:::

詳目顯示

回上一頁
題名:定期航運航線規劃與收益管理之研究
作者:丁士展
作者(外文):Shih-Chan Ting
校院名稱:國立交通大學
系所名稱:交通運輸研究所
指導教授:曾國雄
學位類別:博士
出版日期:2003
主題關鍵詞:定期航運收益管理航線規劃船隊排程成本分析艙位分配動態規劃模糊多目標規劃liner shippingrevenue managementservice route planningship schedulingcost analysisslot allocationdynamic programmingfuzzy multi-objective programming
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(2) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:2
  • 共同引用共同引用:0
  • 點閱點閱:1
定期航運業為資本密集的產業,航運公司航線服務涵蓋全球或區域內的港口。為維持定期的航線服務,必須投入相當大的資金,如貨櫃船隊、貨櫃、機具以及貨櫃碼頭等的投資,並指派代理行執行當地的業務。然而面臨競爭激烈的市場,運價不易提升,又因航線貿易量的不平衡,增加許多空櫃調度成本,更增加了運價下跌的壓力,造成航商難以獲得合理的利潤乃至虧損。有鑑於此,航商必須大幅改變其業務經營方式,導入收益管理的觀念,以克服市場的激烈競爭與波動。收益管理已在航空運輸業行之多年且獲致良好的成效,其主要是利用機位分配與定價的手段獲取航次最大的收益;相對於航空運輸業,定期航運較少使用收益管理有關的系統或模式來執行業務活動。因此,本研究對於收益管理應用在運輸業或其他產業之研究做一完整的整理,分析定期航運之產業問題與發展趨勢,針對其營運特性開發收益管理系統與相關模式,提供航運公司建立與導入收益管理系統之參考。
本研究提出一套定期航運收益管理模式(Liner Shipping Revenue Management, LSRM),其包括兩個主要部分的功能:(1) 長期規劃 — 包括顧客管理、成本管理、市場監控、航線規劃與船隊排程;(2) 短期營運 — 包括貨載需求預測、艙位分配、定價、貨櫃調度、動態艙位控制;該系統亦必須與運費收入、成本、貨櫃存量等資料庫以及會計系統串連整合。定期航運收益管理以有效的艙位分配與定價方法,考量空櫃調度狀況,配合精確的掌控輸儲成本與市場貨載需求,攬載邊際貢獻較高之貨載,達到艙位分配使用收益之最佳化。
定期航線、船期一旦決定開航後,不易在短期間內改變或停航,因此,在航線開航前必須經過整體的規劃,進行船隊排程與成本分析。在定期航運收益管理系統中,航線規劃與船隊排程的功能可以提供企劃人員規劃新航線、調整或整合航線網路的決策支援,使得航線的貨載潛能達到最大。本研究提供系統分析的方法,利用動態規劃構建船隊排程模式,以及重新釐清在航線規劃時成本分析的各個成本項目,幫助企劃人員在許多的碼頭船席時間窗限制下決定最佳的船隊排程,並且較準確的估計航線固定成本與貨載的變動成本,有助於航線可行性的分析。本動態船隊排程模式所導出的排程策略除了靠港、離港的時間船期外,亦包括港口間的航速與碼頭起重機的調配,而不是暫時排定的粗略船期。此外,本模式可以延伸用以整合航運公司內的航線或是聯盟間的航線網路,讓幅軸式服務網路運作更有效率,縮短轉運時間,增加服務頻次,而且經由模式排定的船期,可因為船舶油耗與停港時間的節省而減少航線成本。
貨櫃船艙位分配為影響定期航運公司收益與船舶容量利用率的重要決策,在面對激烈競爭的市場與貨載運輸需求不確定的情況下,航商應透過更精緻的艙位分配與定價以獲取航次的最大利潤。本研究針對艙位分配的問題,利用數學規劃與模糊多目標規劃方法構建兩個貨櫃船艙位分配模式。考量定期航運貨載變動成本較大的特性,在第一個模式(SA1)目標上採取航次總邊際貢獻(總運費收入減總變動成本)最大化,並加入可能發生空櫃調度成本的運量不平衡因子。另外,第二個模式(SA2)則同時處理在艙位分配時需考慮的兩個目標,亦即航次的貨載邊際貢獻與代理行的滿意度,以及處理貨載運輸需求與貨重的不確定性。模式應用在國內航運公司遠歐航線上,與現行的分配比較結果顯示本模式在艙位分配上不僅可獲得較佳的收益並可兼顧代理行的滿意度,以及考量貨載重量的分配。
Liner shipping is a capital-intensive industry. Provision of liner shipping services, often offering global or regional coverage, requires extensive infrastructure in terms of container ships, equipment (e.g. containers, chassis, trailers), terminals and assigns agencies. With the current fiercely competitive market, freight rates cannot be increased easily, and it is costly to reposition empty containers due to trade imbalances. As a result, liner companies have difficulty generating reasonable profits and even run deficits. Therefore, liner carriers require dramatic changes in operational practices to face this tough and fluctuating market. Revenue management (RM), alternatively known as yield management (YM), can be defined as the integrated management of price and inventory to maximize a company’s profitability. RM has been enabling airlines to sell the right service to the right customer, at the right time for the right price, and thus achieves the highest amount of revenue possible. Proven to be an effective tool in the airline industry, RM has considerable potential for the liner shipping industry.
To provide carriers with a good solution to build RM systems, the RM concept is introduced to the industry to create a liner shipping revenue management (LSRM) model, which consists of two major components: (1) long-term planning, which can assist with longer term customer management, cost management, market monitoring, service route planning and ship scheduling; and (2) short-term operations, which can assist with voyage revenue optimization in terms of demand forecasting, slot allocation, pricing, container inventory control and dynamic space control. Additionally, such a system should be integrated with freight revenue, cost, container inventory database and accounting systems.
In the proposed LSRM system, service route planning and ship scheduling are aimed to provide decision support to plan new service routes and modify or integrate current service network so that companies can maximize the shipment potential. Since a service route of a containership fleet, once determined, is hard to alter for a certain period of time, the initial ship scheduling decision and cost analysis should be made carefully after comprehensive studies and planning. Liner shipping companies can benefit greatly from using systematic methods to improve ship scheduling and cost analysis on service route planning. This study proposes a dynamic programming (DP) model for ship scheduling and clarifies cost items for planning a service route. This can help planners make better scheduling decisions under berth time-window constraints, as well as to estimate voyage fixed costs and freight variable costs more accurately. The proposed DP ship scheduling model derives an optimal scheduling strategy including cruising speed and quay crane dispatching decisions, rather than a tentative and rough schedule arrangement. Additionally, the model can be extended to cases of integrating one company’s or strategic alliance partners’ service networks to gain more efficient hub-and-spoke operations, tighter transshipment and better level-of-service. This improvement not only gives this new mathematical model, but also could yield cost savings due to decreases of vessel fuel consumption and port time.
Containership capacity is a vitally important consideration since there is no revenue derived from unused space. Thus, containership capacity allocation is an important issue since carriers must avoid unused space on a voyage in order to derive the highest possible revenue from containership capacity. In the face of uncertain cargo demand and fiercely competitive markets, liner carriers should refine their business activities to maximize voyage profits through careful consideration of slot allocation and pricing. In this study, some relevant containership slot allocation models are formulated and implemented through mathematical programming and fuzzy multi-objective programming. The objective of the proposed slot allocation model (SA1) is to maximize the total freight contribution instead of freight revenue, due to high variable costs in the liner shipping. We considering the possibility of a continuous worsening situation of trade imbalances, so trade imbalance factors and repositioning costs are included in the objective function. The other one (SA2) of the models is proposed to deal with two conflicting objectives: carrier’s freight contribution and agents’degree of satisfaction, as well as fuzzy constraints, i.e. uncertainties of cargo transportation demand and weight. Interactive fuzzy multi-objective linear programming with fuzzy parameters is applied to solve this problem. We illustrate this slot allocation model with a case study of a Taiwan liner shipping company to test its efficacy. Results show the model’s applicability and excellent performance in practice.
Bibliography
Ashar, A., 1999. The fourth revolution. Containerisation International 32(12), 57-61.
Ashar, A., 2000. 2020 vision. Containerisation International 33(1), 35-39.
Bausch, D. O., Brown, G. G., Ronen, D., 1998. Scheduling short-term marine transport of bulk products. Maritime Policy and Management 25(4), 335-348.
Bellman, R. E., Zadeh, L. A., 1970. Decision-making in a fuzzy environment. Management Science 17(1), 141-164.
Belobaba, P. P., 1987. Airline yield management: an overview of seat inventory control. Transportation Science 21(1), 63-73.
Belobaba, P. P., 1989. Application of a probabilistic decision model to airline seat inventory control. Operations Research 37(2), 183-197.
Belobaba, P. P., Wilson, J. L., 1997. Impacts of yield management in competitive airline markets. Journal of Air Transport Management 3(1), 3-9.
Belobaba, P. P., 1998a. The evolution of airline yield management: fare class to origin-destination seat inventory control. In: Butler, G. F., Keller, M. R. (Eds.), Handbook of Airline Marketing. McGraw-Hill, U.S.A., pp. 285-302.
Belobaba, P. P., 1998b. Airline differential for effective yield management. In: Butler, G. F., Keller, M. R. (Eds.), Handbook of Airline Marketing. McGraw-Hill, U.S.A., pp. 349-361.
Belobaba, P. P., Farkas, A., 1999. Yield management impacts on airline spill estimation. Transportation Science 33(2), 217-232.
Bellman, R. E., Zadeh, L. A., 1970. Decision making in a fuzzy environment, Management Science 17(4), 141-164.
Bendall, H. B., Stent, A. F., 1999. Long-haul feeder services in an era of changing technology: an Asia-Pacific perspective. Maritime Policy and Management 26(2), 145-159.
Bergt, N., Dean, V., Carty, D., 1997. Chapter 6. The price: revenue and inventory management. In: Dempsey, P. S., Gesell, L. E. (Eds.), Airline Management: Strategies for the 21st Century. Coast Aire Publications, U.S.A., pp. 279-315.
Bodily, S., Pfeifer, P. E., 1992. Overbooking decision rules. Omega 20(1), 129-133.
Bodily, S., Weatherford, L., 1995. Perishable-asset revenue management: generic and multiple-price yield management with diversion. Omega 23(2), 173-185.
Botimer, T. C., 1996. Efficiency considerations in airline pricing and yield management. Transportation Research A 30(4), 307-317.
Brook, M. R., Button, K. J., 1996. The determinants of shipping rates: a north Atlantic case study. Transport Logistics 1(1), 21-30.
Brumelle, S. L., McGill, J. I., 1990. Allocation of airline seats between stochastically dependent demand. Transportation Science 24(2), 183-192.
Butler, G. F., Keller, M. R. (Ed.), 1998. Handbook of Airline Marketing. McGraw-Hill, U.S.A..
Chanas, S., 1983. The use of parametric programming in fuzzy linear programming. Fuzzy Sets and Systems 11(3), 243-251.
Chatwin, R. E., 1999. Continuous-time airline overbooking with time-dependent fares and refunds. Transportation Science 33(2), 182-191.
Chen, S. J., Hwang, C. L., 1992. Fuzzy Multiple Attribute Decision Making: Methods and Application. Spring-Verlag, New York.
Cho, S. C., Perakis, A. N., 1996. Optimal liner fleet routeing strategies. Maritime Policy and Management 23(3), 249-259.
Christiansen, M., 1999. Decomposition of a combined inventory and time constrained ship routing problem. Transportation Science 33(1), 3-16.
Ciancimino, A., Inzerillo, G., Lucidi, S., Palagi, L., 1999. A mathematical programming approach for the solution of the railway yield management problem. Transportation Science 33(2), 168-181.
Cl''umaco, J. N., Antunes, C. H., Alves, M. J., 1993. Interactive decision support for multi-objective transportation problems. European Journal of Operational Research 65(1), 58-67.
Cohon, J. L., 1978. Multiobjective Programming and Planning. Kluwer Academic Press, New York.
Crichton, J., 1998. The trend mill. Containerisation International 31(1), 57-59.
Cross, R. G., 1997a. Revenue Management -Hard-core Tactics for Market Domination. Broadway books, U.S.A..
Cross, R. G., 1997b. Launching the revenue rocket — how revenue management can work for your business. Cornell Hotel and Restaurant Administration Quarterly 38(2), 32-43.
Cross, R. G., 1998. Trends in airline revenue management. In: Butler, G. F., Keller, M. R. (Eds.), Handbook of Airline Marketing. McGraw-Hill, U.S.A., pp. 303-318.
Curry, R., 1990. Optimal seat allocation with fare classes nested by origins and destinations. Transportation Science 24(2), 193-204.
Damas, P., 1996. Alliances and webs. American Shipper 38(10), 37-48.
Davies, J. E., 1990. Destructive competition and market sustainability in the liner shipping industry. International Journal of Transport Economics 27(3), 227─245.
Deris, S., Omatu, S., Ohta, H., Kutar, L. C. S., Samat, P. A., 1999. Ship maintenance scheduling by genetic algorithm and constraint-based reasoning. European Journal of Operational Research 112(4), 489-502.
Donaghy, K., McMahon, U., McDowell, D., 1995. Yield management: an overview. International Journal of Hospitality Management 14(2), 139-150.
Dubois, D., Prade, H., 1980. Systems of linear fuzzy constraints. Fuzzy Sets and Systems 3(1), 37-48.
Evans, J., Marlow, P. (Ed.), 1990. Quantitative methods in maritime economics, Fairplay Publications Ltd., U.K..
Fagerholt, K., 1999. Optimal fleet design in a ship routing problem. International Transactions in Operational Research 6(4), 453-464.
Fagerholt, K., 2000. Evaluating the trade-off between the level of customer service and transportation costs in a ship scheduling problem. Maritime Policy and Management 27(2), 145-153.
Fagerholt, K., Christiansen, M., 2000. A traveling salesman problem with allocation, time window and precedence constraints — an application to ship scheduling. International Transactions in Operational Research 7(3), 231-244.
Fossey, J., 1997a. Transpacific turmoil. Containerisation International 30(8), 45-49.
Fossey, J., 1997b. Suicidal tendencies. Containerisation International 30(5), 37-41.
Frannkel, E. G. (Ed.), 1982. Management and Operations of American Shipping. Auburn House Publishing Company, U.S.A..
Gallego, G., Van Ryzin, G. J., 1994. Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management Science 40(8), 999-1020.
Garcia-Diaz, A., Kuyumcu, A., 1997. A cutting-plane procedure for maximizing revenue in yield management. Computers Industry Engineering 33(1-2), 51-54.
Garvett, D., Michaels, L., 1998. Pricing parrying: a direction for quick, decisive, and profit-maximizing pricing. In: Butler, G. F., Keller, M. R. (Eds.), Handbook of Airline Marketing. McGraw-Hill, U.S.A., pp. 333-348.
Hamacher, H., Leberling, H., Zimmerman, H.-J., 1978. Sensitivity analysis in fuzzy linear programming. Fuzzy Sets and Systems 1(3), 269-281.
Haralambides, H. E., Veenstra, A. W., 2000. Modeling performance in liner shipping. In: Hensher, D. A., Button, K. J. (Eds.), Handbook of Transport Modelling. Elaevier Science Ltd., UK, pp. 643-658.
Herrmann, N., Muller, M., Crux, A., 1998. Pricing and revenue management can reshape your competitive position in today’s air cargo business. In: Butler, G. F., Keller, M. R. (Eds.), Handbook of Airline Marketing. McGraw-Hill, U.S.A., pp. 387-410.
Hiller, F. S., Lieberman, G. J., 1986. Introduction to Operations Research. Holden-Day, Inc., Oakland.
Holloway, S. (Ed.), 1997. Straight and Level: Practical Airline Economics. Ashgate Publishing Company, U.S.A..
Hwang, C. L., Yoon, K., 1981. Multiple Attribute Decision Making, Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin.
Jaramillo, D. I., Perakis, A. N., 1991. Fleet deployment optimisation for liner shipping Part 2: Implementation and results. Maritime Policy and Management 18(4), 235-262.
Jansson, J. O., Shneerson D. (Ed.), 1987. Liner Shipping Economics. Chapman and Hall, New York.
Kadar, M. H., Proost, D. D., 1997a. Supply and demand in liner shipping. Containerisation International 30(6), 61-65.
Kadar, M. H., Proost, D. D., 1997b. Back to the basics for marketing, pricing, and selling. Containerisation International 30(7), 49-51.
Kaps, R. W., 2000. Air transport yield management system. In: Kaps, R. W. (Eds.), Fiscal Aspect of Aviation Management. Southern Illinois University, U.S.A., pp. 220-232.
Kasilingam, R. G., 1996. Air cargo revenue management: characteristics and complexities. European Journal of Operational Research 96(1), 36-44.
Kim, S. H., Lee, K. K., 1997. An optimization-based decision support system for ship scheduling. Computers Industry Engineering 33(3), 689-692.
Kimes, S. E., 1989. The basics of yield management. Cornell Hotel and Restaurant Administration Quarterly 30(2), 14-19.
Kuhn, H. W., Tucker, A. W., 1951. Nonlinear programming. In: Neyman, J. (Eds.), Proceedings of 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, pp. 481-491.
Kuyumcu, A., Garcia-Diaz, A., 2000. A polyhedral graph theory approach to revenue management in the airline industry. Computer and Industrial Engineering 38(3), 375-396.
Lai, Y. J., Hwang, C. L., 1992a. Interactive fuzzy linear programming. Fuzzy Sets and Systems 45(2), 168-183.
Lai, Y. J., Hwang, C. L., 1992b. Fuzzy Mathematical Programming. Springer-Verlag, Berlin.
Lai, Y. J., Hwang, C. L., 1994. Fuzzy Multiple Objective Decision Making. Springer-Verlag, Berlin.
Lane, D. E., Heaver, T. D., Uyeno, D., 1987. Planning and scheduling for efficiency in liner shipping. Maritime Policy and Management 14(2), 109-125.
Lautenbacher, C. J., Stidham, JR. S., 1999. The underlying markov decision process in the single-leg airline yield-management problem. Transportation Science 33(2), 136-146.
Lee, E. S., Li, R. J., 1993. Fuzzy multiple objective programming and compromise programming with Pareto optimum. Fuzzy Sets and Systems 53(2), 275-288.
Liang, Y., 1999. Solution to the continuous time dynamic yield management model. Transportation Science 33(1), 117-123.
Lim, S. M., 1996. Round-the-world service: The rise of Evergreen and the fall of U.S. Lines. Maritime Policy and Management 23(2), 119-144.
Martin-Clark, D., 2000. The quiet revolution. Containerisation International 33(1), 71-73.
Martinson, F. K., 1993. Fuzzy vs. minmax weighted-multiobjective linear programming illustrative comparisons. Decision Sciences 24(5), 809-824.
