:::

詳目顯示

回上一頁
題名:以演化認識論探討高中學生氧化還原概念形成之研究
作者:詹耀宗
作者(外文):CHAN, Yao-tsung
校院名稱:國立高雄師範大學
系所名稱:科學教育研究所
指導教授:周進洋
學位類別:博士
出版日期:2005
主題關鍵詞:替代性選擇器命題陳述概念形成Vicarious SelectorsPreposition StatementsConcepts Formation
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(1) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:1
  • 共同引用共同引用:0
  • 點閱點閱:0
摘 要
本研究採用演化認識論的觀點來探討學生的概念形成過程。演化認識論的核心概念有二,替代性選擇器與後設系統轉換。所謂「替代性選擇器」即是個案學生的既有知識系統中,可用來選擇新知識的既有知識系統。由於知識系統經過選擇新知識後會發生轉變,所以替代性選擇器的後設系統也會發生轉變。本研究根據演化認識論的觀點,探討高中學生科學概念形成機制。共有五個研究問題:一、在學習過程中,個案學生的氧化還原概念發展情形為何?二、個案學生氧化還原概念「替代性選擇器」的內容為何?三、個案學生氧化還原概念「替代性選擇器」的結構與運作機制為何?四、個案學生氧化還原概念「替代性選擇器」的後設系統有何轉換?五、個案學生經由「替代性選擇器」產生的氧化還原概念演化情形為何?
作者透過概念晤談、字的連結晤談、字卡分類(樹狀圖)晤談及概念構圖晤談等方式,了解3位高二個案學生氧化還原概念的形成過程中「替代性選擇器」的組成因子與功能。主要的研究結果有:
一、 個案學生可以建立正確的關鍵概念,但是對於其他屬性概念的應用就會有迷思情形;而在命題陳述概念類型的分佈方面,以原理概念(PR)類型的命題陳述最多。
二、 個案學生的「替代性選擇器」包含兩個因子。一個是判斷相關概念命題時所需的關鍵概念,另一個是理解或陳述關鍵概念時所使用的輔助概念。
三、 個案學生「替代性選擇器」是以原理概念屬性的命題陳述所歸納而成的關鍵概念位於選擇器的中心位置,另外在周圍有多種不同屬性命題陳述的輔助概念。在概念的形成過程中關鍵概念選擇輔助概念、輔助概念形成關鍵概念,兩種因子相互作用以形成概念。
四、 「替代性選擇器」後設系統的轉換,是複雜到簡單的精鍊過程。
五、 個案學生概念演化的結果,有科學概念與迷思概念並存的現象。
本研究經由個案研究建立了個案學生概念形成的「替代性選擇器」模式,研究者據此模式解釋學生概念的形成。本研究的結果也為演化認識論提出實徵研究證據。
Abstract
The perspective of evolutionary epistemology was employed to explore the processes of students’ conceptual construction. There are two core ideas in evolutionary epistemology, vicarious selectors and the transition of the meta-system vicarious selectors, in this study, the existing knowledge system in which students used to select the new knowledge in students’ knowledge context. he newly generated knowledge system was then changed by the function of knowledge selection, and the meta-system was also changed, or transited.
This research studied the mechanism of scientific concept formation in high school students based on the evolutionary epistemology perspective, with focusing on five aspects: 1.the development of students’ oxidation-reduction concept in the learning process, 2.students’ vicarious selectors in forming the oxidation-reduction concept, 3.the framework and working mechanisms of students’ vicarious selectors in forming the oxidation-reduction concept, 4.the transition of the meta-system in the students’ vicarious selectors, and 5.the evolution of students’ oxidation-reduction concept through vicarious selectors.
The methods of interviews on concepts, word association, classification of flashcards (tree diagrams) and concept mapping were conducted with three students who were in the second year of senior high school, to uncover the process of their oxidation-reduction concepts formation, and the components and function of their vicarious selectors. The findings were as follows:
1. Students interviewed were able to form correct key concepts, but did have misconceptions regarding the application of other attributed concepts. As for the types of preposition statements, statements based on principle concepts were the most frequently made while students differed in making statements of other types of concepts.
2. There were two elements involved in a student’s vicarious selectors. One is the key concept needed in judging the preposition statement of related concepts. Another is the auxiliary concept used in understanding or interpreting key concepts.
