:::

詳目顯示

回上一頁
題名:智慧型商業資料分析之研究
作者:鄒濟民
作者(外文):Chi-Ming Tsou
校院名稱:輔仁大學
系所名稱:商學研究所
指導教授:黃登源
黃榮華
學位類別:博士
出版日期:2006
主題關鍵詞:資料分析知識發現資料探勘Data AnalysisKnowledge DiscoveryData Mining
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:28
資料分析是由資料探測智慧的必經途徑,然而在商業的應用上卻充滿著各種挑戰,因而智慧型商業資料分析,就是針對一多變量的資料集,進行高層次概念分析模型的建立。此一結合統計與資料探勘運算技術的工具,克服了商業應用上常面臨的資料集變動頻繁、資料衡量尺度種類很多、資料欄位過多、資料欄位間關係複雜及模型配適不易等諸多問題,且所得出的模型具有統計上的可靠性,並能供領域專家很容易的進行解釋與評估。換言之,智慧型商業資料分析就是針對商業上的應用,結合了統計與資料探勘運算技術,且能滿足知識周全性原則的資料分析方法。
本研究以三種基本知識概念,包括關聯規則、結構方程式及列聯表等在商業上的應用,包括市場購物籃分析、知識的發現與創新及企業經營績效評量等問題,來進行智慧型商業資料分析方法與模型建構的探討。
本研究的主要目的即在發展智慧型商業資料分析方法及建構分析模型,這些模型克服了傳統統計與資料探勘方法在本質上的限制,滿足了知識周全性的原則,而將其整合在一個工具中,這些工具提供了使用者,可依問題的特性由資料庫中進行各種不同方式的知識發現工作,來建構可供解釋與決策所需的模型,以解決實務上所面臨的諸多問題,此即為本研究的主要貢獻。
Data analysis is on the unique route from data towards wisdom, while there exists various challenges for business applications, hence; intelligent business data analysis is just like a key to open a door which can get over those challenges during proceeding high level conceptual and analytical model construction against a multi-dimensional data set. Those data mining tools incorporate statistic and computational technologies can solve the problems that encountered in business applications such as large data volume, incomplete data, inconsistent data scale, huge number of data fields, complex relationships between data fields and model over fitting; and the resulting models that we obtained will be built with statistical reliability, and can be interpreted and evaluated easily by domain experts. In other words, intelligent business data analysis is the advanced knowledge discovery tools which incorporate statistic and computation, and fulfills the comprehensiveness rule of knowledge.
The research adopts 3 basic knowledge concepts including association rule, structural equation and contingency table, with their corresponding applications on business as market basket analysis, knowledge discovering and innovation and performance evaluation, to proceed the context exploration on intelligent business data analysis.
The main purpose of this study is to develop the analytical methods and model building for intelligent business data analysis. Those analytical models not only overcome the limitations of traditional statistic and data mining methods, but also fulfill the comprehensiveness rule of knowledge; and incorporate them into one tools set, those tools furnish the capability for user to proceed various knowledge discovery tasks by using database based on the distinction of problems. Models established by those tools can be interpreted and are useful for decision making to solve the problems that we encountered in the real world, and it is our contribution to the field of intelligent business data analysis.
1.Ackoff, R. L., 1989. From Data to Wisdom. Journal of Applies Systems Analysis, Vol. 16, pp.3-9
2.Adler, N., Friedman, L., and Zilla, S.S., 2002. Review of ranking methods in the data envelopment analysis context. European Journal of Operational Research, 140, pp.249-265.
3.Adomavicius, G. and Tuzhilin, A., 1997. Discovery of actionable patterns in databases: the action hierarchy approach. In D. Heckerman, H. manila, and D. Pregibon, editors, Proceeding of the Third International Conference on Knowledge Discovery & Data Mining, pp.111-114. AAAI Press.
4.Adriaans, P. W. and Zantinge, 1996. Data Mining. Addison-Wesley.
5.Agrawal, R., Imielinski, T., Swami, A., 1993. Mining association rules between sets of items in very large databases. Proceedings of the ACM SIGMOD Conference on Management of data, volume 22:2 of SIGMOD Record, pp. 207-216. ACM Press.
6.Agrawal, R., and Psaila, G., 1995. Active Data Mining. In Proceedings of the First International Conference on Knowledge Discovery and Data Mining(KDD-95), pp.3-8. Menlo Park, Calif.: American Association for Artificial Intelligence.
7.Aggarwal, C. C., Procopiuc, C., and Yu, P.S., 2002. Finding localized association in market basket data. IEEE Transactions on Knowledge and Data Engineering, 14(1), pp.51-62.
8.Aigner, D.J., Lovell, C.A.K. and Schmidt, P., 1977. Formulation and Estimation of Stochastic Frontier Models. Journal of Economics, 6, pp.21-37.
9.Andersen, P., and Petersen, N. C., 1993. A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), pp.1261-1264.
10.Antonie, M-L. and Zaïane, O. R., 2004. Mining Positive and Negative Association Rules: An Approach for Confined Rules. Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada.
11.Banker, R.D., Charnes, A., and Cooper, W.W., 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30(9), pp.1078-1092.
12.Banker, R. D. and Morey, R. C., 1986. The Use of Categorical Variables in Data Envelopment Analysis. Management Science, 32(12), pp.1613-1627.
13.Besemann, C. and Denton, A., 2005. Integration of Profile Hidden Markov Model Output into Association Rule Mining. KDD’05, August 21-24, Chicago, Illinois, USA.
14.Berhold, M. and Hand, D. J., 2003. Intelligent Data Analysis: An Introduction. 2nd revised and extended Edition. Springer-Verlag Berlin Heideberg.
15.Bezdek, J., 1996. Computational intelligence defined by everyone!. In: Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, O. Kaynak et al. (Eds.), Springer Verlag, Germany.
16.Blake, C.L., and Merz, C. J., 1998. UCI Repository of Machine Learning Databases. (download date : 2005/10) (http://www.ics.uci/edu/~mlern/MLRepository.html). Dept. of Information and Computer Science, University of California, Irvine CA.
17.Boussofiane, A., Dyson, R. G., and Thanassoulis, E., 1991. Applied data envelopment analysis. European Journal of Operational Research, 52, pp.1-15.
18.Brijs, T., Vanhoof, K., and Wets, G., 2000. Reducing redundancy in characteristic rule discovery by using integer programming techniques. In Inteligent Data Analysis Journal, volume 4:3. Elsevier.
19.Brijs, T,. Vanhoof, K., and Wets, G., 2003. Defining interestingness for association rules. International journal of information theories and applications, 10(4), pp.370-376.
20.Buntine, W., 1996. Graphical Models for Discovering Knowledge. In Advances in Knowledge Discovery and Data Mining, eds. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusmy, Menlo Park, Calif.: AAAI Press, pp.59-82.
21.Camstra, A., 1998. Cross-validation in covariance structure analysis. Unpublished doctoral dissertation, University of Groningen.
22.Charnes, A., Cooper, W.W., and Rhodes, E., 1978. Measuring the efficiency of decision-making units. European Journal of Operational Research 2, pp.429-444.
23.Charnes, A., Cooper, W.W., Golany, B., Seiford, L., and Stutz, J., 1985. Foundation of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics 30, pp.91-107.
24.Cheeseman, P., 1990. On Finding the Most Probable Model. In Computational Models of Scientific Discovery and Theory Formation, eds. J. Shrager and P. Langley, pp.73-95. San Francisco, Calif.: Morgan Kaufmann.
25.Cheng, J., Hatzis, C., Hayashi, H., Krogel, M., Morishita, S., Page, D., and Sese, J., 2001. KDD cup report, Acm SIGKDD Explorations 2(2).
26.Cinca, C.S., and Molinero, C.M., 2001. Selection DEA Specification and Units via PCA. University of Southampton(ISSN 1356-3548), Number M01-3.
27.Ding, C., He, X., Zha, H., and Simon, H., 2002. Unsupervised Learning: Self-aggregation in Scaled Principal Component Space. Proc. of PKDD2002, pp.112-124.
28.Djoko, S., Cook, D., and Holder, L., 1995. Analyzing the Benefits of Domain Knowledge in Substructure Discovery. In Proceedings of KDD-95: First International Conference on Knowledge Discovery and Data Mining, Menlo Park, Calif.: American Association for Artificial Intelligence. pp.75-80.
29.Doyle, J., and Green, R., 1994. Efficiency and cross-efficiency in DEA: Derivations, meaning and uses. Journal of the Operation Research Society, 45(50), pp.567-578.
30.Duda, R. O., Hart, P. E., and Stork, D.G., 2001. Pattern classification, Wiley 2nd edition.
31.Dyson, R. G., and Thannassoulis, E., 1988. Reducing weight flexibility in data envelopment analysis. Journal of Operational Research Society, 39(6), pp.563-576.
32.Dzeroski, S., 1996. Inductive Logic Programming for Knowledge Discovery in Databases. In Advances in Knowledge Discovery and Data Mining, eds. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusmy, Menlo Park, Calif.: AAAI Press, pp.59-82.
33.El-Hajj, M. and Zaïane, O., 2004. COFI Approach for Mining Frequent Itemsets Revisited. DMKD’04 June 13, Paris, France.
34.Farrel, M.J., 1957. The measurement of productive efficiency. Journal of the Royal Statistical Society A 120, pp.253-281.
35.Ferrer, E. and McArdle, J. J., 2003. Alternative Structural Models for Multivariate Longitudinal Data Analysis. Structural Equation Modeling, Vol. 10(4), pp.493-524.
36.Guillaume, S., Guillet, F., and Philipp, J., 1998. Improving the discovery of association rules with intensity of implication. In Principles of Data Mining and Knowledge Discovery, volume 1510 of Lecture Notes in Artificial Intelligence, pp.318-327.
37.Heckerman, D., 1996. Bayesian Networks for Knowledge Discovery. In Advances in Knowledge Discovery and Data Mining, eds. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusmy, Menlo Park, Calif.: AAAI Press, pp.273-306.
38.Heckerman, D., 1998. A tutorial on learning with Bayesian networks. In:M.I. Jordan (Ed.), Learning in Graphical Models, MIT press, pp.301-354.
39.Hoogland, J.J., 1999. The robustness of estimation methods for covariance structure analysis. Amsterdam: Thela Thesis. (doctoral dissertation, University of Groningen).
40.Jobson,J.D.,1992. Applied Multivariate Data Analysis. Springer-Verlag,New York, pp.513-515.
41.Jöreskog, K.G., 1967. Some contributions to maximum likelihood factor analysis. Psychometrika, 32(4), pp.443-482.
42.Jöreskog, K.G. and Sörbom, D., 1979. Advances in Factor Analysis and Structure Equation Models. Cambridge, MA: Abt Books.
43.Jöreskog, K.G., 1970. A general method for analysis of covariance structures. Biometrika, 57, pp.409-426.
44.Kleinberg, J., Papadimitriou, C., and Raghavan, P., 1998. A microeconomic view of data mining. In Knowledge Discovery and Data Mining, Kluwer Academic Publishers. Vol. 2:4, pp.254-260.
45.Klementtinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, I., 1994. Finding Interesting Rules from Large Sets of discovered association rules. Third International Conference on Information and Knowledge Management, pp.401-407.
46.Kohavi, R., John, G., Long, R., Manley, D., and Pfleger, K., 1994. MLC++: a machine learning library in C++. Tools with artificial Intelligence, pp.740-743.
47.Kohonen, T., 1990. The self-organizing map, Proceedings of the IEEE 78(9), pp.1464-1480.
48.Kuntz, L. and Scholtes, S., 2000. Measuring the Robustness of Empirical Efficiency Valuations. Management Science, Vol. 46, No. 6, June, pp.807-823.
49.Liu, B., and Hsu, W., 1996. Post-analysis of learned rules. In Proceedings of the Thirteenth National Conference on Artificial Intellignece, Lecture Notes in Artificial Intelligence, AAAI Press/MIT Press, pp.828-834.
50.Liu, B., Hsu, W., and Ma, Y., 1997. Pruning and summarizing the discovered associations. In D. Heckerman, H. manila, and D. Pregibon, editors, Proceeding of the Fifth International Conference on Knowledge Discovery & Data Mining, AAAI Press, pp.125-134.
51.Liu, B., Hsu, W., and Ma, Y., 1998. Integrating classification and association rule mining. In KDD-98, New York, Aug 27-31.
52.Liu, C. M., Hsu, H. S., Wang, S. T., and Lee, H. K., 2005. A Performance Evaluation Model Based on AHP and DEA. Journal of the Chinese Institute of Industrial Engineers, Vol. 22(3), pp.243-251.
53.Mannila, H., Toivonen, H., and Verkamo, A. I., 1995. Discovering Frequent Episodes in Sequences. IN Proceedings of the First Internal Conference on Knowledge Discovery and Data Mining(KDD-95), Menlo Park, Calif.: American Association for Artificial Intelligence, pp.210-215.
54.Matheus, C., Piatetsky-Shapiro, G., and McNeill, D., 1996. Selecting and Reporting What IS Interesting: The KefiR Application to Healthcare Data. In Advances in Knowledge Discovery and Data Mining, eds. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Menlo Park, Calif.: AAAI Press, pp.495-516.
55.Metes, G., Gundry, J., and Bradish, P., 1997. Agile networking: competing for the future through the internet and intranets, Prentice Hall PTR, Upper Saddle River, NJ.
56.Muesen, W. and Van den Broeck, J., 1977. Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. International Economic Review, 18, pp.435-444.
57.Omiecinski, E.R., 2003. Alternative Interest Measures for Mining Association Rule in Databases. IEEE Transactions on Knowledge and Data Engineering, 15(1), pp.57-69.
58.Padmanabhan, B. and Tuzhilin, A., 1999. Unexpectness as a measure of interestingness in knowledge discovery. In Decision Support Systems, Elsevier Science.Vol. 27, pp.303-318.
59.Post, T., 2001. Performance Evaluation in Stochastic Environments Using Mean-Variance Data Envelopment Analysis. Operation Research, 49(2), pp.281-292.
60.Pramudiono, I. and Kitsuregawa, M., 2004. FP-tax: Tree Structure Based Generalized Association Rule Mining. DMKD’04, June 13, Paris, France. ISBN1-58113-908-X/04/06.
61.Premachandra, I. M., 2001. A note on DEA vs principal component analysis: An improvement to Joe Zhu’s approach. European Journal of Operational Research, 132(3), pp.553-560.
62.Quinlan, J. R., 1993. C4.5: Programs for Machine Laerning. San Mateo, CA: Morgan Kaufmann.
63.Rousseau, J. J., and Semple, J. H., 1995. Two person ratio efficiency games. Management Science, 41(3), pp.435-441.
64.Savasere, A., Omiecinski, E., and Navathe, S., 1998. Mining for strong negative associations in a large databases of customer transactions. In:Proc. of ICDE, pp.494-502.
65.Sexton, T. R., Silkman, R. H., and Hogan, A., 1986. Data envelopment analysis: Critique and extensions. In R. H. Silkman(Ed.), Measuring efficiency: An assessment of data envelopment analysis. Publication no. 32 in the series New Directions of Program Evaluation, Jossey Bass, San Francisco.
66.Silverstein, C., Motwani, R., and Brin, S., 1998. Beyond Market Baskets: Generalizing Aassociation Rules to Dependence Rules. Sata Mining and Knowledge Discovery, Vol. 2, pp.39-68.
67.Simoudis, E., Livezey, B., and Kerber, R., 1995. Using Recon for Data Cleaning. In Proceedings of KDD-95: First International Conference on Knowledge Discovery and Data Mining Menlo Park, Calif.: American Association for Artificial Intelligence, pp.275-281.
68.Stolorz, P., Nakamura, H., Mesrobian, E., Muntz, R., Shek, E., Santos, J., Yi, J., Ng, K., Chien, S., Mechoso, C., and Farrara, J., 1995. Fast Spatio-Temporal Data Mining of Large Geophysical Datasets. N Proceedings of Kdd-95: First International Conference on Knowledge Discovery and Data Mining, Menlo Park, Calif.: American Association for Artificial Intelligence, pp.300-305.
69.Talluri, S. and Yoon K. P., 2000. A cone-ratio DEA approach for AMT justification. International Journal of Production Economics, 66, pp.119-129.
70.Teng, W., Hsieh, M., and Chen, M., 2002. On the mining of substitution rules for statistically dependent items. In: Proc. Of ICDM. pp.442-449.
71.Tiyagura, A., 1999. Mining Association Rules Based on Mutual Information. M.S thesis Dissertation at Iowa State University.
72.Wang, K., Tay, S. H. W., and Liu, B., 1998. Interestingness-based interval merger for numeric association rules. In R. Agrawal, P. Stolorz, and G. Piatetsky-Shaprio, editors, Proceedings of the Fourth International Conference on Knowledge Discovery & Data Mining, AAAI Press, pp.121-127.
73.Wheaton, B., Muthen, B., Alwin, D., and Summers, G., 1977. Assessing the reliability and stability in panel models. In D.R. Heise (ed), Sociological Methodology 1977.San Francisco: Jossey-Bass.
74.Wong, Y. H. B., and Beasley, J. E., 1990. Restricting weight flexibility in data envelopment analysis. Journal of the Operational Research Society, 41(9), pp.829-835.
75.Wu, X., Zhang, C., and Zhang, S., 2004. Mining both positive and negative association rules. ACm Transaction on Information Systems, 22(3), pp.381-405.
76.Xia, Y. Yang, Y. and Chi, Y., 2004. Mining Association Rules with Non-uniform Priovacy Concerns. DMKD’04 June 13, Paris, France. ISBN 1-58113-908-X/04/06.
77.Yuan, X., Buckles, B. P., Yuan, Z., and Zhang, J., 2002. Mining Negative Association Rules. Proceedings of the Seventh International Symposium on Computers and Communications (ISCC’02).
78.Zadeh, L., 1998. Roles of soft computing and fuzzy logic in the conception, design and deployment of information/intelligent systems, in: Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, O. Kaynak et al. (Eds.), Springer Verlag, Germany, pp.1-9.
79.Zaïane, O., Antonie, M. L., and Coman, A., 2002. Mammorgaphy Classification by an Association Rule-based Classifier. MDM/KDD 2002: Intenational Workshop on Multimedia Data Mining(with ACM SIGKDD 2002).
80.Zaki, M. J., 2004. Mining Non-Redundanct Association Rules. Data Mining and Knowledge Discovery, Vol. 9, pp.223-248.
81.Zhu, J., 1998. Data Envelopment Analysis vs. Principal Component Analysis: An Illustrative Study of Economic Performance of Chinese Cities. European Journal of Operational Research, Vol.111, pp.50-61.
82.Żytkow, J. M., 1997. Knowledge = concepts: a harmful equation. In Proceedings of KDD-97,. Menlo Park, CA:AAAI Press, pp.104-109.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top