McGill, J. I., Van Ryzin, G. J., 1999. Revenue management: research overview and prospects. Transportation Science 33(2), 233-256.
Narayanan, P. R., Yuen, B. B., 1998. Point of sale: an alternative form of O&D control. In: Butler, G. F., Keller, M. R. (Eds.), Handbook of Airline Marketing. McGraw-Hill, U.S.A., pp. 377-385.
Perakis, A. N., Jaramillo, D. I., 1991. Fleet deployment optimisation for liner shipping Part 1: Background, problem formulation and solution approaches. Maritime Policy and Management 18(3), 183-200.
Powell, B. J., Perakis, A. N., 1997. Fleet deployment optimization for liner shipping: an integer programming model. Maritime Policy and Management 24(2), 183-192.
Rana, K., Vickson, R. G., 1988. A model and solution algorithm for optimal routing of a time-chartered containership. Transportation Science 22(1), 83-95.
Rana, K., Vickson, R. G., 1991. Routing containerships using Lagrangean relaxation and decomposition. Transportation Science 25(2), 201-214.
Robinson, L. W., 1995. Optimal and approximate control polices for airline booking with sequential fare classes. Operations Research 43(3), 252-263.
Rommelfanger, H., Slowinski, R., 1998. Fuzzy linear programming with single or multiple objective functions. In: Slowinski, R. (Eds.), Fuzzy Set in Decision Analysis, Operations Research and Statistics. Kluwer Academic Publishers, U.S.A., pp. 179-213.
Ronen, D., 1983. Cargo ships routing and scheduling: Survey of models and problems. European Journal of Operational Research 12(1), 119-126.
Ronen, D., 1993. Ship scheduling: The last decade. European Journal of Operational Research 71(3), 325-333.
Sakawa, M., 1983. Interactive computer programs for fuzzy linear programming with multiple objectives. International Journal of Man-Machine Studies 18(4), 489-503.
Sakawa, M., 1984. Interactive fuzzy goal programming for multiobjective nonlinear problems and its application to water quality management. Control and Cybernetics 13(2), 217-228.
Sakawa, M., 1993. Fuzzy Sets and Interactive Multiobjective Optimization. Plenum Press, New York.
Smith, B., Leimkuhler, R., Darrow, R., Samules J., 1992. Yield management at American airlines. Interfaces 1(1), 8-31.
Subramanian, J., Stidham, JR. S., Lautenbacher C. J., 1999. Airline yield management with overbooking, cancellations, and no-shows. Transportation Science 33(2), 147-167.
Tajima, A., Misono, S., 1999. Using a set packing formulation to solve airline seat allocation/reallocation problems. Journal of the Operations Research Society of Japan 42(1), 32-44.
Talluri, K., Van Ryzin, G., 1999. A randomized linear programming method for computing network bid prices. Transportation Science 33(2), 207-216.
Tanaka, H., Ichihashi, M., Asai, K., 1984. A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers. Control and Cybernetics 13(2), 185-194.
Teodorovic, D., 1998. Airline network seat inventory control: a fuzzy set theory approach. Transportation Planning and Technology 22(1), 47-72.
Wan, K., Levary, R. R., 1995. A linear programming based price negotiation procedure for contracting shipping companies. Transportation Research Part A 29(3), 173-186.
Weatherford, L. R., Bodily, S. E., 1992. A taxonomy and research overview of perishable-asset revenue management: yield management, overbooking, and pricing. Operations Research 40(5), 831-844.
Werners, B., 1987. An interactive fuzzy programming system. Fuzzy Sets and Systems 23(2), 131-147.
Wollmer, R. D., 1992. An airline seat management model for a single leg route when lower fare classes book first. Operations Research 40(5), 26-37.
Wong, J. T., Koppelman, F. S., Daskin, M. S., 1993. Flexible assignment approach to itinerary seat allocation. Transportation Research B 27(1), 33-48.
Xie, X., Wang, T., Chen, D., 2000. A dynamic model and algorithm for fleet planning. Maritime Policy and Management 27(1), 53-63.
Yan, S., Bernstein, D., Sheffi, Y., 1995, Intermodal pricing using network flow techniques. Transportation Research Part B 29(3), 171-180.
You, P. S., 1999. Dynamic pricing in airline seat management for flights with multiple flight legs. Transportation Science 33(2), 192-206.
Yu, P. L., 1973. A class of solutions for group decision problems. Management Science 19(8), 936-946.
Yu, G., Yang, J., 1998. Optimization applications in the airline industry. In: Du, D.-Z., Pardalos, P. M. (Eds.), Handbook of Combinatorial Optimization Vol. 2. Kluwer Academic Publishers, U.S.A., pp. 635-726.
Yuen, B. B., 1998. Group revenue management: redefining the business process. In: Butler, G. F., Keller, M. R. (Eds.), Handbook of Airline Marketing. McGraw-Hill, U.S.A., pp. 363-375.
Yuen, B. B., Irrgang, M. E., 1998. The new generation of revenue management: a network perspective. In: Butler, G. F., Keller, M. R. (Eds.), Handbook of Airline Marketing. McGraw-Hill, U.S.A., pp. 319-331.
Zadeh, L.A., 1965. Fuzzy sets. Information and Control 8(2), 338-353.
Zeleny, M., 1985, Multiple Criteria Decision Making. McGraw-Hill, New York.
Zheng Y. S., Zhao, W., 2000. Optimal dynamic pricing for perishable assets with nonhomogeneous demand. Management Science 46(3), 375-388.
Zimmermann, H. J., 1978. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems 1(1), 45-55.
李高彥(1995),定期貨櫃海運業應用收益管理之研究,國立交通大學管理科學研究所碩士論文。
汪進財、葉文健(1998),「超額訂位問題之最佳控制策略」,中華民國運輸學會第13屆論文研討會,頁51 - 60。
汪進財、蔡言宏(2001),「航空公司超額定位控制策略之研究」,運輸計畫季刊,第30卷第1期,頁135 - 164。
吳偉銘(2002),「超額容量對國內線航空定價行為影響之研究」,運輸計畫季刊,第31卷第2期,頁429 - 450。
邱明琦、陳春益、林佐鼎(2002),「海運貨櫃排程模式之研究」,運輸計畫季刊,第31卷第3期,頁495 - 522。
許文娟(1998),Ksilingam航空貨運收益管理模式之研究,國立交通大學交通運輸研究所碩士論文。
陳茂南(1997),「競爭環境中航空公司應變之道 — 生益管理」,中華民國運輸學會第6屆校際運輸學術聯誼研討會,頁58 - 73。
陳春益、張永昌(1997),「航商選擇定期貨櫃航線泊靠港之探討」,國家科學委員會研究彙刊:人文及社會科學,第7卷第3期,頁438 - 444。
陳春益、李啟安(2001),「貨櫃航商收益管理之研究 — 以艙位分配為例」,中華民國運輸學會第16屆論文研討會,頁851 - 859。
陳春益、邱明琦(2002),「貨櫃航線網路設計之研究」,運輸計畫季刊,第31卷第2期,頁267 - 298。
陳昭宏(1997),「航空公司營收管理模式之研究 — 整合艙位配置與超額訂位之動態策略」,中華民國運輸學會第6屆校際運輸學術聯誼研討會,頁25 - 42。
盧華安、劉中平、徐育彰(1998),「貨櫃船船隊部署問題之探討」,中華民國運輸學會第13屆論文研討會,頁165 - 173。
盧華安(2002),「定期貨櫃航線設計之研究」,運輸計畫季刊,第31卷第1期,頁121 - 142。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE