M., Littlestone, N., & Warmuth, M. K. (1991). Equivalence of models for polynomial learnability. Information and Computation, 95(2), 129-161.
Hu, J., Miller, M. D., Huggins-Manley, A. C., & Chen, Y.-H. (2016). Evaluation of model fit in cognitive diagnosis models. International Journal of Testing, 16(2), 119-141.
Huang, T.-W., & Wu, P.-C. (2013). Classroom-based cognitive diagnostic model for a teacher-made fraction-decimal test. Educational Technology & Society, 16(3), 347-361.new window
Huber-Carol, C., Balakrishnan, N., Nikulin, M., & Mesbah, M. (2012). Goodness-of-fit tests and model validity. New York, NY: Springer Science & Business Media.
Huebner, A. (2010). An overview of recent developments in cognitive diagnostic computer adaptive assessments. Practical Assessment, Research & Evaluation, 15(3), 1-7.
Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for cognitive diagnosis models. Educational and Psychological Measurement, 71(2), 407-419.
Huff, K., & Goodman, D. P. (2007). The demand for cognitive diagnostic assessment. In J. P. Leighton & M. J. Gierl (Eds), Cognitive diagnostic assessment for education: Theory and applications(pp 19-60). Cambridge, UK: Cambridge University Press.
Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network models. Journal of the American Statistical Association, 103(481), 248-258.
Hwang, G. J., Tseng, J. C., & Hwang, G. H. (2008). Diagnosing student learning problems based on historical assessment records. Innovations in Education and Teaching International, 45(1), 77-89.
Jang, E. E. (2008). A framework for cognitive diagnostic assessment. In C. A. Chapelle, Y.-R. Chung, & J. Xu (Eds.), Towards adaptive CALL: Natural language processing for diagnostic language assessment (pp. 117-131). Ames, IA: Iowa State University.
Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for Fusion Model application to LanguEdge assessment. Language Testing, 26(1), 31-73.
Jang, E. E., & Wagner, M. (2014). Diagnostic feedback in language classroom. In A. Kunnan (Eds.), Companion to language assessment (pp. 693–711). New York, NY: Wiley-Blackwell.
Jiang, X., Sawaki, Y., & Sabatini, J. (2012). Word reading efficiency, text reading fluency, and reading comprehension among Chinese learners of English. Reading Psychology, 33(4), 323-349.
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
Kajander, A., & Lovric, M. (2009). Mathematics textbooks and their potential role in supporting misconceptions. International Journal of Mathematical Education in Science and Technology, 40(2), 173-181.
Kalyuga, S. (2006a). Assessment of learners' organised knowledge structures in adaptive learning environments. Applied cognitive psychology, 20(3), 333-342.
Kalyuga, S. (2006b). Rapid cognitive assessment of learners' knowledge structures. Learning and Instruction, 16(1), 1-11.
Kane, M. T., & Bejar, I. I. (2014). Cognitive frameworks for assessment, teaching, and learning: A validity perspective. Psicología Educativa, 20(2), 117-123.
Kaplan, M., de la Torre, J., & Barrada, J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167-188.
Kearns, D. M., & Fuchs, D. (2013). Does cognitively focused instruction improve the academic performance of low-achieving students? Exceptional Children, 79(3), 263.
Kim, A. Y. (2015). Exploring ways to provide diagnostic feedback with an ESL placement test: Cognitive diagnostic assessment of L2 reading ability. Language Testing, 32(2), 227-258.new window
Kim, J., Kim, S., & Dong, H. (2015). International comparison of cognitive attributes using analysis on science results at TIMSS 2011 based on the cognitive diagnostic theory. Journal of The Korean Association For Science Education, 35(2), 267-275.
Koeppen, K., Hartig, J., Klieme, E., & Leutner, D. (2008). Current issues in competence modeling and assessment. Zeitschrift für Psychologie/Journal of Psychology, 216(2), 61-73.
Kuo, B.-C., Chen, C.-H., Yang, C.-W., & Mok, M. M. C. (2016). Cognitive diagnostic models for tests with multiple-choice and constructed-response items. Educational Psychology, 36(6), 1-23.
Kuo, B.-C. (2016). A cognitive diagnostic model for simultaneously classifying skills and misconceptions. Bor-Chen Kuo (Box M1). Archives of the Graduate institute of educational information and measurement, National Taichung University of Education, Taiwan.
Laudadio, R. E., & Wilson, T. E. (2016). Student feedback from independent study modules on prerequisite review and areas of misconception in physiology. The FASEB Journal, 30(1), 726-776.
Lee, Y.-W. (2015). Diagnosing diagnostic language assessment. Language Testing, 32(3), 299-316.
Lee, Y.-W., & Sawaki, Y. (2009). Cognitive diagnosis approaches to language assessment: An overview. Language Assessment Quarterly, 6(3), 172-189.
Leighton, J. P., & Chu, M.-W. (2016). First among equals: hybridization of cognitive diagnostic assessment and evidence-centered game design. International Journal of Testing, 16(2), 164-180.
Leighton, J. P., & Gierl, M. J. (2007). Defining and evaluating models of cognition used in educational measurement to make inferences about examinees' thinking processes. Educational Measurement: Issues and Practice, 26(2), 3-16.
Li, H., Hunter, C. V., & Lei, P.-W. (2015). The selection of cognitive diagnostic models for a reading comprehension test. Language Testing, 33(3), 391-409. doi:10.1177/0265532215590848new window
Li, S.-H., Gu, N.-F., Lee, K. L., Kuo, B.-C., & Yang, C.-W. (2015). Analyzing a computerized diagnostic test with multiple choice items and constructed response items based on bayesian network. International Journal of Innovative Computing, Information and Control, 11, 2193-2213.new window
Liu, C.-C., Chou, C.-C., Liu, B.-J., & Yang, Y.-w. (2006). Improving mathematics teaching and learning experiences for hard of hearing students with wireless technology-enhanced classrooms. American Annals of the Deaf, 151(3), 345-355.
Liu, H.-Y., You, X.-F., Wang, W.-Y., Ding, S.-L., & Chang, H.-H. (2013). The development of computerized adaptive testing with cognitive diagnosis for an English achievement test in China. Journal of classification, 30(2), 152.new window
Liu, J., Ying, Z., & Zhang, S. (2015). A rate function approach to computerized adaptive testing for cognitive diagnosis. Psychometrika, 80(2), 468-490.
Liu, R., Patel, R., & Koedinger, K. R. (2016). Modeling common misconceptions in learning process data. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, pp.388-397.Doi: 10.1145/2883851.2883967
Lloyd, G. M., & Wilson, M. (1998). Supporting innovation: The impact of a teacher's conceptions of functions on his implementation of a reform curriculum. Journal for Research in Mathematics Education ,29, 248-274.
Lohman, D. F., & Ippel, M. J. (1993). Cognitive diagnosis: From statistically-based assessment toward theory-based assessment. In N. Frederiksen, R. J. Mislevy, I. I. Bejar.(Eds.), Test theory for a new generation of tests(pp.41-71). Hillsdale, NJ: Lawrence Erlbaum Associates.new window
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.
Maier, U., Wolf, N., & Randler, C. (2016). Effects of a computer-assisted formative assessment intervention based on multiple-tier diagnostic items and different feedback types. Computers & Education, 95, 85-98.
Malone, J., & Dekkers, J. (1984). The concept map as an aid to instruction in science and mathematics. School Science and Mathematics, 84(3), 220-231.
McGlohen, M., & Chang, H.-H. (2008). Combining computer adaptive testing technology with cognitively diagnostic assessment. Behavior Research Methods, 40(3), 808-821.
Miller, L. D., & England, D. A. (1989). Writing to learn algebra. School Science and Mathematics, 89(4), 299-312.
Morrison, A., Hutton, P., Wardle, M., Spencer, H., Barratt, S., Brabban, A., . . . French, P. (2012). Cognitive therapy for people with a schizophrenia spectrum diagnosis not taking antipsychotic medication: An exploratory trial. Psychological medicine, 42(5), 1049-1056.
Nichols, P. D. (1994). A framework for developing cognitively diagnostic assessments. Review of Educational Research, 64(4), 575-603.
Nichols, P. D., Chipman, S. F., & Brennan, R. L. (2012). Cognitively diagnostic assessment. Hillsdale, NJ: Erlbaum.
Papick, I. J. (2011). Strengthening the mathematical content knowledge of middle and secondary mathematics teachers. Notices of the AMS, 58(3), 389-392.
Pesaran, M. H., & Timmermann, A. (1992). A simple nonparametric test of predictive performance. Journal of Business & Economic Statistics, 10(4), 461-465.new window
Petersen, M. A., Aaronson, N. K., Chie, W.-C., Conroy, T., Costantini, A., Hammerlid, E., . . . Velikova, G. (2016). Development of an item bank for computerized adaptive test (CAT) measurement of pain. Quality of Life Research, 25(1), 1-11.new window
Radford, L. (2014). On the role of representations and artefacts in knowing and learning. Educational Studies in Mathematics, 85(3), 405-422.
Ramsburg, J. T., & Ohlsson, S. (2016). Category change in the absence of cognitive conflict. Journal of Educational Psychology, 108(1), 98.
Ravand, H. (2015). Application of a cognitive diagnostic model to a high-stakes reading comprehension test. Journal of Psychoeducational Assessment, 34(1), 1-18.new window
Read, T. R., & Cressie, N. A. (2012). Goodness-of-fit statistics for discrete multivariate data. New York, NY: Springer-Verlag.
Regian, J. W., Shute, V. J., & Shute, V. (2013). Cognitive approaches to automated instruction.London, England: Routledge .
Ritter, E. M., & Brissman, I. C. (2016). Systematic development of a proctor certification examination for the Fundamentals of Laparoscopic Surgery testing program. The American Journal of Surgery, 211(2), 458-463.
Sadler, P. M., & Sonnert, G. (2016). Understanding misconceptions: Teaching and learning in middle school physical science. American Educator, 40(1), 26-32.
Sattler, J. M. (2008). Assessment of children: Cognitive foundations (5th ed.). La Mesa, CA: Sattler.
Schwarzenberger, R. (1984). Colour symmetry part one: Symmetry groups. Bulletin of the London Mathematical Society, 16(3), 209-216.
Self, J. (1993). Model-based cognitive diagnosis. User Modeling and User-Adapted Interaction, 3(1), 89-106.
Shavelson, R. J., Webb, N. M., & Rowley, G. L. (1989). Generalizability theory. American Psychologist, 44(6), 922.
Shih, S.-C., & Kuo, B.-C. (2005). Using bayesian networks for modeling students’ learning bugs and sub-skills. KES'05 Proceedings of the 9th international conference on Knowledge-Based Intelligent Information and Engineering Systems, pp.69-75.doi: 10.1007/11552413_11
Shih, S.-C., Kuo, B.-C., & Liu, Y.-L. (2008). Building and applying the bayesian networks based adaptive test system-using rounding & estimating with decimals unit in the fifth grade as a example. Proceedings of the 16th International Conference on Computers in Education,pp.27-37. doi: 10.1201/9781420000245.ch14new window
Skaggs, G., Wilkins, J. L., & Hein, S. F. (2016). Grain size and parameter recovery with TIMSS and the general diagnostic model. International Journal of Testing, 16(2), 1-21.
Slavit, D. (1997). An alternate route to the reification of function. Educational Studies in Mathematics, 33(3), 259-281.
Sorrel, M. A., Olea, J., Abad, F. J., de la Torre, J., Aguado, D., & Lievens, F. (2016). Validity and reliability of situational judgement test scores a new approach based on cognitive diagnosis models. Organizational Research Methods, 19(3), 506-532.new window
Steffe, L. P., & Ulrich, C. (2014). Constructivist teaching experiment. Encyclopedia of Mathematics Education, 1 (3), 102-109 .
Stochl, J., Böhnke, J. R., Pickett, K. E., & Croudace, T. J. (2016). Computerized adaptive testing of population psychological distress: simulation-based evaluation of GHQ-30. Social psychiatry and psychiatric epidemiology, 51(6), 895-906.
Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory. Applied Psychological Measurement, 7(2), 201-210.
Suldo, S. M., Dedrick, R. F., Shaunessy-Dedrick, E., Roth, R. A., & Ferron, J. (2015). Development and initial validation of the student rating of environmental stressors scale stressors faced by students in accelerated high school curricula. Journal of Psychoeducational Assessment, 33(40), 339-356.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
Tatsuoka, C., Varadi, F., & Jaeger, J. (2012). Latent partially ordered classification models and normal mixtures. Journal of Educational and Behavioral Statistics, 38(1), 267-294.
Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis: A statistical pattern recognition and classification approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 327-359). Hillsdale, NJ: Erlbaum
Tatsuoka, K. K., & Tatsuoka, M. M. (1997). Computerized cognitive diagnostic adaptive testing: effect on remedial instruction as empirical validation. Journal of Educational Measurement, 34(1), 3-20.
Templin, J., & Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York, NY:Guilford Press.
Torney-Purta, J., & Amadeo, J.-A. (2013). The contributions of international large-scale studies in civic education and engagement. In M. von Davier, E. Gonzalez, I. Kirsch, K. Yamamoto (Eds.), The role of internatinal large-scale assessments: Perspectives from technology, economy, and educational research. Dordrecht: Springer.
Troussas, C., Virvou, M., Vougiouklidou, A., & Espinosa, K. J. (2013). Automatic misconception diagnosis in multiple language learning over social networks. Information, Intelligence, Systems and Applications (IISA) , 1(1), 293-298.
Van der Kleij, F. M., Vermeulen, J. A., Schildkamp, K., & Eggen, T. J. (2015). Integrating data-based decision making, assessment for learning and diagnostic testing in formative assessment. Assessment in Education: Principles, Policy & Practice, 22(3), 324-343.
Van der Vleuten, C., Schuwirth, L., Driessen, E., Dijkstra, J., Tigelaar, D., Baartman, L., & van Tartwijk, J. (2012). A model for programmatic assessment fit for purpose. Medical Teacher, 34(3), 205-214.
Vinner, S. (2002). The role of definitions in the teaching and learning of mathematics Advanced mathematical thinking (pp. 65-81). New York, NY: Springer.
Von Davier, M., Xu, X., & Carstensen, C. H. (2011). Measuring growth in a longitudinal large-scale assessment with a general latent variable model. Psychometrika, 76(2), 318-336.
Von Glasersfeld, E. (1987). The construction of knowledge: Contributions to conceptual semantics. Retrieved from ERIC database.(ED316412)
Wagner, M. (2015). The centrality of cognitively diagnostic assessment for advancing secondary school ESL students’ writing: A mixed methods study. (Doctoral dissertation). University of Toronto.
Wang, C., Chang, H.-H., & Douglas, J. (2012). Combining CAT with cognitive diagnosis: A weighted item selection approach. Behavior Research Methods, 44(1), 95-109.
Westrick, P. A., Le, H., Robbins, S. B., Radunzel, J. M., & Schmidt, F. L. (2015). College performance and retention: A meta-analysis of the predictive validities of ACT® scores, high school grades, and SES. Educational Assessment, 20(1), 23-45.
Wilkening, F., & Anderson, N. H. (1982). Comparison of two rule-assessment methodologies for studying cognitive development and knowledge structure. Psychological Bulletin, 92(1), 215.
Woods, A., & Baker, R. (1985). Item response theory. Language Testing, 2(2), 117-140.
Xin, T., & Zhang, J. (2015). Local equating of cognitively diagnostic modeled observed scores. Applied Psychological Measurement, 39(1), 44-61.
Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. CBMS Issues in Mathematics Education, 8, 103-127.
Shih, S.-C., Kuo, B.-C., & Liu, Y.-L. (2008). Building and applying the bayesian networks based adaptive test system-using rounding & estimating with decimals unit in the fifth grade as a example. Proceedings of the 16th International Conference on Computers in Education,pp.27-37.doi: 10.1201/9781420000245.ch14new window
Zhu, X., & Simon, H. A . (1987). Learning mathematics from examples and by doing. Cognition and instruction, 4(3), 137-166.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
QR Code
QRCODE