:::

詳目顯示

回上一頁
題名:在廣義不完美維護下最佳維護策略探討
作者:廖國良 引用關係
作者(外文):Gwo-Liang Liao
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
指導教授:徐世輝
學位類別:博士
出版日期:2004
主題關鍵詞:預防維護不完美維護最佳化學習效果可用度修理不完美程序生產Preventive maintenanceimperfect maintenanceoptimumlearning effectAvailabilityrepairimperfect processproduction
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
在廣義不完美維護下最佳維護策略探討
研究生:廖國良
指導教授:徐世輝
時間:93年12月
論文摘要
適當的對設備進行維護與修理或調整,以降低可能帶來的損害或產品不良,日益受到重視。本論文提出三種廣義的預防維護策略加以分析。
其一是應用區間預防維護建立三個修理模型:當故障發生時大修、小修或留到完美預防維護。論文中預防維護有兩種型態:不完美預防維護和完美預防維護。完美預防維護的機率是依据不完美預防維護從前一次更新之後的次數來決定。並建立每單位時間的期望成本數學模式。討論每一個模型能讓成本最低的最佳預防維護時間。
另一則是探討當故障時大修的可維修系统可用度最大的區間預防維護策略。包含三種預防維護型態;不完美預防維護,完美預防維護和失敗預防維護。
第三則是探討經歷生產調整和設備維護的不完美生產程序。論文中生產程序有兩種狀態:狀態I失控狀態和狀態II控制中狀態。在每一更新週期,剛開始的生產程序狀態並不一定是在控制中狀態。當生產程序是狀態I就需要生產機制的調整而狀態II則不需要調整。生產調整可能是不完美讓生產系統更差或是生產調整完美讓生產系統回到起始點。當達到N+1次的狀態I 後,這個生產作業系統必需經由維護回到起始點。論文中推導出當到達N+1次的狀態I 時的每一個良品的平均成本。以上三個維護策略都有探討重要參數的敏感度分析,本研究可作為類似系統在訂定維護策略時的參考。
ABSTRACT
To study the maintenance and productivity in order to reduce the operating cost and the risk of a catastrophic breakdown is more important. This thesis presents three generalized maintenance policies.
The first applies periodic preventive maintenance to three repair models: major repaired, minimal repaired or fixed until perfect preventive maintenance upon failure. Two types of preventive maintenance are performed, namely: imperfect preventive maintenance and perfect preventive maintenance. For each model, the optimum preventive maintenance time , which would minimize the cost rate, is discussed.
The second considers periodic preventive maintenance policies, which maximizes the availability of a repairable system with major repair at failure. Three types of preventive maintenance are performed, namely: imperfect preventive maintenance (IPM), perfect preventive maintenance (PPM) and failed preventive maintenance (FPM).
The third considers imperfect production processes that require production correction and maintenance. The two states of the production process are the type I state (out-of-control state) and the type II state (in-control state). The type I state involves adjustment of the production mechanism, whereas the type II state does not. Production correction is either imperfect; worsening a production system, or perfect, returning it to the initial conditions. After N+1 type I states, the operating system must be maintained and returned to the initial condition. The mean cost per good item until the first successive N+1 type I states, is determined. Moreover, sensitivity analysis was conducted to study the effect of important parameters on the above three policies. This research can be a reference for setting maintenance policies to analogous product and system.
REFERENCES
[1] Anis, C. and Daoud, A. K., “Analysis of a production/inventory system with randomly failing production unit submitted to regular preventive maintenance, ” European Journal of Operational Research, vol. 156, pp.712-718, 2004.
[2] Barlow, R. E., Proschan, F., Mathematical Theory of Reliability. New York : Whiley, 1965.
[3] Barlow, R.E. and Hunter, L.C. , “Optimum preventive maintenance policies, ” Operations Research, vol.8, pp.90–100, Jan.–Feb.1960.
[4] Barros, A. , Berenguer, C. and Grall, A., “Optimization of replacement times using imperfect monitoring information, ” IEEE Transactions on Reliability, vol. 52, no. 4, pp.523-533, Dec. 2003.
[5] Bilkay, O., Anlagan, O., Kilic, S. E.,“Job shop scheduling using fuzzy logic,” International Journal of Advanced Manufacturing Technology, vol. 23, pp. 606-619, 2004.
[6] Biswas, A., Sarkar, J., and Sarkar, S., “Availability of a Periodically Inspected System, Maintained Under an Imperfect-Repair Policy, ” IEEE Transactions on Reliability, vol. 52, no. 3, pp. 331-318, June 1999.
[7] Bris, R., Chatelet, E., Yalaoui, F., “New method to minimize the preventive maintenance cost of series-parallel systems, ” Reliability Engineering and System Safety, vol. 82, pp. 247-255, Dec. 2003.
[8] Chen, C. T., Chen, Y. W. and Yuan, J., “On a dynamic preventive maintenance policy for a system under inspection, ” Reliability Engineering and System Safety, vol. 80, pp. 41-47, Apr. 2003.
[9] Chiang, J. H. and Yuan, J., “Optimal maintenance policy for a Markovian system under periodic inspection, ” Reliability Engineering and System Safety, vol. 71, pp.165-172, 2001.
[10] Chung, K. J., Huang, Y. F.,“The optimal cycle time for EPQ inventory model under permissible delay in payments, ” International Journal of Production Economics, vol. 84, pp. 307-318, 2003.
[11] Chung, K. J., Hou, K. L.,“An optimal production run time with imperfect production processes andallowable shortages, ” Computers & Operations Research, vol. 30, pp. 483-490, 2003.
[12] Cui, L. R., Loh, H. T. and Xie, M., “Sequential inspection strategy for multiple systems under availability requirement, ” European Journal of Operational Research, vol. 155, no. 1, pp. 170-177, May 2004.
[13] Cui, L. R., Kuo, W. , Loh, H. T. and Xie, M., “Optimal allocation of minimal & perfect repairs under resource constraints, ” IEEE Transactions on Reliability, vol. 53, no. 2, pp.193-199,Jun. 2004.
[14] Doyen, L. and Gaudoin, O., “Classes of imperfect repair models based on reduction of failure intensity or virtual age, ”Reliability Engineering and System Safety, vol. 84, pp. 45-56, Apr. 2004.
[15] Islam, M. N.,“A methodology for extracting dimensional requirements for a product from customer needs,”International Journal of Advanced Manufacturing Technology, vol. 23, pp. 489-494, 2004.
[16] Ja, S. S., Vidyadhar G. Kulkarni, A.M., and Jayprakash G.P., “A Nonrenewable Minimal-Repair Warranty Policy With Time-Dependent Costs, ” IEEE Transactions on Reliability, vol. 50, no. 3, pp. 346-352, Sept. 2003.
[17] Juang, M. G. and Anderson, G., “A Bayesian method on adaptive preventive maintenance problem, ”European Journal of Operational Research, vol. 155, no. 2, pp. 455-473, Jun. 2004.
[18] Lai, C. D., Xie, M. and Murthy, D. N. P., “A modified weibull distribution, ” IEEE Transactions on Reliability, vol. 52, no. 1, pp. 33-37, March 2003.
[19] Lam, C. T. and Yeh, R. H., “Optimal maintenance-policies for deteriorating systems under various maintenance strategies, ” IEEE Transactions on Reliability, vol. 43, no. 3, pp. 423-430, Sept. 1994.
[20] Levitin, G., Lisnianski, A., “Optimization of imperfect preventive maintenance for multi-state systems, ” Reliability Engineering and System Safety, vol. 67, pp. 193-203, 2000.
[21] Li, G. and Rajagopalan, S., “The impact of quality on learning, ” Journal of Operations Management, vol. 134, pp.508-524, Nov. 2001.
[22] Liao, C. J. and Chen, W. J., “Single-machine scheduling with periodic maintenance and nonresumable jobs, ”Computers & Operation Research, vol. 30, pp.1335-1347, 2003.
[23] Lim, J. H., and Park, D. H., “Evaluation of average maintenance cost for imperfect-repair model, ” IEEE Transactions on Reliability, vol. 48, no. 2, pp.199-204,Jun. 1999.
[24] Lin, D. and Zuo, M. J. and Yam, R. C. M., “General sequential imperfect preventive maintenance models, ”International Journal of Reliability, Quality and Safety Engineering, vol. 7,No. 3, pp.253-266, 2000.
[25] Lin, C. S., Chen, C. H., Kroll, D. E.,“Integrated production-inventory models for imperfect production processes under inspection schedules, ” Computers & Industrial Engineering, vol. 44, pp.633-650, 2003.
[26] Liu, J. J., Yang, P.,“Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs, ” European Journal of Operational Research, vol. 91, pp. 517-527, 1996.
[27] Moore, M. J. and Bennett, C. L., “The learning curve for laparoscopic cholecystectomy, ” The American Journal of Surgery, vol. 170, pp.55-59, July 2001.
[28] Moustafa, M. S., Maksoud, E.Y. A. and Sadek, S. , “Optimal major and minimal maintenance policies for deteriorating systems, ” Reliability Engineering and System Safety, vol 83, pp.363-368, 2004.
[29] Nakagawa, T., “Sequential imperfect preventive maintenance policies, ” IEEE Transactions on Reliability, vol. 37, no. 3, pp. 295-298, Aug. 1988.
[30] Nakagawa, T., and Yasui, K., “Periodic-replacement models with threshold levels, ” IEEE Transactions on Reliability, vol. 40, no. 3, pp. 395-397,Aug. 1991.
[31] Nakagawa, T., and Kijima, M., “Replacement policies for a cumulative damage model with minimal repair at failure, ” IEEE Transactions on Reliability, vol. 38, no. 5, pp. 581-584, Dec. 1989.
[32] Nakagawa, T., and Yasui, K., “Optimal policies for a system with imperfect maintenance, ” IEEE Transactions on Reliability, vol. R-36, no. 5, pp.631-633, Dec. 1987.
[33] Nakagawa, T., “Optimum policies when preventive maintenance is imperfect, ” IEEE Transactions on Reliability, vol. R-28, no. 4, pp. 331-332, Oct. 1979.
[34] Neves, L. C. , Frangopo, D. M. and Cruz, P. S., “Cost of life extension of deteriorating structures under reliability-based maintenance, ” Computers & Structures, vol. 82, pp.1077-1089, 2004.
[35] Ouyang, L. Y., Chen, C. K., Chang, H. C.,“Quality improvement setup cost and lead-time reductions in lot size reorder point models with an imperfect production process,” Computers & Operations Research, vol. 29, pp. 1701-1717, 2002.
[36] Pham, H., and Wang, H., “Imperfect maintenance, ” European Journal of Operational Research, vol. 94,no. 3, pp. 425-438,Nov. 1996.
[37] Porteus, E. L.,“Optimal lot sizing process quality improvement and setup cost reduction,” Operations Research, vol. 34, pp. 137-144, 1986.
[38] Qian, C., Nakamura, S., and Nakagawa, T., “Cumulative damage model with two kinds of shocks and its application to the backup policy , ” Journal of the Operations Research Society of Japan, vol.42,No. 4, pp. 501-511,Dec. 1999.
[39] Rosenblatt, M. J., Lee, H. L.,“Economic production cycles with imperfect production process,” IIE Transactions, vol. 18, pp. 48-55, 1986.
[40] Ross, S. M., Applied probability models with optimization applications, San Francisco, CA: Holden–Day, 1970.
[41] Salameh, M. K. and Jaber, M. Y.,“Economic production quantity model for items with imperfect quality,” International Journal of Production Economics, vol. 64, pp. 59-64, 2000.
[42] Sheu, S. H. and Griffith, W. S., “Optimal number of minimal repairs before replacement of a system subject to shocks, ” Naval Research Logistics, vol. 43, pp. 319-333, 1996.
[43] Sheu, S. H., “Extended optimal replacement model for deteriorating system, ” European Journal of Operational Research, vol.112, pp. 503-516, 1999.
[44] Sheu, S. H., “A generalized age and block replacement of a system subject to shocks, ” European Journal of Operational Research, vol.108, pp. 345-362, 1998.
[45] Tibbs, R. W., Monticone, L. C.,“Availability modeling for the federal aviation administration., ” IEEE Transactions on Reliability, vol. 41, pp. 97-106, 1992.
[46] Tseng, S. T., Yeh, R. H., Ho, W. T.,“Imperfect maintenance policies for deteriorating production systems,” International Journal of Production Economics, vol. 55, pp. 191-201, 1998.
[47] Tseng, S. T.,“Optimal preventive maintenance policy for deteriorating production systems,”IIE Transactions, Vol. 28, pp. 687-694, 1996.
[48] Yang, Y. and Klutke, G. A., “A distribution-free lower bound for availability of quantile-based inspection schemes, ” IEEE Transactions on Reliability, vol. 50, no. 4, pp. 419-421, Dec. 2001.
[49] Yasui, K. and Nakagawa, T., “Reliability considerations of a selective-repeat ARQ policy for a data communication system, ” Microelectron and Reliability, Vol 35, no. 1, pp. 41-44, 1995.
[50] Zangwill, W. I. and Kantor, P. B., “The learning curve: a new perspective, ” International Transactions in Operations Research, vol. 7, pp.595-607, 2000.
[51] Zhao, M.,“ Availability for repairable components and series system, ”IEEE Transactions on Reliability, vol. 43, pp. 329-334, 1994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE