:::

詳目顯示

回上一頁
題名:補充麩醯胺對耐力運動恢復期生化值之影響
作者:何應志
作者(外文):Ying-Chih Ho
校院名稱:國立體育學院
系所名稱:體育研究所
指導教授:許美智
學位類別:博士
出版日期:2007
主題關鍵詞:蛋白質水解脂解作用磷酸肌酶血氨乳酸支鏈胺基酸間白素-6胰島素游離脂肪酸甘油葡萄糖麩醯胺glutamineglucoseinsulinfree fatty acidglycerolIL-6lactateammoniacreatine kinaseBCAAlipolysisproteolysis.
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:26
本研究針對麩醯胺(glutamine)進行耐力運動後之補充,探討其對耐力運動後恢復期能量利用、胺基酸平衡及其他疲勞相關生化值之影響。本研究以10位國立體育學院柔道隊選手為受試者,實驗採用雙盲交叉設計,每位受試者必須在進行1小時75%VO2max強度之運動後,分別補充0.1g/kg-bw 之L-glutamine或安慰劑(成分為methylcellulose),於運動前、運動後第0, 15, 30, 45, 60, 90, 120分鐘進行靜脈採血,並進行相關血液生化値分析。結果顯示補充glutamine對恢復期血中葡萄糖及胰島素濃度並無明顯之影響,但在脂肪代謝上,補充組血中甘油濃度於恢復期60、90及120分鐘時皆明顯低於安慰劑組,游離脂肪酸之濃度也有低於安慰組之趨勢,此外補充組血中間白素-6(IL-6)濃度,在運動過後持續維持在明顯高於安慰劑組之濃度;在血中胺基酸濃度上,補充組於恢復期中,血中glutamine濃度始終高於安慰劑組,同時因代謝之影響,麩胺酸(glutamate)、及丙胺酸(alanine)之濃度於於恢復期15分鐘時亦明顯高於安慰劑組,而支鏈胺基酸(branched-chain amino acid, BCAA)濃度則在恢復期45分鐘時,明顯低於安慰劑組,而在恢復期120分鐘時則發現血中苯丙胺酸(phenylalanine)與酪胺酸(tyrosine)明顯高於安慰劑組,此外在恢復期120分鐘時安慰劑組大部份之胺基酸濃度皆明顯低於運動前,而補充組僅有glutamate之濃度明顯低於運動前;而在肌酸肌酶(creatine kinase;CK)、乳酸(lactate)及血氨(NH3)之比較上,兩組間並無明顯之差異。所以,在耐力運動後補充glutamine,可明顯抑制體內的脂解作用(lipolysis),同時讓IL-6 的濃度維持在較高之濃度,IL-6在運動後胰島素濃度較低之情況下,發揮其類荷爾蒙之作用,促進肝臟產生更多的葡萄糖,以及讓葡萄糖更快速的進入肌肉中,因而提高了身體對醣的利用率。另外,補充glutamine可避免耐力運動後血中glutamine及其它胺基酸濃度之下降,同時可以抑制BCAA之代謝,減緩蛋白質水解(proteolysis)的發生,因此可避免耐力運動後所造成之免疫功能之下降,與肌肉蛋白分解;此外,補充glutamine並無法較快清除乳酸及NH3,以及降低CK值,對於運動後的之疲勞恢復並無較有利之影響。
This study investigated the effects of glutamine supplement on metabolic responses during recovery after endurance exercise. In this randomized, crossover study, seven healthy male judo athletes were randomly divided into two groups and performed a single bout of exercise at an estimated speed corresponding to the 75﹪VO2max for 60 min, and then, took either a placebo or glutamine at 0.1g/kg-wt. Blood samples of each athlete were collected before exercise, and 0, 15, 30, 45, 60, 90, 120 minutes after exercise, respectively. The experiment was repeated two weeks later, but treatments were exchanged for two groups. The concentrations of glucose, insulin, free fatty acid, glycerol, IL-6, lactate, ammonia, creatine kinase, and 19 amino aicds in blood were examined. No differences in the levels of glucose, insulin, lactate, ammonia, or creatine kinase between two groups were observed. Compared to the placebo group, the concentration of glycerol in the glutamine group was significantly lower at 45, 60, and 120-min recovery period, and the concentration of IL-6 was significantly higher at 30, 45, 60, and 120-min recovery period. In the concentration of blood amino acids, the glutamine concentration were significantly higher during the 120-min recovery period in glutamine group, and the alanine and glutamate concentration in glutamine group also show significantly higher at the 15-min recovery period. Furthermore, the BCAA concentration in glutamine group was lower at 45-min recovery period, and the phenylalanine and tyrosine concentration were lower at 120-min recovery period. The concentration of most amino acids in placebo group at 120-min recovery period were significant lower than pre-exercise, but only glutamate in glutamine group. The results indicate that glutamine supplement during exercise recovery period could inhibit the lipolysis, and induce the higher IL-6 level, and this make advantage to glucose utilization for body. Glutamine supplement also prevent the glutamine depletion, maintain the blood concentration of glutamine and other amino aicds after the endurance exercise, and high level of blood glutamine concentration may reduce the BCAA metabolism, decreased the proteolysis during the recovery period.
Abumrad, N. N., Yazigi N., Cersosimo, E., Hourani, H., Gedde, S., Bulus, N., & Williams, P. (1990). Glutamine metabolism during starvation. Journal of Parenteral & Enteral Nutrition, 14(4 Suppl), 71S-76S.
Aikawa, T., Matsutaka, H., Takezawa, K., & Ishikawa, E. (1972). Gluconeogenesis and amino acid metabolism. I. Comparison of various precursors for hepatic gluconeogenesis in vivo. International journal of biochemistry & biophysics, 279(2), 234-244.
Astrand, P. O., Hultman, E., Juhlin-Dannfelt, A, & Reynolds, G. (1986). Disposal of lactate during and after strenuous exercise in humans. Journal of Applied Physiology, 61(1), 338-343.new window
Bangsbo, J., Madsen, K., Kiens, B., & Richter, E. A. (1997). Muscle glycogen synthesis in recovery from intense exercise in humans. American Journal of Physiology, 273, E416-E424.
Bergstrom, J., Furst, P., & Hultman, E. (1985). Free amino acids in muscle tissue and plasma during exercise in man. Clinical Physiology, 5(2), 155-160.
Bonen, A., McDermott, J. C., & Tan, M. H. (1990). Glycogenesis and glyconeogenesis in skeletal muscle: effects of pH and hormones. American Journal of Physiology, 258, E693-E700.
Bowtell, J. L., Gelly, K., Jackman, M. L., Patel, A., Simeoni, M., & Rennie M. J. (1999). Effect of oral glutamine on whole body carbohydrate storage during recovery from exhaustive exercise. Journal of Applied Physiology, 86, 1770-1777.
Brooks, G. A. (1987). Amino acid and protein metabolism during exercise and recovery. Medicine & Science in Sports & Exercise, 19(5 Suppl), S150-S156.
Cersosimo, E., Williams, P., Hoxworth, B., Lacy, W., & Abumrad, N. (1986). Glutamine blocks lipolysis and ketogenesis of fasting. American Journal of Physiology, 250(3 Pt 1), E248-E252.new window
Cohen, S. A., & DeAntonis, K. M. (1994). Applications of amino acid derivatization with 6-aminoquinolyl-N- hydroxysuccinimidyl carbamate analysis of feed grains, intravenous solutions and glycoproteins. Journal of Chromatography A, 661, 25-34.
Cohen, S. A., & Michaud, D. P. (1993). Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N- hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Analytical Biochemistry, 279-287.
Cohen, S.A., & van Wandelen, C. (1997). Amino acid analysis of unusual and complex samples based on 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization. Techniques in Protein Chemistry VIII, 185-196.
Dechelotte, P., Darmaun, D., Rongier, M., Hecketsweiler, B., Rigal, O., & Desjeux, J.F. (1991). Absorption and metabolic effects of enterally administered glutamine in humans. American Journal of Physiology, 260, G677-G682.
Deeney, J. T., Prentki, M., & Corkey, B. E. (2000). Metabolic control of betacell function. Seminars in Cell & Developmental Biology, 11, 267-275.
Dill, D. B., & Costill, D. L. (1974). Caculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37, 247-248.
Eriksson, L. S., Broberg, S., Bjorkman, O., & Wahren, J. (1985). Ammonia metabolism during exercise in man. Clinical Physiology, 5(4), 325-336.
Febbraio, M. A., & Pedersen, B. K. (2002). Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. The FASEB Journal, 16, 1335-1347.
Frayn, K. N., Khan, K., Coppack, S. W., & Elia, M. (1991). Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science, 80, 471-474.
Gao, Z. Y., Li, G., Najafi, H., Wolf, B. A., & Matschinsky, F. M. (1999). Glucose regulation of glutaminolysis and its role in insulin secretion. Diabetes, 48, 1535-1542.
Garber, A., Karl, I., & Kipnis, D. (1976). Alanine and glutamine synthesis and release from skeletal muscle II the precursor role of amino acids in alanine and glutamine synthesis. The Journal of Biological Chemistry, 251, 836-843.
Hankard, R. G., Darmaun, D., Sager, B. K., Amore, D. D., Parsons, W. R., & Haymond, M. (1995). Response of glutamine metabolism to exogenous glutamine in humans. American Journal of Physiology: Endocrinology & Metabolism, 269, E663-E670.
Hankard, R. G., Haymond, M. W., & Darmaun, D. (1996). Effect of glutamine on leucine metabolism in humans. American Journal of Physiology, 271, E748-E754.
Hermansen, L., & Vaage, O. (1977). Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. American Journal of Physiology, 233(5), E422-E429.
Herrera, M., Kamm, D., Ruderman, N., & Cahill, G. (1967). Non-hormonal factors in the control of gluconeogenesis in the rat. The Journal of Biological Chemistry, 242, 3620-3627.
Hickson, R. C., Czerwinski, S. M., & Wegrzyn, L. E. (1995). Glutamine prevents downregulation of myosin heavy chain synthesis and muscle atrophy from glucocorticoids. American Journal of Physiology, 268, E730-E734.
Hiscock, N., Petersen, E. W., Krzywkowski, K., Boza, J., Halkjaer-Kristensen, J., & Pedersen, B. K. (2003). Glutamine supplementation further enhances exercise-induced plasma IL-6. Journal of Applied Physiology, 95(1), 145-148.new window
Holecek, M. (2002). Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition, 18(2), 130-133.
Holecek, M., Skopec, F., Skalska, H., & Sprongl, L. (2000). Effect of alanyl-glutamine on leucine and protein metabolism in endotoxemic rats. Journal of Parenteral & Enteral Nutrition, 24(4), 215-222.
Holmes, A. G., Watt, M. J., & Febbraio, M. A. (2004). Suppressing lipolysis increases interleukin-6 at rest and during prolonged moderate-intensity exercise in humans. Journal of Applied Physiology, 97(2), 689-696.
Iwashita, S., Mikus, C., Baier, S., & Flakoll, P. J. (2006). Glutamine supplementation increases postprandial energy expenditure and fat oxidation in humans. Journal of Parenteral & Enteral Nutrition, 30(2), 76-80.
Iwashita, S., Williams, P., Jabbour, K., Ueda, T., Kobayashi, H., Baier, S., & Flakoll, P. J. (2005). Impact of glutamine supplementation on glucose homeostasis during and after exercise. Journal of Applied Physiology, 99(5), 1858-65.
Jahoor, F., Peters, E. J., & Wolfe, R. R. (1990). The relationship between gluconeogenic substrate supply and glucose production in humans. American Journal of Physiology, 258, E288-E296.
Jenssen, T., Nurjhan, N., Consoli, A., & Gerich, J. E. (1993). Dose-response effects of lactate infusions on gluconeogenesis from lactate in normal man. European Journal of Clinical Investigation, 23(8), 448-454.
Jenssen, T., Nurjhan, N., Consoli, A., & Gerich, J. E. (1990). Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans. Demonstration of hepatic autoregulation without a change in plasma glucose concentration. The Journal of Clinical Investigation, 86(2), 489-497.
Kaloyianni, M., & Freedland, R. A. (1990). Contribution of several amino acids and lactate to gluconeogenesis in hepatocytes isolated from rats fed various diets. The Journal of Nutrition, 120, 116-122.
Krishna, M. G., Coker, R. H., Lacy, D. B., Zinker, B. A., Halseth, A. E., & Wasserman, D. H. (2000). Glucacon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal. American Journal of Physiology: Endocrinology & Metabolism, 279, E638-E645.
Lacey, J. M., & Wilmore, D. W. (1990). Is glutamine a conditionally essential amino acid? Nutrition Reviews, 48(8), 297-309.
Lehninger, A. L., Nelson, D. I., & Cox, M. M. (1993). Principles of Biochemistry, 2nd ed. Worth Publishers, New York, NY, 628-633.
MacLean, D. A., Spriet, L. L., Hultman, E., & Graham, T. E. (1991). Plasma and muscle amino acid and ammonia responses during prolonged exercise in humans. Journal of Applied Physiology, 70(5), 2095-2103.
MacLennan, P. A., Brown, R. A., & Rennie, M. J. (1987). A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Lett, 215, 187-191.
MacLennan, P. A., Smith, K., Weryk, B., Watt, P. W., & Rennie, M. J. (1988). Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett, 237, 133-136.
McConnell, T. R. (1988). Pratical considerations in the testing of VO2max in runners. Sports Medicine, 5, 57-68.
Mourtzakis, M., & Graham, T. E. (2002). Glutamate ingestion and its effects at rest and during exercise in humans. Journal of Applied Physiology, 93(4), 1251-1259.
Newsholme, E., & Hardy, G. (1997). Supplementation of diets with nutritional pharmaceuticals. Nutrition, 13(9), 837-839.
Newsholme, P., Procopio, J., Lima, M. M., Pithon-Curi, T. C., & Curi, R. (2003). Glutamine and glutamate--their central role in cell metabolism and function. Cell Biochemistry & Function, 21(1), 1-9.new window
Nurjhan, N., Bucci, A., Perriello, G., Stumvoll, M., Dailey, G., Bier, D., Toft, I., Jenssen, T., & Gerich, J. (1995). Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man. The Journal of Clinical Investigation, 95, 272-277.
Nurjhan, N., Consoli, A., & Gerich, J. (1992). Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. The Journal of Clinical Investigation, 89(1), 169-175.new window
Opara, E. C., Petro, A., Tevrizian, A., Feinglos, M. N., & Surwit, R. S. (1996). L-glutamine supplementation of a high fat diet reduces body weight and attenuates hyperglycemia in C57BL/6J mice. The Journal of Nutrition, 126, 273-279.
Ostenson, C. G., & Grebing, C. (1985). Evidence for metabolic regulation of pancreatic glucagon secretion by L-glutamine. Acta Endocrinologica, 108(3), 386-391.
Ostrowski, K., Rohde, T., Zacho, M., Asp, S., & Pedersen, B. K. (1998). Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running, Journal Physiology ( Lond.), 508, 949-953.
Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Exercise and interleukin-6. Current Opinion in Hematology, 8, 137-141.
Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Muscle-derived interleukin-6: possible biological effects. The Journal of Physiology, 536, 329-337.
Perriello, G., Nurjhan, N., Stumvoll, M., Bucci, A., Welle, S., Dailey, G., Bier, D. M., Toft, I., Jenssen, T. G., & Gerich, J. E. (1997). Regulation of gluconeogenesis by glutamine in normal post-absorptive humans. American Journal of Physiology, 272, E437-E445.
Rennie, M. J., & Tipton, K. D. (2000). Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annual Review of Nutrition, 20, 457-483.
Rennie, M. J., Edwards, R. H., Krywawych, S., Davies, C. T., Halliday, D., Waterlow, J. C., & Millward, D. J. (1981). Effect of exercise on protein turnover in man. Clinical Science, 61(5), 627-639.
Rowbottom, D. G., Keast, D., & Morton, A. R. (1996). The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Medicine, 21, 80-97.
Sahlin, K., Katz, A., & Broberg, S. (1990). Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. American Journal of Physiology, 259, C834-C841.
Schoolwerth, A., Smith, B. & Culpepper, R. (1994). Renal gluconeogenesis. Mineral and Electrolyte Metabolism, 14, 347-361.
Scislowski, P. W. D., Niblock, A., Lindsay, Y., Weryk, B., Watt, P. W., & Rennie, M. J. (1989). Glutamine stimulates glycogen synthesis in skeletal muscle (Abstract). Clinical Nutrition, 8, P80.
Shimomura, Y., Murakami, T., Nakai, N., Nagasaki, M., & Harris, R. A. (2004). Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. The Journal of Nutrition, 134(6 Suppl), 1583S-1587S.
Singleton, K. D., & Wischmeyer, P. E. (2006). Oral glutamine enhances heat shock protein expression and improves survival following hyperthermia. Shock, 25(3), 295-299.
Singleton, K. D., Serkova, N., Beckey, V. E., & Wischmeyer, P. E. (2005). Glutamine attenuates lung injury and improves survival after sepsis: role of enhanced heat shock protein expression. Critical Care Medicine, 33(6), 1206-1213.
Tanizawa, Y., Nakai, K., & Sasaki, T. (2002). Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion. Diabetes, 51, 712-717.
Timothy, P. G., & Joel, M. S. (1999). The effect of exercise modality on exercise-induced hypoxemia. Respiration Physiology, 115, 317-323.
Tipton, K. D., Ferrando, A. A., Phillips, S. M., Doyle, D. Jr., & Wolfe, R. R. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. American Journal of Physiology, 276, E628-E634.
van Loon, L. J. C., Saris, W. H. S., Kruijshoop, M., & Wagenmarkers, A. J. M. (2000). Maximising post-exercise muscle glycogen synthesis: Carbohydrate supplementation and the application of amino acid and protein hydrolysate mixtures. The American Journal of Clinical Nutrition, 72, 106-111.
van Hall, G., Saris, W. H. M., van de Schoor, P. A. I., & Wagenmakers, A. J. M. (2000). The effect of free glutamine and peptide ingestion on the rate of muscle glycogen resynthesis in man. International Journal of Sports Medicine, 21, 25-30.
Varnier, M., Leese, G. P., Thompson, J., & Rennie, M. J. (1995). Stimulatory effect of glutamine on glycogen accumulation in human skeletal muscle. American Journal of Physiology: Endocrinology & Metabolism, 269, E309–E315.
Vom Dahl, S., & Haussinger, D. (1996). Nutritional state and swelling-induced inhibition of proteolysis in perfused rat liver. The Journal of Nutrition, 126, 395-402.
Weigert, C., Hennige, A. M., Brodbeck, K., Haring, H. U., & Schleicher, E. D. (2005). Interleukin-6 acts as insulin sensitizer on glycogen synthesis in human skeletal muscle cells by phosphorylation of Ser473 of Akt. American Journal of Physiology: Endocrinology & Metabolism, 289(2), E251-E257.
Weingartmann, G., Fridrich, P., Mauritz, W., Gotzinger, P., Mittlbock, M., Germann, P., Karner., J., & Roth, E. (1996). Safety and efficacy of increasing dosages of glycly-glutamine for total parenteral nutrition in polytrauma patients. Wiener Klinische Wochenschrift, 108, 683-688.
Wirthensohn, G., & Guder, W. (1986). Renal substrate metabolism. Physiological Reviews, 66, 469-497.
Wischmeyer, P., & John, M. (2004). Kinney International Award for General Nutrition. Glutamine, heat shock protein, and inflammation--opportunity from the midst of difficulty. Nutrition, 20(6), 583-585.
Wischmeyer, P. E. (2006). Glutamine: the first clinically relevant pharmacological regulator of heat shock protein expression? Current Opinion in Clinical Nutrition & Metabolic Care, 9(3), 201-206.
Ziegler, T. R., Benfell, K., Smith, R. J., Young, L. S., Brown, E., Ferrari-Baliviera, E., Lowe, D. K., & Wilmore, D. W. (1990). Safety and metabolic effects of L-glutamine administration in humans. Journal of the Parenteral Entral Nutrition, 14, 137S-146S.
Ziegler, T. R., Ogden, L. G., Singleton, K. D., Luo, M., Fernandez-Estivariz, C., Griffith, D. P., Galloway, J. R., & Wischmeyer, P. E. (2005). Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Medicine, 31(8), 1079-1086.
Ziegler, T. R., Young, L. S., Benfell, K., Scheltinga, M., Hortos, K., Bye, R., Morrow, F. D., Jacobs, D. O., Smith, R. J., & Antin, J. H. (1992). Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Annals of Internal Medicine, 116(10), 821-828.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top