3. The framework of vicarious selectors was constructed, with its center being the key concept formed by proposition statement of principle concepts. These key concepts were the basis for student’s concept selection. Another element was the auxiliary concepts in which this proposition statements constituted the multiple conceptual properties.
4. The transition of the meta-system in vicarious selectors was a refining process of simplification.
5. The result of conceptual evolution might lead to the co-existence of scientific concepts and misconceptions.
By case study, this research constructed a model of vicarious selectors in concept formation, which is used to provide the empirical evidence for evolutionary epistemology interpret students’ concept formation.
參考文獻

一、中文參考文獻

丁信中、王雅亮、江世豪、林冠群、洪振方、唐偉成、陳榮祥、葉明達、業倩亨、簡聿成、羅豪章和蘇明俊合譯 (2004) : 促進理解之科學評量。台北市 : 心理出版社。
王文科 (1991) : 認知發展理論與教育。台北市 : 五南圖書出版公司。
王春源 (1991) : 物質變化相關概念診斷測驗工具之發展。彰化 : 國立彰化師範大學科學教育研究所碩士論文 (未出版)。
王美芬和熊召弟 (1995) : 國民小學自然科教材教法。台北市 : 心理出版社。
王美芬和賴阿福 (1993) : 國小一、二、三年級學生「生物構造配合功能」的概念發展研究 (Ⅰ)。國科會研究成果報告 (NSC-81-0111-S-133-5001-N)。台北市 : 國科會科教處。
王貴春和黃萬居 (1998) : 師院學生對氧化還原概念認知之研究。第十四屆科學教育學術討會彙編。高雄 : 高雄師範大學。
王鶱鈿譯 ( 1995) : 發生認識論原理。北京 : 商務印書館。
任宗浩 (2001) : 不同學習階段和不同學習成就的中學生其力學概念組織之研究。台北市 : 國立台灣師範大學科學教育研究所博士論文 (未出版)。
何云峰 (2001) : 從普遍進化到知識進化─關於進化認識論的研究。上海市 : 上海教育出版社。
何云峰和金順盞 ( 1998):關於進化認識論的研究。浙江社會科學, 5, 78-82。
余民寧 (1997) : 有意義的學習─概念構圖之研究。台北市 : 商鼎文化出版社。
吳俊升 (1988) : 教育哲學大綱。台北市 : 台灣商務印書館。
杜家玲 (1999) : 概念發展─古典論與聯結論。嘉義縣 : 國立中正大學哲學系碩士論文 (未出版)。
周忠昌譯 (2002) : 反對方法。台北市 : 時報文化出版公司。
周進洋、張容君和詹耀宗 (2002) : 「國中學生燃燒概念兩階段式診斷測驗工具」 (未出版)。
岳修平譯 (1998) : 教學心理學。台北市 : 遠流出版公司。
林哲彥 (1992) : 我國國小學生氧化還原概念之研究 (一)。國科會專題研究報告。台北市 : 國科會科教處。
林振霖 (1996) : 我國學生氧化還原概念發展與診斷教學的研究 (三)。國科會專題研究報告。台北市 : 國科會科教處。
林德宏 (1997) : 科學思想史。新竹市 : 理藝出版社。
邱美虹 (2000) : 概念改變研究的省思與啟示。科學教育學刊, 8(1), 1-34。
洪振方 (1993) : 從孔恩異例的認知與論證探討科學知識的重建。台北市 : 國立台灣師範大學科學教育研究所博士論文 (未出版)。
柴 熙 (1980) : 認識論。台北市 : 台灣商務印書館。
袁之琦和游恆山 (1990) : 心理學名詞辭典。台北市 : 五南圖書出版公司。
張春興 (1987) : 心理學。台北市 : 東華書局。
張春興 (1992) : 張氏心理學辭典。台北市 : 東華書局。
許榮富 (1991) : 科學概念發展與診斷教學研究合作計畫芻議。科學發展月刊, 18(2), 8-15。
陳家重 (2001) : Fodor的概念理論。嘉義縣 : 國立中正大學哲學系碩士論文 (未出版)。
陳淑敏 (1995) : Vygotsky「最近發展區」概念內涵的探討。屏東師院學報, 8, 512-521。
陸維作 (1988) : 氧化還原概念發展與推理相關之研究。國科會專題研究報告。台北市 : 國科會科教處。
程樹德、傅大為、王道還和錢永詳合譯 (1991) : 科學革命的結構。台北市 : 遠流出版公司。
馮志偉 (1997) : 現代術語學。台北市 : 農業科學資料服務中心。
黃台珠 (1984) : 概念的研究及其意義。科學教育月刊, 66, 44-56。
黃台珠、熊召弟、王美芬、佘曉清、靳知勤、段曉林和熊同鑫譯 (2002) : 促進理解之科學教學。台北市 : 心理出版社。
黃俊雄 (1988) : 最新生物學。台北市 : 藝軒出版社。
鄔昆如 (1987) : 哲學概論。台北市 : 五南圖書出版公司。
楊俐容譯 (1991) : 皮亞傑。台北市 : 桂冠圖書公司。
詹棟樑 (1993) : 現代教育哲學。台北市 : 五南圖書出版公司。
熊召弟、王美芬、段曉林和熊同鑫譯 (1996) : 科學學習心理學。台北市 : 心理出版社。
趙匡華 (1992) : 化學通史。新竹市 : 凡異出版社。
趙敦華 (1991) : 卡爾波普。台北市 : 遠流出版公司。
劉嘉茹 (2000) : 以研究綱領與本體分類論探究概念改變機制之研究。台北市 :國立台灣師範大學科學教育研究所博士論文 (未出版)。
潘明宏譯 (1999) : 社會科學研究方法, 上冊。台北市 : 韋伯文化事業出版社。
諸亞儂、溫永福、呂理福和曾文雄 (1992) : 生物學。台北市 : 環球書社。
謝志仁 (1992) : 國中學生化學變化相關概念另有架構之研究。彰化 : 國立彰化師大科學教育研究所碩士論文。

二、英文參考文獻
Anderson, B. (1990). Pupils’ conception of matter and its transformation (age 12-16), Studies in Science Education, 18, 53-85.
Boujaoude, S. B. (1989). A study of conceptual change in junior high school science students during instruction about the concept of burning. (UMI Document No. 8903612)
Braund, M. (1991). Children’s ideas in classifying animals. Journal of biological education, 25(2), 201-221.
Campbell, D. T. (1974). Evolutionary epistemology. In P. A. Schilpp (Ed.), The philosophy of Karl R. Popper (pp.412-463). Lasalle, IL: Open Court. Reprinted in H. C. Plotkin (Ed.), (1982). Learning, Development, and Culture (pp.73-107). New York: John Wiley & Sons.
Carey, S. (1985). Conceptual change in childhood. Cambrige, MA: Bradford Books/MIT Press.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in sciences. In R. Giere (Ed.), Cognitive models of science (pp.129-186). Minneapolis, MINN: University of Minnesota Press.
Chi, M. T. H., Sloot, J. D. & deLeeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts, Learning and Instruction, 4, 27-43.
Chinn, C. A. & Brewer, W. F. (1998). Theories of knowledge acquisition. in B. J. Fraser & K. C. Tobin (Eds.), International handbook of science education. Boston, MA: Kluwer.
Demastes, S. S., Good, R. D., Peebles, P. (1996). Patterns of conceptual change in evolution. Journal of Research in Science Teaching, 33(4), 407-431.
Driver, R. (1985). Beyond appearances: the conservation of matter under physical and chemical transformations. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp.145-169). Philadelphia, PA: Open University Press, Milten Keynes.
Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (Galvanic) and electrolytic cells. Journal of research in science teaching, 29 (10), 1079-1099.
Gilbent, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children's Science and its consequences for teaching. Science Education, 66(4), 623-633.
Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions : changing perspectives in science education. Studies in Science Education, 10, 61-98.
Happs, J. (1980). Particles. Learning in Science Project. Working Paper No. 18. (ERIC Document Reproduction No. ED235026)
Herron, J. D. (1996). The chemistry classroom. Washington, DC: American chemical society.
Heylighen, F., & Joslyn, C. (1993). Vicarious selectors, Retrieved April 20, 2002, from http://pespmcl.vub.ac.be/VICARSELT.html.
Heylighen, F. (1993). Evolutionary epistemology, Retrieved April 20, 2002, from http://pespmcl.vub.ac.be/EVOLEPIST.html.
Johnstone, P. T. (1982). Stone spaces. Cambridge university press.
Keeves, J. P. (1998). Methods and Processes in research in science education. In B. J. Fraser, & K. C. Tobin (Eds.), International handbook of science education (pp.1127-1153). Boston, MA: Kluwer.
Klausmeier, H. J. (1979). Cognitive Learning and Development:Information-processing and Piagetian perspectives. Washiongton, D. C.:Office of Education.
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: The university of Chicago.
Lakatos, I. (1968). Criticism and the methodology of scientific research programmes. Aristotelian society, 69, 149-186.
Lawson, A. E. (1994). Research on the acquisition of science knowledge: Epistemological foundations of cognition. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning (pp.131-176). New York: Macmillan.
Lawson, A. E., & Renner, J. W. (1975). Piagetian theory and biology teaching. American biology teacher, 37(6), 336-343.
Macnamara, J. T. (1982). Names for things: A study of human learning. Cambridge, MA: MIT Press.
McNamara, T. P. (1994). Knowledge representation. In R. J. Sternberg (Ed.) Thinking and problem solving (pp.83-118). San Diego, CA: Academic.
Meheut, M., Saltiel, E., & Tiberghien. (1985). Pupils’ (11-12 year old) conceptions of combustion. European Journal of Science Education, 7(1), 83-93.
Novak, J. D., Mintzes, J. J. & Wandersee, J. H. (1998). Teaching science for understanding-A Human constructivist view. San Diego, CA: Academic.
Novak, J. D. (1998). Learning, creating, and using knowledge: concept maps as facilitative tools in schools and corporations. Lawrence, NJ: Erlbaum.
Orna, M. V., & Schreck, J. O. (1994). Oxidation-Reduction. In M. V. Orna and J. O. Schreck (Eds.) ChemSouce, V3. American chemical Society.
Osborne, R. (1981). Children's ideas about electric current. New Zealand Science Teacher, 29, 12-19.
Osborne, R., & Wittrock, M. C. (1983). Learning Science: A generative process. Science Education, 67, 489-508.
Oversby J. (2000). Models In explanation of chemistry: the case of acidity. In J. K. Gilbert and C. J. Boulter (Eds.), Developing models in science education (pp.227-251). Boston, MA: Kluwer.
Pfundt, H. (1981). Pre-instructional conceptions about substances and transformations of substances. In W. Jung, H. Pfundt and C. Von Rhoneck (Eds.) Proceedings of the International Workshop on Problems Concerning Students' Representation of Physics and Chemistry Knowledge (pp.320-342), Sep. Pedagogische Hochschule, Ludwigsburg.
Pfundt, H. (1982). Pre-instructional conceptions about transformations of substances. (ERIC Document Reproduction No. ED229235)
Plotkin, H. (1993). Darwin machines and the nature of knowledge. Cambridge, MA: Harvard University Press.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward theory of conceptual change. Science Education, 66, 211-227.
Popper, K. (1963). Conjectures and refutations. London: Routledge & Kegan paul.
Popper, K. (1979). Objective knowledge. NY: Melbourne Auckland.
Reif, F. and Larkin, J. H. (1991). Cognition inscientific and everday domains: comparison and learning implications. Journal of research in science teaching. 28 (9), 733-760.
Roth, K. J. (1990). Developing Meaningful Conceptual Understanding in Science, In B. F. Jenes, & L. Idol (Eds.) Dimensions of Thinking and Cognitive Instruction. Hillsdale, NJ: Erlbaum.
Schollum, B. (1981a). Chemical change. Learning in Science Project. Working Paper No. 10. (ERIC Document Reproduction No. ED236010)
Schollum, B. (1981b). Burning. Learning in Science Project. Working Paper No. 36. (ERIC Document Reproduction No. ED236019)
Schollum, B. (1982). Reaction. Learning in Science Project. Working Paper No. 37. (ERIC Document Reproduction No. ED236020)
Solso, R. L. (1995). Cognitive psychology. Boston, MA: Allyn & Bacon.
Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts. Princeton, NJ: Princeton University Press.
Turchin, V., & Joslyn, C. (1993). The metasystem transition, Retrieved April 20, 2002, from http://pespmcl.vub.ac.be/MST.html.
von Glasersfeld, (1984). An introduction to radical constructivism. In P. Watzlawick(Ed.), The invented reality. NY: Norton.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), NSTA handbook of research on science teaching (pp.177-210). New York: Macmillan.
White, R., & Gunstone, R. (1992). Probing understanding. Bristol, PA: Falmer.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE