:::

詳目顯示

回上一頁
題名:耐力運動後補充麩醯胺酸胜肽對恢復期能量代謝物質、血液中胺基酸與疲勞指標的影響
作者:傅正思 引用關係
作者(外文):Cheng-Sze Fu
校院名稱:國立體育學院
系所名稱:教練研究所
指導教授:許美智
學位類別:博士
出版日期:2007
主題關鍵詞:脂肪分解肌酸激酶糖質新生血氨乳酸血糖胰島素游離脂肪酸生醣性胺基酸麩醯胺酸胜甘油間白素-6麩醯胺酸lipolysisgluconeogenesiscreatine kinaseglutamine peptideglycerolIL-6glutamineGluconeogenic amino acidsfree fatty acidinsulinglucoselactateammonia
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(1) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:37
本研究目的在探討耐力運動後補充麩醯胺酸胜肽對恢復期能量代謝物質、血液中胺基酸與疲勞指標的影響。實驗採用隨機雙盲交叉設計,研究對象為7名健康之大學男性學生,以強度75%VO2max之跑步機耐力運動60分鐘後補充麩醯胺酸胜肽或安慰劑(0.1g/kg•bw),於運動前、運動後第0、15、30、45、60、90及120分鐘時採集血液進行生化值之分析,以重複量數二因子變異數分析檢定麩醯胺酸胜肽組(GP)及安慰劑組(PL)補充在運動前後各血點與兩組間各血點之差異,顯著差異水準α=.05。結果顯示,甘油濃度在運動恢復期60及90分鐘時,GP組顯著低於PL組;IL-6濃度在運動恢復期45及60分鐘時,GP組顯著高於PL組;麩醯胺酸濃度在運動恢復期15、30及45分鐘時,GP組顯著高於PL組;生醣性胺基酸濃度在運動恢復期30分鐘時,GP組顯著高於PL組;游離脂肪酸、胰島素、血糖、乳酸、血氨及肌酸激酶濃度在運動恢復期時,兩組之間並無顯著差異。由以上結果推測,補充麩醯胺酸胜肽,可提供糖質新生所需的原料來源,參與克氏循環以產生能量。麩醯胺酸胜肽可節省脂肪的能量消耗,降低脂肪分解作用,幫助運動後能量之回復。
The purpose of the study was to investigate the effects of glutamine peptide supplementation on energy metabolism substances, blood amino acids and fatigue markers during recovery from endurance exercise. In this randomized, double blind, crossover study, seven healthy male college students were randomly allocated into two treatment groups, glutamine peptide(GP) and placebo(PL). Subjects were assigned to run on a treadmill at an estimated speed corresponding to the 75% VO2max for 60 min, then the GP group received a 0.1g/kg•bw glutamine peptide solution and the PL group received hydroxypropyl methylcellulose solution, which has a similar in appearance and flavor. The concentrations of blood biochemical parameters were measured pre-exercise, post-exercise 0, 15, 30, 45, 60, 90 and 120-min. The results indicated that glycerol concentration at post-exercise 60 and 90min were significantly lower in GP group than in PL group. IL-6 concentration at post-exercise 45 and 60min were significantly higher in GP group than in PL group. Glutamine concentration at post-exercise 15, 30 and 45min were significantly higher in GP group than in PL group. Gluconeogenic amino acids concentration at post-exercise 30min were significantly higher in GP group than in PL group. There were no significantly difference in free fatty acid, insulin, glucose, lactate, ammonia and creatine kinase concentration for two groups during recovery from endurance exercise. In conclusion, ingestion of GP might help to improve gluconeogenesis, block lipolysis and increase energy utilization.
蔡崇濱(2004)。運動性疲勞的研究進展。成大體育,37(1),14-30。new window
Ahlborg, B. J., Bergstorm, L. G., Ekelund, & Hultman, E. (1967). Muscle glycogen and muscle electrolytes during prolong exercise. Acta Physiologica Scandinavica, 70, 129-142.
Akira, S., Taga, T., & Kishimoto, T. (1993). Interleukin-6 in biology and medicine. Advances in Immunology, 54, 1-78.
Bergstrom, J., Furst, P., & Hultman, E. (1985). Free amino acids in muscle tissue and plasma during exercise in man. Clinical Physiology, 5 (2), 155-160.
Block, K. P., & Buse, M. G. (1990). Glucocorticoid regulation of muscle branched-chain amino acid metabolism. Medicine and Science in Sports and Exercise, 22 (3), 316-324.
Bowtell, J. L., Gelly, K., Jackman, M. L., Patel, A., Simeoni, M., & Rennie, M. J. (1999). Effect of oral glutamine on whole body carbohydrate storage during recovery from exhaustive exercise. Journal of Applied Physiology, 86 (6), 1770-1777.
Brooks, G. A. (1987). Amino acid and protein metabolism during exercise and recovery. Medicine and Science in Sports and Exercise, 19 (5), 150-156.
Bruunsgaard, H., Galbo, H., Halkjaer-Kristensen, J., Johansen, T. L., MacLean, D. A., & Pedersen, B. K. (1997). Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. Journal of Physiology, 15 (3), 833-841.
Cersosimo, E., Williams, P., Hoxworth, B., Lacy, W., & Abumrad, N. (1986). Glutamine blocks lipolysis and ketogenesis of fasting. American Journal of Physiology, 250, 248-252.
Cora, W., Anita, M. H., Katrin, B., Hans, U. H., & Erwin, D. S. (2005). Interleukin-6 acts as insulin sensitizer on glycogen synthesis in human skeletal muscle cells by phosphorylation of Ser473 of Akt. American Journal of Physiology Endocrinology and Metabolism, 289, 251-257.
Croisier, J. L., Camus, G., Venneman, I., Deby-Dupont, G., Juchmesferir, A., & Lamy, M., et al. (1999). Effects of training on exercise-induced muscle damage and interleukin 6 production. Muscle and Nerve 22, 208-212.
Davis, J. M., Nathan, L. A., & Ralph, S. W. (2000). Serotonin and central nervous system fatigue: nutritional considerations. American Journal of Clinical Nutrition, 72, 573-578.
Dechelotte, P., Darmaun, D., Rongier, M., Hecketsweiler, B., Rigal, O., & Desjeux, J. F. (1991). Absorption and metabolic effects of enterally administered glutamine in humans. American Journal of Physiology, 260 (5 Pt 1), 677-682.new window
Dill, D. B., & Costill, D. L. (1974). Caculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37, 247-248.
Dinarello, C. (1997). Role of pro- and anti-inflammatory cytokines during inflammation: experimental and clinical findings. Journal of Biological Regulators and Homeostatic Agents, 11, 91-103.
Febbraio, M. A., & Pedersen, B. K. (2002). Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. Official Publication of the Federation of American Societies for Experimental Biology, 16, 1335-1347.
Felig, P., & Wahren, J. (1971). Amino acid metabolism in exercising man. Journal of Clinical Investigation, 50, 2703-2714.
Frayn, K. N., Khan, K., Coppack, S. W., & Elia, M. (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science, 80, 471-474.
Furst, P. (2001). New developments in glutamine delivery. Journal of Nutrition, 131, 2562-2568.
Ganapathy, V., & Leibach, F. H. (1995). Is intestinal peptide transport energizes by a proton gradient?. American Journal of Physiology, 249, G153-160.
Gore, D. C., & Jahoor, F. (1994). Glutamine kinetics in burn patients comparison with hormonally induced stress in volunteers. Archives of Surgery, 129, 1318-1323.
Gropper, S. S., Smith, J. L., & Groff, J. L. (2004). Advanced nutrition and human metabolism (4th ed.). Belmont, CA: Thomson Learing.
Haegeman, G., Content, J., Volckaert, G., Derynck, R., Tavernier, J., & Fiers, W. (1986). Structural analysis of the sequence coding for an inducible 26-kDa protein in human fibroblasts. European Journal of Biochemistry, 159, 625-632.
Hellsten, Y., Frandsen, U., Orthenblad, N., Sjodin, N., & Richter, E. A. (1997). Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. Journal of Physiology, 498, 239-248.
Henriksson, J. (1991). Effect of exercise on amino acid concentrations in skeletal muscle and plasma. Journal of Experiment Biology, 160, 149-165.
Hibi, M., Nakajima, K., & Hirano, T. (1996). IL-6 cytokine family and signal transduction: a model of the cytokine system. Journal of Molecular Medicine, 74, 1-12.
Hirano, T., Matsuda, T., & Nakajima, K. (1994). Signal transduction through gp130 that is shared among the receptors for the interleukin 6 related cytokine subfamily. Stem Cells, 12, 262-277.
Hirano, T., Yasukawa, K., Harada, H., Taga, T., Watanabe, Y., & Matsuda, T., et al. (1986). Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature, 324, 73-76.
Hiscock, N., & Mackinnon, L. T. (1998). A comparison of plasma glutamine concentration in athletes from different sports. Medecine and Science in Sports and Exercise, 30 (12), 1693-1696.
Howlett, K., Febbraio, M., & Hargreaves, M. (1999). Glucose production during strenuous exercise in humans: role of epinephrine. American Journal of Physiology, 276, E1130-1135.
Iwashita, S., Williams, P., Jabbour, K., Ueda, T., Kobayashi, H., & Baier, S., et al. (2005). Impact of glutamine supplementation on glucose homeostasis during and after exercise. Journal of Applied Physiology, 99 (5), 1858-1865.
Jeukendrup, A. E., Saris, W. H., & Wagenmakers, A. J. (1998). Fat metabolism during exercise: a review. Part I: fatty acid mobilization and muscle metabolism. International Journal of Sports Medicine, 19 (4), 231-244.
Jonsdottir, I. H., Schjerling, P., Ostrowski, K., Asp, S., Richter, E. A., & Pedersen, B. K. (2000). Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles. Journal of Physiology, 528, 157-163.
Karlsson, J., & Saltin, B. (1971). Diet, muscle glycogen and endurance performance. Journal of Applied Physiology, 31, 203-206.
Keisuke, S., Ikuo, T., Keishoku, S., & Yoshio, S. (2004). Effects of distance running and subsequent intake of glutamine rich peptide on biomedical parameters of male Japanese athletes. Nutrition Research, 24, 59-71.
Lehninger, A. L., Nelson, D. L., & Cox, M. M. (1993). Principles of biochemistry (2nd ed.). New york : Worth Publishers.
Lowenstein, J. M. (1972). Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiology Review, 52, 382-414.
Maclaren, D. P., Gibson, H., Parry-Billings, M., & Edwards, R. H. (1989). A review of metabolic and physiological factor in fatigue. Exercise and Sports Science Reviews, 17, 29-66.
Mathews, C. K., & Holde, K. E. V. (1990). Biochemistry. New York: Benjamin/Cummings.
Maughan, R. J., & Shirreffs, S. M. (1996). Biochemistry of exercise Ⅸ. Champaign, IL: Human Kinetics.
May, L. T., Helfgott, D. C., & Sehgal, P. B. (1986). Anti-binterferon antibodies inhibit the increased expression of HLA-B7 mRNA in tumor necrosis factor-treated human fibroblasts: structural studies of the b2 interferon involved. Proceedings of the National Academy of Sciences of the USA, 83, 8957-8961.
McArdle, W. D., Katch, F. I., & Katch, V. L. (2001). Exercise physiology: energy, nutrition, and human performance (4th ed.). Baltimore: Lippincott Williams & Wilkins.
McConnell, T. R. (1988). Pratical considerations in the testing of VO2max in runners. Sports Medicine, 5, 57-68.
Mohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D. R., Miles, J. M., & Yudkin, J. S., et al. (1997). Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-a, in vivo. Journal of Clinical Endocrinology and Metabolism, 82, 4196-4200.
Newsholme, E. A. (1996). The possible role of glutamine in some cells of the immune system and the possible consequence for the whole animal. Experientia, 52 (5), 455-459.
Newsholme, E. A., Acworth, I. N., & Blomstrand, E. (1987). Amino acids, brain neurotransmitters and a function link between muscle and brain that is important in sustained exercise. Advances in myochemistry, London, John Libbey Eurotext.
Newsholme, P., Procopio, J., Lima, M. M., Pithon-Curi, T. C., Curi, R. (2003). Glutamine and glutamate- their central role in cell metabolism and function. Cell Biochemistry and Function, 21 (1), 1-9.new window
Nielsen, H. B., Secher, N. H., Christensen, N. J., & Pedersen, B. K. (1996). Lymphocytes and NK cell activity during repeated bouts of maximal exercise. American Journal of Physiology, 271, 222-227.
Nurjhan, N., Bucci, A., Perriello, G., Stumvoll, M., Dailey, G., & Bier, D.M., et al. (1995). Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. Journal of Clinical Investigation, 95 (1), 272-277.new window
Ostrowski, K., Hermann, C., Bangash, A., Schjerling, P., Nielsen, J. N., & Pedersen, B. K. (1998). A trauma-like elevation in plasma cytokines in humans in response to treadmill running. Journal of Physiology, 508, 949-953.
Ostrowski, K., Rohde, T., Asp, S., Schjerling, P., & Pedersen, B. K. (2001). Chemokines are elevated in plasma after strenuous exercise. European Journal of Applied Physiology, 84, 244-245.
Ostrowski, K., Rohde, T., Asp, S., Schjerling, P., & Pedersen, B. K. (1999). Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. Journal of Physiology, 515, 287-291.
Parry-Billings, M., Budgett, R., Koutedakis, Y., Blomstrand, E., Brooks, S., & Williams, C., et al. (1992). Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Medicine and Science in Sports and Exercise, 24 (12), 1353-1358.
Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the immune system: regulation, integration and adaptation. Physiological Reviews, 80, 1055-1081.
Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001a). Exercise and interleukin-6. Current Opinion in Hematology, 8, 137-141.
Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001b). Muscle-derived interleukin-6: possible biological effects. Journal of Physiology, 536 (2), 329-337.
Petersen, E. W., Ostrowski, K., Ibfelt, T., Richelle, M., Offord, E., & Halkjaer-Kristensen, J., et al. (2001). Effect of vitamin supplementation on the cytokine response and on muscle damage following strenuous exercise. American Journal of Physiology, 280, 1570-1575.
Pickup, J. C., Chusney, G. D., Thomas, S. M., & Burt, D. (2000). Plasma interleukin-6, tumour necrosis factor and blood cytokine production in type 2 diabetes. Life Sciences, 67, 291-300.
Powers, S. K., & Hokey, E. T. (2001). Exercise physiology theory and application to fitness and performance. Boston: McGraw Hill.
Rennie, M. J., & Tipton, K. D. (2000). Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annual Review of Nutrition, 20, 457-483.
Romijn, J. A., Coyle, E. F., Sidossis, L. S., Gastaldelli, A., Horowitz, J. F., & Endert, E., et al. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, 265 (3 Pt 1), E380-391.new window
Rowbottom, D. G., Keast, D., & Morton, A. R. (1996). The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Medicine, 21, 80-97.
Schwarz, E. L., Roberts, W. L., & Pasquali, M. (2004). Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection. International Journal of Clinical Chemistry, 354 (1-2), 83-90.
Smith, L. L. (2000). Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress?. Medicine and Science in Sports and Exercise, 32 (2), 317-331.
Souba, W. W., Herskowitz, K., Salloum, R. M., Chen, M. K., & Austgen, T. R. (1990). Gut glutamine metabolism. Journal of Parenteral and Enteral Nutrition, 14 (4), 450-454.
Souba, W. W., Pacitti, A. J. (1992). How amino acids get into cells: mechanisms, models, menus, and mediators. Journal of Parenteral and Enteral Nutrition, 16, 569-578.
Starkie, R. L., Angus, D. J., Rolland, J., Hargreaves, M., & Febbraio, M. A. (2000). Effect of prolonged submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. Journal of Physiology, 528, 647-655.
Starkie, R. L., Arkinstall, M. J., Koukoulas, I., Hawley, J. A., & Febbraio, M. A. (2001). Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. Journal of Physiology, 533, 585-591.
Steensberg, A., Vanhall, G., Osada, T., Sacchetti, M., Saltin, B., & Pedersen, B. K. (2000). Production of interleukin-6 in contracting human skeletal muscles can account for the exerciseinduced increase in plasma interleukin-6. Journal of Physiology, 529, 237-242.
Stouthard, J. M., Oude-Elferink, R. P., & Sauerwein, H. P. (1996). Interleukin-6 enhances glucose transport in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 220, 241-245.
Suzuki, K., Yamada, M., Kurakake, S., Okamura, N., Yamaya, K., Liu. Q., et al. (2000). Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans. European Journal of Applied Physiology, 81 (4), 281-287.
Timothy, P. G., & Joel, M. S. (1999). The effect of exercise modality on exercise-induced hypoxemia. Respiration Physiology, 115, 317-323.
Tsigos, C., Papanicolaou, D. A., Kyrou, I., Defensor, R., Mitsiadis, C. S., & Chrousos, G. P. (1997). Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. Journal of Clinical Endocrinology and Metabolism, 82 (12), 4167-4170.
Tuttle, J. L., Potteiger, J. A., Evans, B. W., & Ozmun, J. C. (1995). Effect of acute potassium-magnesium aspartate supplementation on ammonia concentrations during and after resistance training. International Journal of Sport Nutrition, 5 (2), 102-109.
Van, H. G., & Saris, W. H. (2000). The effect of glutamine and peptide ingestion on the rate of muscle glycogen resynthesis in man. International Journal of Sports Medicine, 21, 25-30.
Van, H. G., Saris, W. H., & Wagenmakers, A. J. (1998). Effect of carbohydrate supplementation on plasma glutamine during prolonged exercise and recovery. International Journal of Sports Medicine, 19 (2), 82-86.
Williams, B. D., Wolfe, R. R., Bracy, D. P., & Wasserman, D. H. (1996). Gut proteolysis contributes essential amino acids during exercise. American Journal of Physiology, 270 (1), 85-90.new window
Wolf, R. R., Klein, S., Carraro, F., & Weber, J. M. (1990). Role of triglyceride-fatty acid cycling in controlling fat metabolism in humans during and after exercise. American Journal of Physiology, 258, 382-389.
Zilberstein, A., Ruggieri, R., Korn, J. H., & Revel, M. (1986). Structure and expression of cDNA and genes for human interferon-b-2, a distinct species inducible by growth-stimulatory cytokines. European Molecular Biology Organization Journal, 5, 2529-2537.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE