:::

詳目顯示

回上一頁
題名:擺脫對VaR的迷戀:以極值方法估計DaR
作者:陳尚武
作者(外文):Sun-wu Chen
校院名稱:國立高雄第一科技大學
系所名稱:管理研究所
指導教授:周賢榮
學位類別:博士
出版日期:2006
主題關鍵詞:風險值極值理論一般柏拉圖分配DrawdownDrawdown-at-riskExtreme value theoryGeneralized Pareto Distribution
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:57
傳統的下方風險衡量系統如風險值(VaR)是以單期的損失為風險因子,因此忽略了連續價跌對財務投資所可能造成的巨大損失。反觀drawdown是以連續損失做為風險因子,因而能從更保守的角度來探討極端損失的可能性,而不是僅以VaR為極端風險衡量的絕對標準。雖然如此,相對於其他傳統的風險衡量指標,學術上對drawdown的研究卻是非常有限;台灣的財務學界與實務界對drawdown的研究更是付諸闕如。因此,藉由drawdown相關的先驅研究或野i以進而吸引學術界與實務界對drawdown的理論與應用做更廣泛與深入的探討。
本研究旨在探討金融資產的實證DaR值相對於其實證VaR值是否更具保守性,並進而探討drawdown風險因子的分配模型配適及其DaR門檻值的估計。由於並無先前的實證顯示,財務drawdown的機率分配究竟為常態、瘦尾、或胖尾,面對這樣的不確定性,極值理論提供了彈性的模型配適與DaR的估計方法。本研究提出以極值理論為基礎的ㄧ般柏拉圖分配(GPD)之兩種估計方法操作來探討50種國際股價指數與匯率的drawdown分配模型配適及其DaR門檻值。第一個方法藉由全部的drawdown樣本資料進行GPD模型配適,並進而估計其尾部的臨界值來求得DaR。第二個方法則是依照傳統的極值理論架構,選定一個尾部高門檻值,並僅以超越此門檻值的極端值樣本估計drawdown尾部的極限分配,並進而反推求得其DaR值。最後,本研究再透過四種統計檢測R2、TIC、HMAE、及HRMSE來評判上述兩種估計方法的準確性。
本研究的資料分析與實證研究結果顯示,所有的國際股價指數樣本及多數的國際匯率樣本其DaR值明顯地低於VaR值,說明了相對於VaR而言,DaR的確更具極端風險估計的保守性。再者,於DaR估計的準確性比較,上述的方法一在估計尾部5% DaR上,其準確性顯著優於方法二;然而在估計尾部1% DaR時,方法二的準確性則略佔上風,雖然優於方法一的程度有限。本研究之結果可供金融機構及投資經理人建構其DaR風險衡量系統的參考依據。
Traditional downside risk measures such as value-at-risk (VaR) rely on using one-period loss as the target risk factor, and therefore fail to recognize the devastating severity of consecutive price drops of a portfolio. A drawdown measures the consecutive losses as a whole from a local peak to trough, and highlights the territory of extreme risk from an alternative angle, rather than persists in following VaR as the absolute benchmark. However, drawdown as a measure of risk has failed to attract the same kind of academic research and attention that are devoted to other traditional measures. Research deficiency of drawdown is even worse in Taiwan’s financial community. Some pioneering studies are, therefore, expected to fill this research gap and attract more attentions from researchers and practitioners on drawdown applications.
This study intends to explore the model fitting of drawdowns distributions and precise estimation of drawdown-at-risk (DaR��), which, similar to the unconditional VaR��, is basically the (1-��)-quantile of the fitted drawdown distribution. Since there are no previous evidences that financial drawdowns are normal, thin-tailed, or thick-tailed distributions, the extreme value theory (EVT) provides flexible approaches to modeling the drawdowns of major international stock indices and currencies, and estimating their threshold values of DaR. Our proposed competing approaches consider two arrangements on using the generalized Pareto distribution (GPD). Firstly, fit the aggregate drawdowns data by the GPD, and then derive DaR thresholds from the specified percentiles of the fitted model. Secondly, following traditional EVT frameworks, we concentrate on fitting the GPD with drawdown-tail excesses over a specified high threshold to shape the asymptotical distribution of excesses, which can be also employed to solve the corresponding DaR thresholds. In addition, four statistical tests, the R2, TIC, HMAE, and HRMSE, will be implemented to examine the accuracy performances of these two competing approaches.
Our data analysis and empirical study show that all sample stock indexes and most currencies provide significantly lower empirical values of DaR than those of VaR at various tail confidence levels. These results recognize that the estimating performances of DaR are in general more conservative than those of VaR as an extreme risk measure. In addition, among our fifty sample indexes and currencies, most have more precise 5% DaR estimates by using the GPD approach fitting with aggregate drawdowns data. However, for estimating 1% DaR thresholds, the traditional EVT-based approach dominates the estimating performance to a small extent but not substantially. The study findings hence conclude that DaR can act as a more conservative extreme risk measure than VaR, and the EVT model applications on DaR estimation presented here provide useful insights into the measurement of financial extreme risk.
1.Abken, P. (2000), “An Empirical Evaluation of Value at Risk by Scenario Simulation”, Journal of Derivatives, 7, pp. 12-30.
2.Acar, E and S. James (1997), “Maximum Loss and Maximum Drawdown in Financial Markets”, Presented at the Forecasting Financial Markets Conference in London, May. http://www.GloriaMundi.org/picsresources/easj.pdf.
3.Alexander, C. O. and C. T. Leigh (1997), “On the Covariance Matrices Used in Value at Risk Models”, Journal of Derivatives, pp. 50-62.
4.Amin G. and H. Kat (2003), “Hedge Fund Performance 1990-2000: Do the “Money Machines” Really Add Value?” Journal of Financial and Quantitative Analysis, 38, pp. 251-274.
5.Andersen, T. G., T. Bollerslev, and S. Lange (1999), “Forecasting Financial Market Volatility: Sampling Frequency vis-à-vis Forecast Horizon”, Journal of Empirical Finance, 6, pp. 457-477.
6.Andersen, T. G. and J. Lund (1997), “Estimating Continuous Time Stochastic Volatility Models of the Short Term Interest Rate”, Journal of Econometrics, 77, pp. 34-377.
7.Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1997), “Thinking Coherently”, Risk, 10(11).
8.Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999), “Coherent Measures of Risk”, Mathematical Finance, 9(3), pp. 203-228.
9.Artzner, P., F. Delbaen, J.-M. Eber, D. Heath, and H. Ku. (2003), “Coherent Multi-period Risk Adjusted Values and Bellman''s Principle”, Working Paper, ETH Zurich, Switzerland.
10.Bali, T. G. (2003), “An Extreme Value Approach to Estimating Volatility and Value at Risk”, Journal of Business, 76(1), pp. 83-108.
11.Bali, T. G. and S. Gokcan (2004), “Alternative Approaches to Estimating VaR for Hedge Fund Portfolios”, Intelligent Hedge Fund Investing, April 2004, Edited by B. Schachter, pp. 253-277, Risk Books, London.
12.Balkema, A. A. and L. de Haan (1974), “Residual Life Time at Great Age”, Annals of Probability, 2, pp. 792-804.
13.Basak, S., and A. Shapiro (2001), “Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices”, The Review of Financial Studies, 14(2) (2001), pp. 371-405.
14.Bassi, F., P. Embrechts, and M. Kafetzaki (1998), ‘‘Risk Management and Quantile Estimation’’, in A Practical Guide to Heavy Tails: Statistical Techniques and Applications, edited by Adler, R., R. Feldman, and M. S. Taqqu, pp. 111–130, Birkhauser, Boston.
15.Bickel, J. P. and K. A. Doksum (1977), Mathematical Statistics: Basic Ideas and Selected Topics, Holden-Day, Inc.
16.Bickel, J. P. and D. Freedman (1981), “Some Asymptotic Theory for the Bootstrap”, The Annals of Statistics, 9, pp. 1196-1271.
17.Blake, D., A. Cairns, and K. Dowd (2001), “PensionMetrics: Stochastic Pension Plan Design and Value-at-Risk during the Accumulation Phase”, Insurance: Mathematics and Economics, 29, pp. 187-215, October.
18.Bliss, R. and D. Smith (1998), “The Elasticity of Interest Rate Volatility,” Journal of Risk, 1, pp. 21-46, Fall.
19.Boothe, P. and D. Glassman (1987), “The Statistical Distribution of Exchange Rates: Empirical Evidence and Economic Implication”, Journal of International Economics, 22, pp. 297-320.
20.Boyle, P. (1977), “Options: A Monte Carlo Approach”, Journal of Financial Economics, 4, pp. 323-338.
21.Boyle, P., M. Broadie, and P. Glasserman (1997), “Monte Carlo Methods for Security pricing”, Journal of Economic Dynamics and Control, 21, pp. 1267-1321.
22.Boyle, P., M. Hardy, and T. Vorsi (2005), “Life after VaR”, Journal of Derivatives, pp. 48-55, Fall.
23.Brenner, R. J., R. H. Harjes, and K. F. Kroner (1996), “Another Look at Models of the Short Term Interest Rate”, Journal of Financial and Quantitative Analysis, 31, pp. 85-107.
24.Burghardt, G., R. Duncan, and L. Liu (2003), “Deciphering Drawdown”, Risk Supplement: Risk Management for Investors, pp. S14-S17, September.
25.Butler, K. C. and D. L. Domain (1991), “Risk, Diversification, and the Investment Horizon”, Journal of Portfolio Management, 17, pp. 41-47.
26.Butler, K. C. and D. L. Domain (1993), “Long-run Returns on Stock and Bond Portfolios: Implications for Retirement Planning”, Financial Services Review, 2, pp. 41-49.
27.Carroll, R., T. Perry, H. Yang, and A. Ho (2001), “A New Approach to Component VaR”, Journal of Risk, 3(3), pp. 57-67.
28.Chekhlov, A., S. Uryasev, and M. Zabarankin (2000), “Portfolio Optimization with Drawdown Constraints”, Research Report, University of Florida.
29.Chekhlov, A., S. Uryasev, and M. Zabarankin (2005), “Drawdown Measure in Portfolio Optimization”, International Journal of Theoretical and Applied Finance, 8(1), pp. 1-46.
30.Clark, P. K.(1973), “A Subordinate Stochastic Process Model with Finite Variance for Speculative Prices”, Econometrica, 41, pp. 135-155.
31.Cox, J., J. Ingersoll, and S. Ross (1985), “A Theory of the Term Structure of Interest Rates”, Econometrica, 53, pp. 385-407.
32.Cuter, D. M., J. M. Poterba, and L. H. Summers(1989), “What Moves Stock Prices?” Journal of Portfolio Management, 15, pp. 4-12.
33.Cvitanic, J. and and I., Karatzas (1995), “On Porttolio Optimization Under Drawdown Constraints”, IMA, Lecture Notes in Mathematics & Applications, 65, pp. 77-88.
34.Danielsson, J. (2001), “The Emperor Has No Clothes: Limits to Risk Modeling”, Working paper, Financial Markets Group, London School of Economics.
35.Danielsson, J., P. Hartmann, and C. de Vries (1998), “The Cost of Conservatism”, Risk Magazine, 11(1), pp. 101–103.
36.Danielsson, J., and C. de Vries (1997), “Value-at-Risk and Extreme Returns”, Working Paper, London School of Economics.
37.Danielsson, J. and C. de Vries (1997a), Beyond the Sample: Extreme Quantile and Probability Estimation, Tinbergen Institute, Rotterdam.
38.Danielsson, J. and C. de Vries (1997b), “Tail Index and Quantile Estimation with Very High Frequency Data”, Journal of Empirical Finance, 4, pp. 241–257.
39.Danielsson, J. and C. de Vries (1997c), “Value-at-Risk and Extreme Returns”, FMG-Discussion Paper No. 273, Financial Markets Group, London School of Economics.
40.Danielsson, J., H. S. Shin, and J.-P. Zigrand (2001), “Asset Price Dynamics with Value at Risk Constrained Traders”, Working paper, Financial Markets Group, London School of Economics.
41.De Haan, L., I. S. Resnick, H. Rootzen, and C. G. de Vries (1989), “Extremal Behavior of Solutions to a Stochastic Difference Equation with Applications to ARCH Process”, Stochastic Processes and Their Applications, 32, pp. 213-224.
42.Dowd, K. (1998), Beyond Value at Risk: The New Science of Risk Management, John Wiley & Sons, New York.
43.Dowd, K. (2002), Measuring Market Risk, John Wiley and Sons, New York.
44.Dowd, K., D. Blake, and A. Cairns (2004), “Long-Term Value at Risk”, The Journal of Risk Finance, pp. 52-57, Winter/Spring.
45.Duffie, D. and J. Pan (1997), “An Overview of Value at Risk”, Journal od Derivatives, pp. 7-49, Spring.
46.Efron, B. (1979), “Bootstrap Methods: Another Look at the Jackknife”, The Annals of Statistics, 7, pp. 1-26.
47.Embrechts, P., C. Klüppelberg, and T. Mikosch (1997), Modeling Extremal Events For Insurance And Finance, Springer-Verlag, Berlin.
48.Embrechts, P., S. Resnick, and G. Samorodnitsky (1998), “Living on the Edge”, Risk Magazine, 11(1), pp. 96–100.
49.Embrechts, P., S. Resnick, and G. Samorodnitsky (1999), “Extreme Value Theory as a Risk Management Tool”, North American Actuarial Journal, 3(2), pp. 30-41, April.
50.Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation”, Econometrica, 50, pp. 987-1007.
51.Fisher, R. A. and L. H. C. Tippett (1928), “Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample”, Proc. Cambridge Philos. Soc., 24, pp. 180-190.
52.Glasserman, P, P. Heidelberger, and P. Shahabuddin (1999), “Variance Reduction Techniques for Estimating VaR”, working paper, Columbia University, New York.
53.Gnedenko, B. V. (1943), “Sur La Distribution Limite du Terme Maximum d’une Serie Aleatoire”, Annals of Mathematics, 44, pp. 423-453.
54.Gourieroux, C., J. P. Laurent, and O. Scaillet (2000), “Sensitivity Analysis of Value at Risk”, Journal of Empirical Finance, 7, pp. 225-245.
55.Grossman, S. J. and Z. Zhou (1993), “Optimal Investment Strategies for Controlling Drawdowns”, Mathematical Finance, 3, pp. 241-276
56.Guermat, C. and R. D. F. Harris (2002), “Robust Conditional Variance Estimation and Value-at-Risk”, Journal of Risk, 4(2), Winter.
57.Gumbel, E. J. (1958), Statistics of Extremes, Columbia University Press, New York.
58.Gupta, F., E. Stubbs, and Y. Thambiah (2000), “U.S. Corporate Pension Plans: A Value at Risk Analysis”, The Journal of Portfolio Management, 26, pp. 65-72, Summer.
59.Haan, L. de (1984), “Slow Variation and the Characterization of Domain of Attraction”, In: Tiago de Oliveira, J. (Ed.), Statistical Extremes and Applications, pp. 31-48.
60.Harding, D., G. Nakou, and A. Nejjar (2003), “The Prons and Cons of Drawdown as a Statistical Measyre of Risk for Investments”, Aima Journal, pp. 16-17, April.
61.Harrel, F. and C. Davis (1982), “A New Distribution Free Quantile Estimation”, Biometrica, 69, pp. 635-640.
62.Hendricks, D. (1996), “Evaluation of Value-at-Risk Models Using Historical Data”, Economic Policy Review, Federal Reserve Bank of New York, pp. 39-69, 2, April.
63.Hill, B. (1975), “A Simple Approach to Inference about the Tail of a Distribution”, Annals of Mathematical Statistics, 3, pp. 1163-1174.
64.Hols, M. C. A. B. and C. G. de Vries (1991), “The Limiting Distribution of Extremal Exchange Rate Returns”, Journal of Applied Econometrics, 6(3), pp. 287-302.
65.Hosking, J. R. M. and J. R. Wallis (1987), “Parameter and Quantile Estimation for the Generalized Pareto Distribution”, Technometrics, 29(3), pp. 339-349.
66.Hull, J and A. White (1998), “Incorporating Volatility Updating into the Historical Simulation Method for Value-at-Risk”, Journal of Risk, 1, pp. 5-19.
67.Huisman, R., K. G. Koedijk, C. Kool, and F. Palm (1997), “Fat Tails in Small Samples”, Working Paper, Limburg Institute of Financial Economics, Maastricht University.
68.Huisman, R., K. Koedijk, C. Kool, and F. Palm (2001), “Tail-Index Estimates in Small Samples,” Journal of Business & Economic Statistics, 19(1), pp. 208-216.
69.Huisman, R., K. Koedijk, and R. A. J. Pownall (1998), “VaR-x: Fat Tails in Financial Risk Management,” Journal of Risk, 1(1), 47-61.
70.Jamshidian, F. and Y. Zhu (1997), “Scenario Simulation: Theory and Methodology”, Finance and Stochastic, 1, pp. 43-68, January.
71.Jansen, D. W. and C. G. de Vries (1991), “On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspectives”, Review of Economics and Statistics, 73, pp. 18-24.
72.Jenkinson, A. F. (1955), “The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements”, Quarterly Journal of the Royal Meteorology Society, 87, pp. 145-158.
73.Johansen, A. and D. Sornette (2001), “Large Sock Market Price Drawdowns Are Outliers”, Journal of Risk, 4(2), PP. 69-110.
74.Jorin, P. (1996), “Risk2: Measuring the Risk in Value at Risk”, Financial Analysts Journal, 52, pp. 47-56.
75.Jorion, P. (2000), Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, New York.
76.Joy, C., P. Boyle, and K. S. Tan (1996), “Quasi-Monte Carlo Methods in Numerical Finance”, Management Science, 42, pp. 926-938.
77.Koedijk, K., F. Nissen, P. Schotman, and C. Wolff (1997), “The Dynamics of Short-term Interest Rate Volatility Reconsidered”, European Finance Review, 1, pp. 105-130.
78.Leadbetter, M., G. Lindgren, and H. Rootrén (1983), Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, Berlin.
79.Leal, R. P. C. and B. V. M. Mendes (2005), “Maximum Drawdown: Models and Applications”, The Journal of Alternative Investments, 7(4), pp. 83-91, Spring.
80.Leibowitz, M. L. and T. C. Langetieg (1989), “Shortfall Risk and the Asset Allocation Decision: A Simulation Analysis of Stock and Bond Risk Profiles”, Journal of Portfolio Management, 16, pp. 61-68.
81.Lin, C, C. Chang Chien, and S. W. Chen (2005), “A General Revised Historical Simulation Method for Portfolio Value-at-Risk”, The Journal of Alternative Investments, 8(2), pp. 87-103, Fall.
82.Lin, C, C. Chang Chien, and S. W. Chen (2006), “Incorporating the Time-varying Tail-fatness into the Historical Simulation Method for Portfolio Value-at-Risk”, Review of Pacific Basin Financial Markets and Policies, 9(2), pp. 257-274.
83.Lin, C., S. W. Chen, and Y. Wang (2005), “Estimating Portfolio Value-at-Risk: The Two-Step Approach of Component VaR and Extreme Value”, Risk Letters, 1(1), pp. 18-24.
84.Longin, F. (1996), “The Asymptotic Distribution of Extreme Stock Market Returns”, Journal of Business, 69(1), pp. 383-408.
85.Longin, F. (1997a), “Beyond the VaR”, Discussion Paper 97-011, CERESSEC.
86.Longin, F. (1997b), “From Value at Risk to Stress Testing: the Extreme Value Approach”, Discussion Paper, 97-004, CERESSEC.
87.Login, F. (2000), “From Value at Risk to Stress Testing: The Extreme Value Approach”, Journal of Banking and Finance, 24, pp. 1097-1130.
88.Longin, F. and B. Solnik (2001), “Extreme Correlation of International Equity Markets”, The Journal of Finance, 56(2), pp. 649-676.
89.Loretan, M. and P. C. B. Phillips (1994), “Testing the Covariance Stationarity of Heavy-tailed Time Series”, Journal of Empirical Finance, 1, pp. 211-248.
90.Magdon-Ismail, M., A. F. Atiya, A. Pratap, and Y. S. Abu-Mostafa (2004), “On the Maximun Drawdown of a Brownian Motion”, Journal of Applied Probability, 41(3), March.
91.Mandelbrot, B. B. (1963a), “New Methods in Statistical Economics”, Journal of Political Economy, 71, pp. 421-440.
92.Mandelbrot, B. B. (1963b), “The Variation of Certain Speculative Prices”, Journal of Business, 36, pp. 394-419.
93.Mandelbrot, B. B. (1972), “Possible Refinement of the Log-normal Hypothesis Concerning the Distribution of Energy Dissipation in Intermittent Turbulence”, Statistical Models and Turbulence, M. Rosenblatt & C. Van Atta (Editors.), Lecture Notes in Physics, 12, pp. 333-351, Springer, New York.
94.Mandelbrot, B. B. (1997), Fractals and Scaling in Finance, Springer, New York.
95.Mandelbrot, B. B. and H. M. Taylor (1967), “On the Distribution of Stock Price Differences”, Operations Research, 15, 1057-1062.
96.McNeil, A. (1997), “Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory”, ASTIN Bulletin, 27, pp. 117–137.
97.McNeil, A. (1998a), ‘‘On Extremes and Crashes’’, RISK Magazine, 11:99.
98.McNeil, A. (1998b), Calculating Quantile Risk Measures for Financial Return Series using Extreme Value Theory, ETH Zürich.
99.McNeil, A. (1999), “Extreme Value Theory for Risk Managers”, Internal Modeling and CADII, Risk Books, pp. 93-113.
100.McNeil, A. and R. Frey (2000), “Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Times Series: An Extreme Value Approach”, Journal of Empirical Finance, pp.271-300.
101.Moro, B. (1995), “The Full Monte”, Risk, 8, pp. 57-58, February.
102.Morokoff, W. J. and R. E. Caflisch (1995), “Quasi-Monte Carlo Integration”, Journal of Computational Physics, 122(2), pp. 218-230.
103.MosKowitz, B. and R. E. Caflisch (1996), “Smoothness and Dimension Reduction in Quasi-Monte Carlo Methods”, Mathematical Computaional Modelling, 23(8/9).
104.Niederreiter, H.(1992), Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia.
105.Owen, A. B. (1998), “ Monte Carlo Extension of Quasi-Monte Carlo”, 1998 Winter Simulation Conference Proceedings, pp. 571-577, Springer, New York.
106.Palmquist, J., S. Uryasev, and P. Krokhmal (1999), “Portfolio optimization with conditional Value-at-risk objective and constraints”, Res. R. 99-14, ISE U., Florida.
107.Panning, W. H. (1999), “The Strategic Uses of Value at Risk: Long-Term Capital Management for Property/Casualty Insurers”, North American Actuarial Journal, 3(2), pp. 84-105.
108.Papageorgiou, A. and S. Paskov (1999), “Deterministic Simulation for Risk Management”, Journal of Portfolio Management, pp. 122-127, May.
109.Parkinson, M., (1980), “The Extreme Value Method for Estimating the Variance of the Rate of Returns”, Journal of Business, 53, pp. 61-65.
110.Paskov, S. and J. Traub (1995), “Faster Valuation of Financial Derivatives”, Journal of Portfolio Management, 22, pp. 113-120.
111.Pickands, J. (1975), “ Statistical Inference Using Extreme Order Statistics”, Annals of Statistics, 3, pp. 119-131.
112.Pictet, O., M. Dacorogna, and U. Müller (1996), “Hill, Bootstrap and Jackknife Estimators for Heavy Tails.” Working Paper, Olsen & Associates.
113.Poon, S., M. Rockinger, and J. Tawn (2004), “Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications”, The Review of Financial Studies, 17(2), pp. 581-610.
114.Praetz, P. D. (1972), “The Distribution of Share Price Changes”, Journal of Business, 45, pp. 49-55.
115.Press, W. H., S. A. Teulosky, W. T. Vetterling, and B. P. Flannery (1992), Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, England.
116.Reiss, R. D. and M. Thomas (1999), “A New Class of Bayesian Estimator in Paretian Excess-of-loss reinsurance”, ASTIN Bulletin, 29(2), pp. 339-349.
117.Riedel, F. (2003), “Dynamic Coherent Risk Measures”, Working Paper, Department of Economics, Stanford University Stanford University.
118.Roll, R. (1988), “The International Crash of October 1987”, Financial Analysis Journal, 44, pp. 19-35, Sept.
119.Rothschild, M. and J. E. Stiglitz (1970), “Increasing Risk: I. Definition”, Journal of Economic Theory, 2, pp. 225-243.
120.Sheskin, D. J. (2000), Handbook of Parametric and Nonparametric Statistical Procedures, Chapman & Hall/CRC, Boca Raton, Florida.
121.Vasicek, O. (1997), “An Equilibrium Characterization of the Term Structure”, Journal of Financial Economics, 5, pp. 177-188.
122.Vilasuso, J. and D. Katz. (2000), “Estimation of the Likelihood of Extreme Returns in International Stock Markets”, Journal of Applied Statistics, 27, pp. 119-130.
123.Vlaar, Peter J. G. (2000), “Value at Risk Models for Dutch Bond Portfolios”, Journal of Banking and Finance, 24(7), pp. 1131-1154.
124.Zangari, P (1996), RiskMetrics Technical Document, 4th edition, Morgan Guaranty, New York.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top