:::

詳目顯示

回上一頁
題名:台北都會區都市化與物質流對台灣之土地遠距連接影響:能值評估之應用
作者:邱浩瑋
作者(外文):CHIU, HAO-WEI
校院名稱:國立臺北大學
系所名稱:都市計劃研究所
指導教授:黃書禮
學位類別:博士
出版日期:2019
主題關鍵詞:都市化都市土地遠距連接都市永續性物質能量流生態不平等交換能值評估UrbanizationUrban land teleconnectionsUrban sustainabilityMaterial and energy flowEcologically unequal exchangeEmergy synthesis
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:5
都市化過程不僅影響都市本身之環境變遷,同時也會因都市的資源消費需求進而增加對外界的仰賴,例如糧食、建材、能源等,影響到遠距地區的環境衝擊或土地使用改變。然而,過去多數研究皆僅針對都市地區本身進行分析,缺少將都市化過程中對遠距地區的影響納入考量。都市土地遠距連接是一種以作用為基礎的概念,其重點在於都市化衍生的作用力不僅影響都市本身或都市週邊地區,而是超越都市行政邊界去影響到遠距地區。故有必要透過都市土地遠距連接之觀點重新思考都市如何對遠距地區造成影響。因此,本研究旨在透過都市土地遠距連接之觀點探討台北都會區與受影響遠距地區之物質能量流動關係,並運用能值評估方法分析台北都會區對遠距地區之影響。首先本研究先瞭解台北都會區生態經濟系統及其資源需求之情形,並指認出受台北都會區影響之關鍵遠距地區。最後,本研究透過兩個案例—蔬果(彰雲嘉地區)與水泥(花蓮地區)—來分析台北都會區都市化過程如何與其資源供給地區產生連結,並以能值交換來討論對當地之自然環境與社會經濟影響。
研究結果顯示,台北都會區都市化因其人口成長及建地擴張帶來的都市需求,需要向台灣其他縣市輸入農產品及建材。此外,台北都會區的建材及農產品需求量也遠大於台灣其他縣市所需。故在這樣物質能量流動的過程當中,台北都會區都市化成為影響台灣遠距地區之環境變遷與衝擊的隱性驅動力。而從案例分析結果指出,不論是蔬果或水泥,遠距地區出售環境資源給台北後都只能得到較低的金錢能值回饋,進而產生生態不平等交換現象。造成生態不平等交換之原因可歸因於金錢僅支付給人類所提供的服務,而非支付給環境系統所提供的貢獻。而因台北都會區都市資源需求而導致的都市與遠距地區間生態不平等交換,亦造成案例地區之土地使用變遷及環境影響。農產品之能值交換結果間接導致彰雲嘉地區土地轉換,形成坡地農業,這反而使彰雲嘉地區在進行農業生產時更加仰賴外界的能值投入。而因水泥產業的管理-生產關係,使得花蓮無法從水泥業獲得較好的生產效益。此外,水泥之低能值交換結果不僅對花蓮的當地經濟沒有太大益處,同時也因水泥製造過程導致當地的環境負荷增加。本研究透過都市化物質流來探討台北都會區對遠距地區之影響,其研究結果可重新反思都市化對環境變遷的影響是超越都市範圍的。因此未來在進行都市研究/都市永續性評估時不應僅針對都市本身,也應將都市對遠距地區造成的衝擊納入考量。
Urbanization not only causes environmental changes in a city but also influences the ecological and socioeconomic changes of distant land areas due to increasing demands for resources. Previous studies on the assessment of urban systems have focused on cities or metropolitan areas and ignored their connection with remote areas. For this reason, there is a need to incorporate urban land teleconnections, which emphasize the effect of the processes of urbanization on remote areas, to investigate the relationship between a city and distant areas. This study, therefore, aims to explore the relationship between the material and energy flows in the Taipei metropolitan area (TMA) and the affected remote areas. Emergy synthesis was applied to evaluate the interaction between the TMA and the associated distant areas that provide food and construction materials. First, the TMA’s ecological-economics system and its resources demand were investigated. Second, the distant areas affected by the TMA were identified. Finally, two cases of connection between the urbanization of the TMA and the TMA’s resource inflow areas were analyzed; their environmental and economic implications via emergy exchange are also discussed. Case one involves vegetable and fruit products from Changhua, Yunlin, and Chiayi counties (Chang-Yun-Chia area); case two involves cement from Hualien county. The results showed that the urbanization of the TMA required a significant amount of imported agricultural products and construction materials from other counties in Taiwan because of the population growth and built-up area expansion. The urbanization of the TMA becomes an underlying driver of environmental changes in the outlying areas under the processes of material and energy flows. Additionally, results indicated that, in terms of both agricultural products and cement, the remote areas that sold environmental products to the TMA could only receive less emergy of money feedback, which led to ecologically unequal exchange. The ecologically unequal exchange resulted from the fact that money was only paid for human services but not for the free work of the environments from which the products were made. The unequal exchange caused land use changes and environmental impacts on the remote areas. The emergy exchange of agricultural products indirectly led to land conversion and hillside agriculture in the Chang-Yun-Chia area, which influenced the agricultural production in the Chang-Yun-Chia area to rely more on the imported emergy. The economy of Hualien county was unable to seek better profits from the cement industry due to the management-production relation of the cement industry. Moreover, the low emergy exchange ratio of cement not only resulted in fewer benefits for the local economy but also increased the environmental loading in Hualien. This study estimated the effects of the material flows and urbanization in the TMA on the land teleconnections of remote areas. The results can contribute to the rethinking of urban sustainability assessments so that rather than considering only the city itself, such assessments should also consider the impacts of urbanization on remote areas.
中文部分:
行政院主計總處(1986、1991、1996、2001、2006、2011),工商及服務業普查結果。臺北市:行政院主計總處。
行政院主計總處(2019),工商及服務業普查常用統計指標編算概念簡介,下載自https://www.stat.gov.tw/public/Data/22218171371.pdf。
行政院農業委員會(1980-2015),農業統計年報。臺北市:行政院農業委員會。
行政院農業委員會(1980-2015),糧食供需年報。臺北市:行政院農業委員會。
行政院農業委員會農糧署(1980-2015),臺灣地區農產品批發市場年報。臺北市:行政院農業委員會。
李盈潔(2013),台灣西部海岸平原土地使用變遷對農地景觀與其生態系統服務影響之研究,國立臺北大學都市計劃研究所博士論文,新北市。
邱佳淳(2012),新建建築工程大宗材料用量分析之研究。國立中央大學營建管理研究所碩士論文,桃園市。
邱浩瑋(2012),應用衛星遙測影像評估都市化對地景變遷與日夜溫差之影響,天主教輔仁大學景觀設計學系碩士論文,新北市。
國家發展委員會(2019),台灣經濟發展歷程與策略。臺北市:國家發展委員會,下載自https://www.ndc.gov.tw/News.aspx?n=2FCE778D5736A84E&sms=2597E3A78A9C1482。
國家發展委員會國土區域離島發展處(1980-2015),都市及區域發展統計彙編。臺北市:國家發展委員會。
黃書禮(1998),容受力分析的回顧與展望都市成長管理的生態經濟觀,國立臺灣大學建築與城鄉研究學報,9:45–55。
黃書禮(2002),生態系統理論在區域研究之應用,都市與計劃,29(2):187–215。
黃書禮(2004),都市生態經濟與能量。臺北市:詹氏書局。
黃書禮(2009),全球環境變遷與都市周邊土地使用改變對都市生態經濟系統影響之研究:以臺北--桃園地區為例(第2年)。行政院國家科學委員會,NSC 96-2415-H-305-012-MY3委託計畫。
黃書禮(2018),土地遠距連接、治理與都市永續性(第2年)。科技部,MOST105-2621-M-305 -001-MY3委託計畫。
黃書禮、徐婉玲(2001),台北地區都市建設代謝作用物質流分析與能值評估,都市與計劃,28(2):187-209。
黃書禮、翁瑞豪、陳子淳(1997),台北市永續發展指標系統之建立與評估。都市與計劃,24(1): 23–42。
經濟部統計處(2019),工業產銷存動態調查產品統計,下載自https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx。
經濟部礦務局(1980-2015),礦業統計年報。臺北市:經濟部礦務局。
英文部分:
Adger, W.N., Hallie Eakin, Winkels, A., 2009. Nested and teleconnected vulnerabilities to environmental change. Front. Ecol. Environ. 7, 150–157. doi:10.1890/070148
Alberti, M., 2005. The Effects of Urban Patterns on Ecosystem Function. Int. Regrional Sci. Rev. 28, 168–192. doi:10.1177/0160017605275160
Bai, X., Mcphearson, T., Cleugh, H., Nagendra, H., Tong, X., Zhu, T., Zhu, Y., 2017. Linking Urbanization and the Environment : Conceptual and Empirical Advances. Annu. Rev. Environ. Resour. 42, 12.1-12.26.
Bai, X., Surveyer, A., Elmqvist, T., Gatzweiler, F.W., Güneralp, B., Parnell, S., Prieur-Richard, A.-H., Shrivastava, P., Siri, J.G., Stafford-Smith, M., Toussaint, J.-P., Webb, R., 2016. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 23, 69–78. doi:10.1016/j.cosust.2016.11.010
Barles, S., 2009. Urban metabolism of Paris and its region. J. Ind. Ecol. 13, 898–913. doi:10.1111/j.1530-9290.2009.00169.x
Beloin-Saint-Pierre, D., Rugani, B., Lasvaux, S., Mailhac, A., Popovici, E., Sibiude, G., Benetto, E., Schiopu, N., 2017. A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation. J. Clean. Prod. 163, S223–S240. doi:10.1016/j.jclepro.2016.09.014
Biermann, F., Bai, X., Bondre, N., Broadgate, W., Arthur Chen, C.T., Dube, O.P., Erisman, J.W., Glaser, M., van der Hel, S., Lemos, M.C., Seitzinger, S., Seto, K.C., 2016. Down to Earth: Contextualizing the Anthropocene. Glob. Environ. Chang. 39, 341–350. doi:10.1016/j.gloenvcha.2015.11.004
Brandt-Williams, S.L., 2002. Handbook of Emergy Evaluation Folio 4: Emergy of Florida agriculture. Center for Environmental Policy, University of Florida.
Brondizio, E.S., O’Brien, K., Bai, X., Biermann, F., Steffen, W., Berkhout, F., Cudennec, C., Lemos, M.C., Wolfe, A., Palma-Oliveira, J., Chen, C.-T.A., 2016. Re-conceptualizing the Anthropocene: A call for collaboration. Glob. Environ. Chang. 39, 318–327. doi:10.1016/j.gloenvcha.2016.02.006
Brown, M.T., Campbell, D.E., De Vilbiss, C., Ulgiati, S., 2016. The geobiosphere emergy baseline: A synthesis. Ecol. Modell. 339, 92–95. doi:10.1016/j.ecolmodel.2016.03.018
Brown, M.T., Ulgiati, S., 2016. Emergy assessment of global renewable sources. Ecol. Modell. 339, 148–156. doi:10.1016/j.ecolmodel.2016.03.010
Brown, M.T., Ulgiati, S., 2004a. Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems. Ecol. Modell. 178, 201–213. doi:10.1016/j.ecolmodel.2004.03.002
Brown, M.T., Ulgiati, S., 2004b. Emergy Analysis and Environmental Accounting. Encycl. Energy.
Brown, M.T., Ulgiati, S., 2001. Emergy measures of carrying capacity to evaluate economic investments. Popul. Environ. 22, 471–501. doi:10.1023/A:1010756704612
Bruckner, M., Fischer, G., Tramberend, S., Giljum, S., 2015. Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods. Ecol. Econ. 114, 11–21. doi:10.1016/j.ecolecon.2015.03.008
Campbell, D.E., 2016. Emergy baseline for the Earth: A historical review of the science and a new calculation. Ecol. Modell. 339, 96–125. doi:10.1016/j.ecolmodel.2015.12.010
Cavalett, O., Ortega, E., 2009. Emergy, nutrients balance, and economic assessment of soybean production and industrialization in Brazil. J. Clean. Prod. 17, 762–771. doi:http://dx.doi.org/10.1016/j.jclepro.2008.11.022
Cavalett, O., Ortega, E., 2007. Emergy and fair trade assessment of soybean production and processing in Brazil. Manag. Environ. Qual. An Int. J. 18, 657–668. doi:10.1108/14777830710826694
Chang, L.-F., Huang, S.-L., 2015. Assessing urban flooding vulnerability with an emergy approach. Landsc. Urban Plan. 143, 11–24. doi:10.1016/j.landurbplan.2015.06.004
Chen, R., Ye, C., Cai, Y., Xing, X., Chen, Q., 2014. The impact of rural out-migration on land use transition in China: Past, present and trend. Land use policy 40, 101–110. doi:10.1016/j.landusepol.2013.10.003
Chen, S., Chen, B., 2011. Assessing inter-city ecological and economic relations: An emergy-based conceptual model. Front. Earth Sci. 5, 97–102. doi:10.1007/s11707-011-0171-4
Chen, Y.-C., Chiu, H.-W., Su, Y.-F., Wu, Y.-C., Cheng, K.-S., 2017. Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landsc. Urban Plan. 157, 247–258. doi:10.1016/j.landurbplan.2016.06.014
Chiu, H.-W., Lee, Y.-C., Huang, S.-L., Ya-Cheng, H., 2019. How does peri-urbanization affect urban land teleconnecions? an emergy approach. Ecol. Modell. 403, 57–69. doi:10.1016/j.ecolmodel.2019.03.025
Cohen, M.J., Brown, M.T., 2007. A model examining hierarchical wetland networks for watershed stormwater management. Ecol. Modell. 201, 179–193. doi:10.1016/j.ecolmodel.2006.09.029
Costanza, R., 1989. What is ecological economics? Ecol. Econ. 1, 1–7. doi:10.1016/0921-8009(89)90020-7
Cuadra, M., Rydberg, T., 2006. Emergy evaluation on the production, processing and export of coffee in Nicaragua. Ecol. Modell. 196, 421–433. doi:http://dx.doi.org/10.1016/j.ecolmodel.2006.02.010
Davidson, E.A., 2000. You Can’t Eat GNP: Economics as if Ecology Mattered. Perseus, Cambridge, Mass.
Decker, E.H., Elliott, S., Smith, F.A., Blake, D.R., Rowland, F.S., 2000. Energy and material flow through the urban ecosystem. Annaual Rev. Ecol. Syst. 26, 685–740. doi:10.1146/annurev.energy.25.1.685
DeFries, R.S., Rudel, T., Uriarte, M., Hansen, M., 2010. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181. doi:10.1038/ngeo756
Deines, J.M., Liu, X., Liu, J., 2016. Telecoupling in urban water systems: an examination of Beijing’s imported water supply. Water Int. 41, 251–270. doi:10.1080/02508060.2015.1113485
Dorninger, C., Hornborg, A., 2015. Can EEMRIO analyses establish the occurrence of ecologically unequal exchange? Ecol. Econ. 119, 414–418. doi:10.1016/j.ecolecon.2015.08.009
Douglas, I., 1981. The city as an ecosystem. Prog. Phys. Geogr. 5, 315–367.
Eakin, H., Winkels, A., Sendzimir, J., 2009. Nested vulnerability: exploring cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems. Environ. Sci. Policy 12, 398–412. doi:10.1016/j.envsci.2008.09.003
Erb, K.-H., Krausmann, F., Gaube, V., Gingrich, S., Bondeau, A., Fischer-Kowalski, M., Haberl, H., 2009. Analyzing the global human appropriation of net primary production — processes, trajectories, implications. An introduction. Ecol. Econ. 69, 250–259. doi:10.1016/j.ecolecon.2009.07.001
Erb, K.H., Krausmann, F., Lucht, W., Haberl, H., 2009. Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption. Ecol. Econ. 69, 328–334. doi:10.1016/j.ecolecon.2009.06.025
Finco, A., Nijkamp, P., 2001. Pathways to Urban Sustainability. J. Environ. Policy Plan. 3, 289–302. doi:10.17226/12969
Foster, J.B., Holleman, H., 2014. The theory of unequal ecological exchange: a Marx-Odum dialectic. J. Peasant Stud. 41, 199–233. doi:10.1080/03066150.2014.889687
Fragkias, M., Langanke, T., Boone, C.G., Haase, D., Marcotullio, P.J., Munroe, D., Olah, B., Reenberg, A., Seto, K.C., Simon, D., 2012. Land teleconnections in an urbanizing world— A Workshop report, GLP Report No. 5;GLP-IPO, Copenhagen. UGEC Report No. 6; UGEC-IPO.
Friis, C., Nielsen, J.Ø., Otero, I., Haberl, H., Niewöhner, J., Hostert, P., 2015. From teleconnection to telecoupling: taking stock of an emerging framework in land system science. J. Land Use Sci. 4248, 1–23. doi:10.1080/1747423X.2015.1096423
Fry, M., 2011. From crops to concrete: Urbanization, deagriculturalization, and construction material mining in central Mexico. Ann. Assoc. Am. Geogr. 101, 1285–1306. doi:10.1080/00045608.2011.584289
Geist, H.J., Lambin, E.F., 2002. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience 52, 143. doi:10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2
Geng, Y., Tian, X., Sarkis, J., Ulgiati, S., 2017. China-USA Trade: Indicators for Equitable and Environmentally Balanced Resource Exchange. Ecol. Econ. 132, 245–254. doi:10.1016/j.ecolecon.2016.11.008
Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M., 2008. Global change and the ecology of cities. Science (80-. ). 319, 756–60. doi:10.1126/science.1150195
Güneralp, B., Seto, K.C., Ramachandran, M., 2013. Evidence of urban land teleconnections and impacts on hinterlands. Curr. Opin. Environ. Sustain. 5, 445–451. doi:10.1016/j.cosust.2013.08.003
Haack, B.N., Khatiwada, G., 2007. Rice and bricks: Environmental issues and mapping of the unusual crop rotation pattern in the Kathmandu Valley, Nepal. Environ. Manage. 39, 774–782. doi:10.1007/s00267-006-0167-0
Haase, D., 2019. Urban Telecouplings, in: Friis, C., Nielsen, J.Ø. (Eds.), Telecoupling: Exploring Land-Use Change in a Globalised World. Springer, pp. 261–280.
Haberl, H., Erb, K.-H., Krausmann, F., Berecz, S., Ludwiczek, N., Martínez-Alier, J., Musel, A., Schaffartzik, A., 2009. Using embodied HANPP to analyze teleconnections in the global land system: Conceptual considerations. Geogr. Tidsskr. J. Geogr. 109, 119–130. doi:10.1080/00167223.2009.10649602
Haberl, H., Erb, K.H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., Fischer-Kowalski, M., 2007. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. 104, 12942–12947. doi:10.1073/pnas.0704243104
Haberl, H., Wiedenhofer, D., Pauliuk, S., Krausmann, F., Müller, D.B., Fischer-Kowalski, M., 2019. Contributions of sociometabolic research to sustainability science. Nat. Sustain. doi:10.1038/s41893-019-0225-2
Hall, C.A.S., Cleveland, C.J., Kaufmann, R., 1986. Energy and resource quality: the ecology of the economic process. John Wiley and Sons., New York.
Hamilton, A., Mitchell, G., Yli-Karjanmaa, S., 2002. The BEQUEST toolkit: a decision support system for urban sustainability. Build. Res. Inf. 30, 109–115. doi:10.1080/09613210110098171
Henders, S., Ostwald, M., 2014. Accounting methods for international land-related leakage and distant deforestation drivers. Ecol. Econ. 99, 21–28. doi:10.1016/j.ecolecon.2014.01.005
Huang, L., Wu, J., Yan, L., 2015. Defining and measuring urban sustainability: a review of indicators. Landsc. Ecol. 30, 1175–1193. doi:10.1007/s10980-015-0208-2
Huang, S.-L., 1998. Urban ecosystems, energetic hierarchies, and ecological economics of Taipei metropolis. J. Environ. Manage. 52, 39–51. doi:https://doi.org/10.1006/jema.1997.0157
Huang, S.-L., 1992. Ecological-economic system and the environmental quality of the Taipei metropolitan region. A report to Taiwan National Science Council (NSC80-0421-P005- 02Z). National Taipei University. (In Chinese), Taipei.
Huang, S.-L., Chen, C.-W., 2009. Urbanization and Socioeconomic Metabolism in Taipei. J. Ind. Ecol. 13, 75–93. doi:10.1111/j.1530-9290.2008.00103.x
Huang, S.-L., Chen, C.-W., 2005. Theory of urban energetics and mechanisms of urban development. Ecol. Modell. 189, 49–71. doi:10.1016/j.ecolmodel.2005.03.004
Huang, S.-L., Chen, Y.-H., Kuo, F.-Y., Wang, S.-H., 2011. Emergy-based evaluation of peri-urban ecosystem services. Ecol. Complex. 8, 38–50. doi:10.1016/j.ecocom.2010.12.002
Huang, S.-L., Hsu, W.-L., 2003. Materials flow analysis and emergy evaluation of Taipei’s urban construction. Landsc. Urban Plan. 63, 61–74. doi:10.1016/S0169-2046(02)00152-4
Huang, S.-L., Lai, H.-Y., Lee, C.-L., 2001a. Energy hierarchy and urban landscape system. Landsc. Urban Plan. 53, 145–161. doi:10.1016/S0169-2046(00)00150-X
Huang, S.-L., Lee, C.-L., 2011. Urban Metabolism Analysis, in: Douglas, I., Goode, D., Houck, M., Wang, R. (Eds.), Handbook of Urban Ecology. Routledge, London, pp. 521–527.
Huang, S.-L., Lee, C.-L., Chen, C.-W., 2006. Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis. Resour. Conserv. Recycl. 48, 166–196. doi:10.1016/j.resconrec.2006.01.005
Huang, S.-L., Liu, H.-L., Chen, L.-L., 2001b. Ecological Economics and the Sustainable Utilitation of Agricultural Land in Taiepi Metropolian Area. J. Build. Plan. Natl. Taiwan Univ. 10, 19-29. (in Chinese).
Huang, S.-L., Wang, S.-H., Budd, W.W., 2009. Sprawl in Taipei’s peri-urban zone: Responses to spatial planning and implications for adapting global environmental change. Landsc. Urban Plan. 90, 20–32. doi:10.1016/j.landurbplan.2008.10.010
Huang, S.-L., Wong, J.-H., Chen, T.-C., 1998. A framework of indicator system for measuring Taipei’s urban sustainability. Landsc. Urban Plan. 42, 15–27. doi:10.1016/S0169-2046(98)00054-1
Huang, S.-L., Yeh, C.-T., Chang, L.-F., 2010. The transition to an urbanizing world and the demand for natural resources. Curr. Opin. Environ. Sustain. 2, 136–143. doi:10.1016/j.cosust.2010.06.004
Huang, S.L., Chen, C.W., 2009. Urbanization and socioeconomic metabolism in Taipei an emergy synthesis. J. Ind. Ecol. 13, 75–93. doi:10.1111/j.1530-9290.2008.00103.x
Inostroza, L., 2014. Measuring urban ecosystem functions through ‘Technomass’—A novel indicator to assess urban metabolism. Ecol. Indic. 42, 10–19. doi:10.1016/j.ecolind.2014.02.035
Kaye, J.P., Groffman, P.M., Grimm, N.B., Baker, L. a, Pouyat, R. V, 2006. A distinct urban biogeochemistry? Trends Ecol. Evol. 21, 192–9. doi:10.1016/j.tree.2005.12.006
Kennedy, C., Cuddihy, J., Engel-yan, J., 2007. The Changing Metabolism of Cities. J. Ind. Ecol. 11, 43–59.
Kennedy, C.A., Stewart, I., Facchini, A., Cersosimo, I., Mele, R., Chen, B., Uda, M., Kansal, A., Chiu, A., Kim, K., Dubeux, C., Lebre La Rovere, E., Cunha, B., Pincetl, S., Keirstead, J., Barles, S., Pusaka, S., Gunawan, J., Adegbile, M., Nazariha, M., Hoque, S., Marcotullio, P.J., González Otharán, F., Genena, T., Ibrahim, N., Farooqui, R., Cervantes, G., Sahin, A.D., 2015. Energy and material flows of megacities. Proc. Natl. Acad. Sci. 112, 201504315. doi:10.1073/pnas.1504315112
Krausmann, F., 2013. A City and Its Hinterland: Vienna’s Energy Metabolism 1800-2006, in: Singh, S.J., Haberl, H., Chertow, M., Mirtl, M., Schmid, M. (Ed.), Long Term Socio-Ecological Research. Springer, pp. 247–268. doi:10.1007/978-94-007-1177-8
Lambin, E., 1994. Modelling deforestation processes: a review tropical ecosystem environment observations by satellites, TREES Series B. No. 1. Research report. doi:10.1080/01431169608949066
Lee, C.-L., Huang, S.-L., Chan, S.-L., 2009. Synthesis and spatial dynamics of socio-economic metabolism and land use change of Taipei Metropolitan Region. Ecol. Modell. 220, 2940–2959. doi:10.1016/j.ecolmodel.2009.06.021
Lee, C.-L., Huang, S.-L., Chan, S.-L., 2008. Biophysical and system approaches for simulating land-use change. Landsc. Urban Plan. 86, 187–203. doi:10.1016/j.landurbplan.2008.02.006
Lee, S., Quinn, A., Rogers, C., 2016. Advancing City Sustainability via Its Systems of Flows: The Urban Metabolism of Birmingham and Its Hinterland. Sustainability 8, 220. doi:10.3390/su8030220
Lee, Y.-C., Huang, S.-L., 2018. Spatial emergy analysis of agricultural landscape change: Does fragmentation matter? Ecol. Indic. 93, 975–985. doi:10.1016/j.ecolind.2018.05.067
Lei, K., Liu, L., Hu, D., Lou, I., 2016. Mass, energy, and emergy analysis of the metabolism of Macao. J. Clean. Prod. 114, 160–170. doi:http://dx.doi.org/10.1016/j.jclepro.2015.05.099
Lei, K., Liu, L., Lou, I., 2018. An evaluation of the urban metabolism of Macao from 2003 to 2013. Resour. Conserv. Recycl. 128, 479–488. doi:10.1016/j.resconrec.2016.09.009
Lenzen, M., Peters, G.M., 2009. How City Dwellers Affect Their Resource Hinterland. J. Ind. Ecol. 14, 73–90. doi:10.1111/j.1530-9290.2009.00190.x
Liu, G., Yang, Z., Chen, B., Zhang, L., 2011. Analysis of resource and emission impacts: An emergy-based multiple spatial scale framework for urban ecological and economic evaluation. Entropy 13, 720–743. doi:10.3390/e13030720
Liu, J., 2014. Forest Sustainability in China and Implications for a Telecoupled World. Asia Pacific Policy Stud. 1, 230–250. doi:10.1002/app5.17
Liu, J., Hull, V., Batistella, M., deFries, R., Dietz, T., Fu, F., Hertel, T.W., Cesar Izaurralde, R., Lambin, E.F., Li, S., Martinelli, L.A., McConnell, W.J., Moran, E.F., Naylor, R., Ouyang, Z., Polenske, K.R., Reenberg, A., Rocha, G. de M., Simmons, C.S., Verburg, P.H., Vitousek, P.M., Zhang, F., Zhu, C., 2013. Framing sustainability in a telecoupled world. Ecol. Soc. 18. doi:10.5751/ES-05873-180226
Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K.C., Gleick, P., Kremen, C., Li, S., 2015. Systems integration for global sustainability. Science (80-. ). 347, 1258832. doi:10.1126/science.1258832
Liu, J., Yang, W., Li, S., 2016. Framing ecosystem services in the telecoupled Anthropocene. Front. Ecol. Environ. 14, 27–36. doi:10.1002/16-0188.1
Lu, H., Bai, Y., Ren, H., Campbell, D.E., 2010. Integrated emergy, energy and economic evaluation of rice and vegetable production systems in alluvial paddy fields: Implications for agricultural policy in China. J. Environ. Manage. 91, 2727–2735. doi:http://dx.doi.org/10.1016/j.jenvman.2010.07.025
Lu, H., Campbell, D.E., 2009. Ecological and economic dynamics of the Shunde agricultural system under China’s small city development strategy. J. Environ. Manage. 90, 2589–2600. doi:http://dx.doi.org/10.1016/j.jenvman.2009.01.019
Mellino, S., Buonocore, E., Ulgiati, S., 2015. The worth of land use: A GIS–emergy evaluation of natural and human-made capital. Sci. Total Environ. 506–507, 137–148. doi:http://dx.doi.org/10.1016/j.scitotenv.2014.10.085
Meyfroidt, P., Lambin, E.F., 2009. Forest transition in Vietnam and displacement of deforestation abroad. Proc. Natl. Acad. Sci. 106, 16139–16144. doi:10.1073/pnas.0904942106
Meyfroidt, P., Lambin, E.F., Erb, K.-H., Hertel, T.W., 2013. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444. doi:10.1016/j.cosust.2013.04.003
Munroe, D.K., McSweeney, K., Olson, J.L., Mansfield, B., 2014. Using economic geography to reinvigorate land-change science. Geoforum 52, 12–21. doi:10.1016/j.geoforum.2013.12.005
Ngo, N.S., Pataki, D.E., 2008. The energy and mass balance of Los Angeles County. Urban Ecosyst. 11, 121–139. doi:10.1007/s11252-008-0051-1
Odum, H.T., 2007. Environment, power, and society for the twenty-first century: the hierarchy of energy. Columbia University Press.
Odum, H.T., 2002. Emergy Accounting, in: Unveiling Wealth. pp. 135–146. doi:10.1081/E-EEE-120042092
Odum, H.T., 2000. Handbook of Emergy Evaluation Folio 2: Emergy of Global Processes. Center for Environmental Policy, University of Florida.
Odum, H.T., 1996. Environmental Accounting: Emergy and Environmental Decision Making. John Wiley and Sons., New York.
Odum, H.T., 1988. Self-organization, transformity, and information. Science (80-. ). 242, 1132–1139. doi:10.1126/science.242.4882.1132
Odum, H.T., 1983. Systems Ecology. John Wiley and Sons., New York.
Odum, H.T., Brown, M.T., Brandt-Williams, S., 2000. Handbook of Emergy Evaluation Folio 1: Introduction and Global Budget. Center for Environmental Policy, University of Florida.
Odum, H.T., Odum, E.C., 2008. A prosperous way down: principles and policies. University Press of Colorado.
Odum, H.T., Scienceman, D.M., 2005. An Energy Systems View of Karl Marx’s Concepts of Production and Labor Value, in: Emergy Synthesis 3. pp. 17–44.
Oulu, M., 2015. The unequal exchange of Dutch cheese and Kenyan roses: Introducing and testing an LCA-based methodology for estimating ecologically unequal exchange. Ecol. Econ. 119, 372–383. doi:10.1016/j.ecolecon.2015.09.022
Pandey, B., Seto, K.C., 2013. Urbanization and agricultural land loss in India: Comparing satellite estimates with census data. J. Environ. Manage. 148, 53–66. doi:10.1016/j.jenvman.2014.05.014
Pincetl, S., Bunje, P., Holmes, T., 2012. An expanded urban metabolism method: Toward a systems approach for assessing urban energy processes and causes. Landsc. Urban Plan. 107, 193–202. doi:10.1016/j.landurbplan.2012.06.006
Plieninger, T., Fagerholm, N., Bieling, C., Kuemmerle, T., Verburg, P.H., 2016. The driving forces of landscape change in Europe : A systematic review of the evidence. Land use policy 57, 204–214. doi:10.1016/j.landusepol.2016.04.040
Pulselli, F.M., Patrizi, N., Focardi, S., 2011. Calculation of the unit emergy value of water in an Italian watershed. Ecol. Modell. 222, 2929–2938. doi:http://dx.doi.org/10.1016/j.ecolmodel.2011.04.021
Pulselli, R.M., Simoncini, E., Ridolfi, R., Bastianoni, S., 2008. Specific emergy of cement and concrete: An energy-based appraisal of building materials and their transport. Ecol. Indic. 8, 647–656. doi:http://dx.doi.org/10.1016/j.ecolind.2007.10.001
Qiang, W., Liu, A., Cheng, S., Kastner, T., Xie, G., 2013. Agricultural trade and virtual land use: The case of China’s crop trade. Land use policy 33, 141–150. doi:10.1016/j.landusepol.2012.12.017
Rótolo, G.C., Francis, C.A., Ulgiati, S., 2018. Environmentally sound resource valuation for a more sustainable international trade: Case of argentine maize. Resour. Conserv. Recycl. 131, 271–282. doi:10.1016/j.resconrec.2017.10.008
Schneider, A., Logan, K.E., Kucharik, C.J., 2012. Impacts of Urbanization on Ecosystem Goods and Services in the U.S. Corn Belt. Ecosystems 15, 519–541. doi:10.1007/s10021-012-9519-1
Seitzinger, S.P., Svedin, U., Crumley, C.L., Steffen, W., Abdullah, S.A., Alfsen, C., Broadgate, W.J., Biermann, F., Bondre, N.R., Dearing, J. a, Deutsch, L., Dhakal, S., Elmqvist, T., Farahbakhshazad, N., Gaffney, O., Haberl, H., Lavorel, S., Mbow, C., McMichael, A.J., Demorais, J.M.F., Olsson, P., Pinho, P.F., Seto, K.C., Sinclair, P., Stafford Smith, M., Sugar, L., 2012. Planetary stewardship in an urbanizing world: beyond city limits. Ambio 41, 787–94. doi:10.1007/s13280-012-0353-7
Seto, K.C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G.C., Dewar, D., Huang, L., Inaba, A., Kansal, A., Lwasa, S., McMahon, J.E., Müller, D.B., Murakami, J., Nagendra, H., Ramaswami, A., 2014. Human Settlements, Infrastructure, and Spatial Planning, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., Stechow, C. von, Zwickel, T., Minx, J.C. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kindom and New York, Ny, USA, pp. 923–1000.
Seto, K.C., Fragkias, M., Güneralp, B., Reilly, M.K., 2011. A Meta-Analysis of Global Urban Land Expansion. PLoS One 6, e23777. doi:10.1371/Citation
Seto, K.C., Ramankutty, N., 2016. Hidden linkages between urbanization and food systems. Science (80-. ). 352, 943–945. doi:10.1126/science.aaf7439
Seto, K.C., Reenberg, A., 2014. Rethinking Global Land Use in an Urban Era. The MIT Press, Cambridge, MA.
Seto, K.C., Reenberg, A., Boone, C.G., Fragkias, M., Haase, D., Langanke, T., Marcotullio, P., Munroe, D.K., Olah, B., Simon, D., 2012. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. 109, 7687–92. doi:10.1073/pnas.1117622109
Seto, K.C., Shepherd, J.M., 2009. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain. 1, 89–95. doi:10.1016/j.cosust.2009.07.012
Singh, A.L., Asgher, M.S., 2005. Impact of brick kilns on land use/landcover changes around Aligarh city, India. Habitat Int. 29, 591–602. doi:10.1016/j.habitatint.2004.04.010
Song, T., Cai, J., Xu, H., Deng, Y., Niu, F., Yang, Z., Du, S., 2014. Urban metabolism based on emergy and slack based model: A case study of Beijing, China. Chinese Geogr. Sci. 25, 113–123. doi:10.1007/s11769-014-0680-7
Srinivasan, V., Seto, K.C., Emerson, R., Gorelick, S.M., 2013. The impact of urbanization on water vulnerability: A coupled human-environment system approach for Chennai, India. Glob. Environ. Chang. 23, 229–239. doi:10.1016/j.gloenvcha.2012.10.002
Ulgiati, S., Ascione, M., Bargigli, S., Cherubini, F., Franzese, P.P., Raugei, M., Viglia, S., Zucaro, A., 2011. Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective. Ecol. Modell. 222, 176–189. doi:http://dx.doi.org/10.1016/j.ecolmodel.2010.09.005
United Nations, 2015. Transforming our world: The 2030 agenda for sustainable development [WWW Document]. URL https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed 6.28.19).
Vassallo, P., Paoli, C., Tilley, D.R., Fabiano, M., 2009. Energy and resource basis of an Italian coastal resort region integrated using emergy synthesis. J. Environ. Manage. 91, 277–289. doi:10.1016/j.jenvman.2009.08.017
Vega-Azamar, R.E., Glaus, M., Hausler, R., Oropeza-garcía, N.A., Romero-López, R., 2013. An emergy analysis for urban environmental sustainability assessment, the Island of Montreal, Canada. Landsc. Urban Plan. 118, 18–28. doi:10.1016/j.landurbplan.2013.06.001
Viglia, S., Matthews, K.B., Miller, D.G., Wardell-Johnson, D., Rivington, M., Ulgiati, S., 2017. The social metabolism of Scotland: An environmental perspective. Energy Policy 100, 304–313. doi:10.1016/j.enpol.2016.09.058
Wackernagel, M., Kitzes, J., Moran, D., Goldfinger, S., Thomas, M., 2006. The Ecological Footprint of cities and regions: comparing resource availability with resource demand. Environ. Urban. 18, 103–112. doi:10.1177/0956247806063978
Walker, V.R., Beck, M.B., 2012. Understanding the metabolism of urban-rural ecosystems: A multi-sectoral systems analysis. Urban Ecosyst. 15, 809–848. doi:10.1007/s11252-012-0241-8
Weinzettel, J., Hertwich, E.G., Peters, G.P., Steen-Olsen, K., Galli, A., 2013. Affluence drives the global displacement of land use. Glob. Environ. Chang. 23, 433–438. doi:10.1016/j.gloenvcha.2012.12.010
Wolman, A., 1965. The Metabolism of Cities. Sci. Am. 213, 179–190.
World Bank, 2015. World Bank database [WWW Document]. URL http://data.worldbank.org/
Wright, C., Østergård, H., 2015. Scales of renewability exemplified by a case study of three Danish pig production systems. Ecol. Modell. 315, 28–36. doi:http://dx.doi.org/10.1016/j.ecolmodel.2015.04.018
Wu, J., 2014. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 125, 209–221. doi:10.1016/j.landurbplan.2014.01.018
Yang, D., Kao, W.T.M., Zhang, G., Zhang, N., 2014. Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis. Ecol. Modell. 272, 40–48. doi:10.1016/j.ecolmodel.2013.09.014
Yeh, C.-T., Huang, S.-L., 2012. Global Urbanization and Demand for Natural Resources, in: Selhorst, A.L., Lal, R. (Eds.), Carbon Sequestration in Urban Ecosystems. pp. 355–371. doi:10.1007/978-94-007-2366-5
Yu, Y., Feng, K., Hubacek, K., 2014. China’s unequal ecological exchange. Ecol. Indic. 47, 156–163. doi:10.1016/j.ecolind.2014.01.044
Yu, Y., Feng, K., Hubacek, K., 2013. Tele-connecting local consumption to global land use. Glob. Environ. Chang. 23, 1178–1186. doi:10.1016/j.gloenvcha.2013.04.006
Zhang, Y., 2013. Urban metabolism: a review of research methodologies. Environ. Pollut. 178, 463–73. doi:10.1016/j.envpol.2013.03.052
Zhang, Y., Yang, Z., Liu, G., Yu, X., 2011. Emergy analysis of the urban metabolism of Beijing. Ecol. Modell. 222, 2377–2384. doi:http://dx.doi.org/10.1016/j.ecolmodel.2010.09.017
Zhang, Y., Yang, Z., Yu, X., 2015. Urban Metabolism: A Review of Current Knowledge and Directions for Future Study. Environ. Sci. Technol. 49, 11247–11263. doi:10.1021/acs.est.5b03060
Zhang, Y., Yang, Z., Yu, X., 2009. Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China). Ecol. Modell. 220, 1690–1696. doi:http://dx.doi.org/10.1016/j.ecolmodel.2009.04.002
Zucaro, A., Ripa, M., Mellino, S., Ascione, M., Ulgiati, S., 2014. Urban resource use and environmental performance indicators. An application of decomposition analysis. Ecol. Indic. 47, 16–25. doi:http://dx.doi.org/10.1016/j.ecolind.2014.04.022

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE