:::

詳目顯示

回上一頁
題名:精胺酸補充劑對運動後葡萄糖、游離脂肪酸及抗疲勞的影響
作者:蔡佈曦 引用關係
作者(外文):Pu-Hsi Tsai
校院名稱:國立體育學院
系所名稱:體育研究所
指導教授:許美智
學位類別:博士
出版日期:2007
主題關鍵詞:代謝反應抗疲勞作用精胺酸arginineanti-fatigue effectmetabolic responses
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:36
本研究分兩部分,第一個研究在探討補充精胺酸對於人體抗疲勞的影響。本實驗採用隨機、雙盲、交叉設計,研究對象為12位健康男學生,每天補充安慰劑(PL組)或精胺酸(AR組)0.2g/kg/wt,為期28天,經過14天的停用期,再補充精胺酸或安慰劑。在補充期之後進行單次跑步機力竭運動,於運動前、運動中第15分鐘、運動後第0、20、60、120分鐘進行靜脈採血。並以氫磁振光譜(1H-MRS)測量精胺酸補充前後比目魚肌及脛前肌中肌酸儲存量的變化。
研究結果顯示補充AR組運動力竭時間顯著高於PL組,而力竭點的血乳酸濃度AR組顯著高於PL組,運動恢復期AR組的血糖濃度於運動後60及120分鐘顯著高於PL組。血氨、肌酸激酶、游離脂肪酸、氧脈、比目魚肌及脛前肌中的肌酸儲存量則兩組之間沒有顯著差異。以上結果顯示,補充精胺酸有助於高強度力竭運動的運動表現及生理上恢復的效果,表示精胺酸在力竭運動後具抗疲勞的效益。
第二個研究旨在探討補充精胺酸對於運動員在耐力運動恢復期代謝反應的影響。本研究對象為12位健康柔道選手,以強度75%VO2max之跑步機耐力運動60分鐘後隨機分兩組,補充精胺酸或安慰劑0.1g/kg/wt,經過兩週以後,再交換補充精胺酸或安慰劑。於運動前、運動後第0、15、30、45、60、90、120分鐘進行靜脈採血。測量血液中血糖、胰島素、游離脂肪酸、甘油、血乳酸、血氨、肌酸激酶、細胞介質素-6、及一氧化氮的濃度。
研究結果顯示:運動後恢復期間之甘油、血乳酸、血氨、肌酸激酶活性、細胞介質素-6、及一氧化氮兩組間並未達顯著差異。而AR組之血糖濃度於運動後15分鐘顯著高於PL組,胰島素濃度於運動後30分鐘AR組顯著高於PL組、游離脂肪酸濃度AR組於運動後30及40分鐘顯著低於PL組。總結以上結果,本研究發現,補充精胺酸有助於運動後恢復期增加血糖及胰島素濃度,並增加肌肉對游離脂肪酸的利用。
This research involves two studies, the first study was to investigate the effects of arginine supplementation on antifatigue. In this randomized, double blind, crossover study, twelve healthy subjects took either a placebo or an arginine supplement 0.2g/kg-wt for a total of 28 days, followed by a 14 days washout period; and then resumed the arginine supplement or placebo. After supplement period, they performed a single bout of exercise to exhaustion. Blood samples were collected before exercise, at exercise 15min, at exhaustion and 20, 60, and 120 minutes during the recovery period. In vivo proton magnetic resonance spectroscopy (1H-MRS) was used to measure creatine levels in Soleus and Tibialis Anterior muscle before and after arginine supplementation.
It was observed that exercise time to exhaustion was significantly higher in the arginine group compared to that in the placebo group. The lactate concentration at exhaustion was higher in the arginine group compared to that in the placebo group. Additionally, the glucose levels at 60, and 120 minutes of the recovery period were significantly higher in the arginine group compared to those in the placebo group. There were no differences in plasma ammonia, creatine kinase, free fatty acid, O2 pulse, or creatine levels in Soleus and Tibialis Anterior muscle between treatments. The results indicated that arginine supplementation before an exhaustive exercise could enhance exercise performance and physiological recovery in humans. It demonstrated that ingestion of arginine essence offers anti-fatigue benefits after exhaustive exercise.
The second study was to investigate the effects of arginine supplementation on acute metabolic responses during recovery after a single bout of endurance exercise in trained athletes. Twelve healthy male judo athletes were randomly divided into two groups and performed a single bout of exercise at a speed estimated to correspond to 75% VO2max for 60 minutes, and then took either a placebo or arginine at 0.1g/kg-wt. Blood samples of each athlete were collected before exercise, and 0, 15, 30, 45, 60, 90, 120 minutes after exercise, respectively. The experiment was repeated two weeks later, but treatments were exchanged for two groups. The concentrations of glucose, insulin, free fatty acid (FFA), glycerol, lactate, ammonia, creatine kinase, IL-6 and NOx (NO2- + NO3-) in blood were examined. No differences in the levels of glycerol, lactate, ammonia, creatine kinase, IL-6 or NOx between the two groups were observed at any of the time points. However, the concentration of glucose was significantly higher in the arginine group, compared to that in the placebo group at the 15 minutes recovery period. The insulin concentration was higher in the arginine group compared to that in the placebo group at the 30 minutes recovery period. Furthermore, the free fatty acid levels at 30, and 45 minutes recovery periods were significantly lower in the arginine group compared to those in the placebo group. The results indicate that arginine supplementation during exercise recovery period could increase glucose and insulin concentrations, and increase FFA availability in muscle.
楊忠祥、林正常(1999):運動強度和持續時間對恢復期能量消耗的影響。體育學報,27,99-108。new window
蔡佈曦、李寧遠(1997):精胺酸及鳥胺酸補充劑對舉重選手去脂體重與無氧動力的影響。中華民國營養學會雜誌,22(4),373-383。
Apostol, A. T., & Tayek, J. A. (2003). A decrease in glucose production is associated with an increase in plasma citrulline response to oral arginine in normal volunteers. Metabolism, 52(11), 1512-1516.
Archer, J. D, Vargas, C. C, & Anderson, J. E. (2006). Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. FASEB Journal, 20(6), 738-740.
Boesch, C., Slotboom, J., Hoppeler, H., & Kreis, R. (1997). In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magnetic Resonance in Medicine, 37(4), 484-493.
Bond, V., Gresham, K., McRae, J., & Tearney, R. J. (1986). Caffeine ingestion and isokinetic strength. British Journal of Sports Medicine, 20(3), 135-137.
Bucci, L., Hickson, J. F., Pivarnik, J. M., Wolinsky, I., McMahon, J. C., & Turner, S. D. (1990). Ornithine ingestion and growth hormone release in bodybuilders. Nutrition Research, 10, 239-245.
Coppack, S. W., Jensen, M. D., & Miles, J. M. (1994). In vivo regulation of lipolysis in humans. Journal of lipid research, 35, 177-193.
Crim, M. C., Calloway, D. H., & Margen, S. (1976). Creatine metabolism in men: creatine pool size and turnover in relation to creatine intake. Journal of Nutrition, 106, 371-381.
Dela, F., Mikines, K. J., Tronier, B., & Galbo, H. (1990). Diminished arginine-stimulated insulin secretion in trained men. Journal of Applied Physiology, 69(1), 261–267.new window
Efendic, S., Caresi, E., & Luft, R. (1974). Quantitative study on the potential effect of arginine on glucose-induced insulin response in healthy, prediabetic, and diabetic subjects. Diabetes, 23, 161-171.
Fahey, J. L. (1957). Toxicity and blood ammonia rise resulting from intravenous amino acid administration in man: the protective effect of L-arginine. Journal of Clinical Investication, 36, 1647-1655.
Floyd, C. F., Fajans, S. S., Conn, J. W., Knopf, R. F., & Rull, J. (1966). Stimulation of insulin secretion by amino acids. Journal of Clinical Investigation, 45, 1487–1502.
Fluckey, J. D., Kraemer, W. J., & Farrell, P. A. (1995). Pancreatic islet insulin secretion is increased after resistance exercise in rats. Journal of Applied Physiology, 79, 1100–1105.
Flynn, N. E., Meininger, C. J., Haynes, T. E., Wu, G. (2002). The metabolic basis of arginine nutrition and pharmacotherapy. Biomedicine & Pharmacotherapy, 56(9), 427-438.
Fogelholm, G. M., Naveri, H. K., Kiilavuori, K. T. K., & Harkonen, M. H. A. (1993). Low-dose amino acid supplementation: no effects on serum human growth hormone and insulin in male weightlifters. International Journal of Sport Nutrition, 3(3), 290-297.
Gannon, M. C., Nuttall, J. A., & Nuttall F. Q. (2002). Oral arginine does not stimulate an increase in insulin concentration but delays glucose disposal1. American Journal of Clinical Nutrition, 76, 1016–1022.
Gleeson, M., Maughan, R. J., & Greenhaff, P. L. (1986). Comparison of the effects of pre-exercise feeding of glucose, glycerol and placebo on endurance and fuel homeostasis in man. European Journal of Applied Physiology and Occupational Physiology, 55(6), 645-653.
Green, G. L., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. (1982). Analysis of nitrate, nitrite and 15N-nitrate in biological fluids. Analytical Biochemistry, 126(1), 131-138.new window
Gropper, S. S., Smith, J. L., & Groff, J. L. (2004). Advanced nutrition and human metabolism. (4th ed.). Belmont, CA: Thomson Learing. 230-251.
Henningsson, R., & Lundquist, I. (1998). Arginine-induced insulin release is decreased and glucagon increased in parallel with islet NO production. The American Journal of Physiology, 275(3), E500-506.
Hickson, J. F., & Wolinsky, I. (1989). Nutrition in Exercise and Sport. (2nd ed.). Florida: CRC Press. 302-306.
Hiscock, N., Petersen, E. W., Krzywkowski, K., Boza, J., Halkjaer-Kristensen, J., & Pedersen, B. K. (2003). Glutamine supplementation further enhances exercise-induced plasma IL-6. Journal of Applied Physiology, 95, 145-148.
Ignarro, L. J., Fukuto, J. M., Griscavage, J. M., Rogers, N. E., & Byrns, R. E. (1993). Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proceedings of the National Academy of Sciences of the United States of America, 90, 8103-8107.
Isidori, A., Lo Monaco, A., & Cappa, M. A. (1981). A study of growth hormone release in man after oral administration of amino acids. Current Medical Research Opinion, 7, 475-481.
Jacobson, B. H., & Thurman-Lacey, S. R. (1992). Effect of caffeine on motor performance by caffeine-naive and -familiar subjects. Perceptual and Motor Skills, 74(1), 151-157.new window
Joseph, A. C., & Jose, A. (2002). Use of amino acids as growth hormone-releasing agents by athletes. Journal of Nutrition, 18, 657-661.
King, D. S., Staten, M. A., Kohrt, W. M., Dalsky, G. P., Elahi, D., & Holloszy, J. O. (1990). Insulin secretory capacity in endurancetrained and untrained young men. The American Journal of Physiology, 259(Endocrinol Metab 22), E155–161.
Knopf, R. F., Conn, J. W., Fajans, S. S., Floyd, J. C., Guntshe, E. M., & Rull, J. A. (1965). Plasma growth hormone response to intravenous administration of amino acids. Journal of Clinical Endocrinology & Metabolism, 25, 1140-1144.
Marion-Latard, F., Crampes, F., Zakaroff-Girard, A., De Glisezinski, I., Harant, I., Stich, V., Thalamas, C., Riviere, D., Lafontan, M., & Berlan, M. (2003). Post-exercise increase of lipid oxidation after a moderate exercise bout in untrained healthy obese men. Hormone and Metabolic Research, 35(2), 97-103.
Mathews, C. K., & Holde, K. E. V. (1990). Biochemistry. New York: Benjamin/Cummings.433-739.
McArdle, W. D., Katch, F. I., & Katch, V. L. (2001). Exercise physiology: energy, nutrition, and human performance. (4th ed.). Baltimore: Lippincott Williams & Wilkins. 140-155.
Mutch, B. J. C., & Banister, E. W. (1983). Ammonia metabolism in exercise and fatigue: a review. Medicine Science Sports Exercise, 15, 41-50.
Najarian, J. S., & Harper, H. A. (1956). Comparative effect of arginine and monosodium glutamate on blood ammonia. Proceedings of the Society for Experimental Biology and Medicine, 92, 560-563.
Nims, R. W., Darbyshire, J. F., & Saavedra, J. E. (1995). Colorimetric methods for the determination of nitric oxide concentration in neutral aqueous solutions. Methods, 7, 48-54.
Ostrowski, K., Rohde, T., Zacho, M., Asp, S., & Pedersen, B. K. (1998). Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. Journal of Physiology, 583, 949-953.
Panagiotidis, G., Alm, P., & Lundquist, I. (1992). Inhibition of islet nitric oxide synthase increases arginine-induced insulin release. European Journal of Pharmacology, 229, 277-278.
Pedersen, B. K., Steensberg, A., & Schjerling, P. (2001). Exercise and interleukin-6. Current Opinion in Hematology, 8, 137-141.
Pette, D., & Spamer, C. (1986). Metabolic properties of muscle fibers. Federation Proceedings, 45, 2910-2914.
Robinson, T. M., Sewell, D. A., & Greenhaff, P. L. (2003). L-arginine ingestion after rest and exercise: effects on glucose disposal. Medicine and Science in Sports and Exercise, 35(8), 1309-1315.
Salehi, A., Carlberg, M., Henningson, R., & Lundquist, I. (1996). Islet constitutive nitric oxide synthase: biochemical determination and regulatory function. The American Journal of Physiology, 270(Cell Physiol 39), C1634–1641.
Saltin, B., Henriksson, J., Nygaard, E., Andersen, P., & Jansson, E. (1977). Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Annals of the New York Academy of Sciences, 301, 3-29.
Schmidt, H. H., Warner, T. D., Ishii, K., Sheng, H., & Murad, F. (1992). Insulin secretion from pancreatic B cells caused by L-arginine-derived nitrogen oxides. Science, 255, 721–723.
Sitren, H. S., & Fisher, H. (1977). Nitrogen retention in rats fed on diets enriched with arginine and glycine. British Journal of Nutrition, 37(2), 195-208.
Skyler, J. S., Krischer, J. P., Wolfsdorf, J., Cowie, C., Palmer, J. P., Greenbaum, C., Cuthbertson, D., Rafkin-Mervis, L.E., Chase, H. P., & Leschek, E. (2005). Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial--Type 1. Diabetes Care, 28(5), 1068-1076.new window
Stark, D., & Bradely, W. Jr. (1992). Magnetic Resonance Imaging. (2nd ed.). St. Louis: Mosby-Year Book.
Trabelsi, F., & Lavoie, J. M. (1996). Arginine-induced pancreatic hormone secretion during exercise in rats. Journal of Applied Physiology, 81(6), 2528-2533.
Wolfe, R. R., Klein, S., Carraro, F., & Weber, J. M. (1990). Role of triglyceridefatty acid cycle in controlling fat metabolism in humans during and after exercise. The American Journal of Physiology, 258, E382-389.
Wigernaes, I., Hostmark, A. T., Stromme, S. B., Kierulf, P., & Birkeland, K. (2001). Active recovery and post-exercise white blood cell count, free fatty acids, and hormones in endurance athletes. European Journal of Applied Physiology, 84(4), 358-366.
Yaspelkis, B. B. 3rd, & Ivy, J. L. (1999). The effect of a carbohydrate--arginine supplement on postexercise carbohydrate metabolism. International Journal of Sport Nutrition and Exercise Metabolism, 9(3), 241-250.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關博士論文
 
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE