:::

詳目顯示

回上一頁
題名:從量子哲學觀探討概念理解本質之研究:以國三學生電流概念為例
作者:蔡嘉興
作者(外文):Tsai Chia-Hsing
校院名稱:國立高雄師範大學
系所名稱:科學教育研究所
指導教授:周進洋
連坤德
學位類別:博士
出版日期:2007
主題關鍵詞:量子哲學概念理解電流quantum philosophyconceptual understandingcurrent
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(2) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:2
  • 共同引用共同引用:0
  • 點閱點閱:0
從量子哲學觀探討概念理解本質之研究:
以國三學生電流概念為例
摘要
本研究採用量子哲學的觀點,從本體論、認識論和方法論三個面向探討概念理解的本質,以國三學生為研究對象,採質、量並重的研究設計。在量化研究的階段,以二段式診斷工具對高雄地區四所國中14個國三班級,共483位學生進行施測,以瞭解國三學生的電流概念理解情形,並分析學生的概念理解特性。在個案研究階段,選取四位具有電流另有概念的學生,分別施以半開放式紙筆測驗、半開放式限制字連結測驗與半結構式概念晤談,以瞭解診斷工具對個案學生呈現出的概念理解之影響,藉以分析個案學生的概念理解特性。最後,根據群體學生和個案學生的概念理解特性,建構量子理解的UNIT模型,用以詮釋學生的概念理解。本研究得到以下的結論:
一、 學生的概念理解在本體論上具有整體性:概念診斷是診斷工具與學生概念理解狀態的交互作用過程,不可避免地將學生的概念理解狀態化約成特定的面向,因而難以呈現出學生概念理解的全貌。
二、 學生的概念理解在認識論上具有多重性,對同一科學現象,學生在不同的問題情境中,可能會呈現出多重的理解,即使這些多重理解彼此可以相互對立。
三、 概念理解診斷是理論負載的,沒有中立的測量;當診斷工具設計完成後,限制就產生了。概念診斷工具的解析度愈高,診斷出的概念理解類型的集中度愈差。
四、 量子理解的UNIT模型可以詮釋學生的概念理解特性,整體性是學生內隱的概念理解特性,非單一性是學生外顯的概念理解特性,呼應了多重實在的觀點,理論負載強調了交互作用的測量觀點,凸顯了概念理解診斷的限制,不確定性則呈現了概念理解診斷上難以確定的整體特質。
The Perspectives of Quantum Philosophy on the Nature of Conceptual Understanding: A study regarding the Concept of Current for Ninth Graders
Abstract
Based on the perspectives of quantum philosophy, this study was aimed to investigate the nature of students’ conceptual understanding focusing on the ontological, epistemological and methodological aspects. The study methods included both quantitative and qualitative approaches. In the quantitative phase, the two-tier instrument was administered to 483 9th graders to explore the patterns and nature of their conceptual understanding about current. In the qualitative phase, the methods of the two-tier instrument, semi-open-ended paper-and-pencil test, word association and interviews on current concepts were conducted to detect four students’ conceptual understanding about current and uncover their features. The results were constructed to yield the UNIT model of quantum understanding to interpret students’ conceptual understanding. The findings were as follows:
1. In the ontological aspect, students’ conceptual understanding involves the nature of integrality. Diagnosing reflects the process of diagnostic instrument interacting with the status of students’ conceptual understanding. It is unavoidable to reduce students’ conceptual understanding depending on the instrument’s focus. Therefore, it is difficult to show the whole picture of students’ conceptual understanding.
2. In the epistemological aspect, students’ conceptual understanding owns the nature of multiplicity. For the same scientific phenomena, students might hold multiple understandings in different contexts, even though they are sometimes contradictory with each other.
3. In the methodological aspect, diagnosing conceptual understanding is theory-laden, and there is no neutral observation. When the instrument was designed, the limits come into existence simultaneously.
4. The UNIT model has been constructed to interpret students’ conceptual understanding. Integrality and nonsingularity is to represent the implicit and explicit nature of students’ conceptual understanding respectively. Theory-laden is emphasized the viewpoint of interaction to show the limits on conceptual diagnosis. And, uncertainty is emerged from the whole nature of students’ conceptual understanding.
參考文獻
中文部分
王又如譯(1995):西方心靈的激情。台北市:正中書局。
王紅宇譯(1999):後現代課程觀。台北市:桂冠。
李乙明譯(2004):學習理解之多元評量。台北市:紅葉文化。
丘宏義譯(2000):物理與頭腦相遇的地方。台北市:天下遠見。
李賢哲、樊琳和張蘭友(2005):國小學童「電池」概念之診斷-以二段式選擇題為例。科學教育學刊, 13(3), 263-288。
洪振方(1994):從孔恩異例的認知與論證探討科學知識的重建。國立臺灣師範大學科學教育研究所博士論文。
邱美虹和林靜雯(2002):以多重類比探究兒童電流心智模式之改變。科學教育學刊, 10(2), 109-134。
林英智主編(2005):國中自然與生活科技課本第六冊。台南市:康軒文化事業股份有限公司。
周東川、石資民和黃銘欽譯(1972):物理與哲學。台北市:協志。
陳瓊森(1993):高一學生直流電路概念結構之研究。彰化師範大學學報, 4, 511-542。
郭重吉和許玫理(1992):從科學哲學觀點的演變探討科學教育的過去與未來。彰化師範大學學報, 3, 531-561。
教育部(2003):九年一貫課程綱要。台北市:教育部。
張美惠譯(2003):重塑大腦。台北市:時報。
劉嘉茹(2000):以研究綱領與本體分類論的觀點探究概念改變機制之研究。國立台灣師範大學科學教育研究所博士論文(未出版)。
劉魁(1998):後現代科學觀。台北市:揚智文化。
謝綺蓉譯(2001):第三智慧—運用量子思維建立組織創造性思考模式。台北市:大塊文化。
蔡嘉興(2002):資訊融入理化科教學促進國中生電磁概念學習之行動研究。91年度鼓勵中小學教師從事行動研究論文集。
蔡嘉興(2003):九年一貫課程自然與生活科技領域多元評量模式之研究—以國二理化電流概念為例。教育部九十二年度中小學科學教育計畫專案期末報告。
蔡嘉興、連坤德和周進洋(2003):國三學生電流概念診斷與教學改進之研究。2002年中華民國物理教育學術研討會。彰化,國立彰化師範大學。
蔡嘉興、連坤德和周進洋(2005):以Flash動畫輔助教學促進國三學生電流概念改變。物理教育, 6(1), 24-42。
蔡嘉興、蔡智文、周進洋和連坤德(2007, 已接受):中學生電路的理解。科學教育學刊。
閻愛德、黃小玲和高涌泉譯(2002):奇異的量子。台北縣:徐氏文教基金會。

英文部分
Abimbola, I. O. (1983). The Relevance of the “new” Philosophy of Science for the Science Curriculum. School Science and Mathematics, 83(3), 181-192.
Abimbola, I. O. (1988). The problem of terminology in the study of student conceptions in science. Science Education, 72(2), 175-184.
Anderson, B. (1986). The experiential gestalt of causation: a common core to pupils’ preconceptions in science . European Journal of Science Education, 8(2), 155-171.
Arnold, M., & Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideas in electricity. International Journal of Science Education, 9(5), 553-563.
Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehrt & Winston.
Bar, V., & Travis, A. S. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 28(4), 363-382.
Bloom, J. W. (2001). Discourse, Cognition, Chaotic Systems: An Examining of Students’ Argument about Density. The journal of the learning sciences, 10(4), 447-492.
Bronowski, J. (1978). The origins of knowledge and imagination. New Haven and London: Yale University Press.
Capra, F. (1982). The Turning Point: Science, Society, and the Rising Culture. Flamingo edition. London: Fontana Paperbacks.
Case, R. (1996). Changing views of knowledge and their influence on educational research and practice. In D. R. Olson, & N. Torrance (Eds.). Handbook of human development in education: new models of learning, teaching and schooling. Oxford: Blackwell.
Chen, C. C., Lin, H. S., & Lin, M. L. (2002). Developing a two-tier diagnostic instrument to assess high school students’ understanding- the formation of images by a plane mirror. Proceedings of the National Science Council, Part D: Mathematics, Science, and Technology Education, 12(3), 106-121.
Cleminson, A. (1990). Establishing an epistemological base for science teaching in the light of contemporary notions of the nature of science and how children learn science. Journal of research in science teaching, 27(5), 429-445.
Closset, J. L. (1984). Sequential reasoning in electricity. In Research on Physics Education: Proceedings of the First International Workshop (pp.313–319), Paris: CNRS.
Cohen, R., Eylon, B., & Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students' concepts. American Journal of Physics, 51(5), 407-412.
De Posada, J. M. (1997). Conceptions of high school students concerning the internal structure of metals and their electric conduction: structure and evolution. Science Education, 81(4), 445-467.
Duit, R. (2002). Bibliography STCSE: Students’ and teachers’ conceptions and science education. Kiel, Germany: IPN – Leibniz Institute for Science Education, http://www.ipn.uni-kiel.de/us.
Dupin, J. J., & Johsua, S. (1987). Conceptions of French pupils concerning electric circuits: structure and evolution. Journal of Research in Science Teaching, 24(9), 791-806.
Engel-Clough, E., & Driver, R. (1986). A study of consistency in the use of students’ conceptual frameworks across different task contexts. Science Education, 70(4), 473-496.
Fellows, N. J. (1994). A window into thinking: Using student writing to understand conceptual change in science learning. Journal of Research in Science Teaching, 31(9), 985-1001.
Fraser, B. J., & Tobin, K. G. (Eds.). (1998). International handbook of science education. Kluwer Academic Publishers.
Galili, I., & Bar, V. (1997). Children's operational knowledge about weight. International Journal of Science Education, 19(3), 317-340.
Galili, I., & Hazan, A. (2000). Learners´ knowledge in optics: Interpretations, structure and analysis. International Journal of Science Education, 22(1), 57-88.
Gallas, K. (1995). Talking their way into science: Hearing children’s questions and theories, responding with curricula. New York: Teachers’ College Press.
Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623-633.
Gilbert, J. K., & Watts, M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in Science Education. Studies in Science Education, 10(1), 61-98.
Gilbert, J. K., & Swift, D. J. (1985). Towards a Lakatosian analysis of the Piagetian and alternative conceptions research programs. Science Education, 69(5), 681-696.
Girod, M., & Wong, D. (2002). An aesthetic (Deweyan) perspective on science learning: Case studies of three fourth graders. The Elementary Sschool of Journal, 102(3), 199-214.
Glasersfeld, E. von (1991). A constructivist's view of learning and teaching. In R. Duit, F. Goldberg & H. Niedderer (eds.), Research in physics learning: Theoretical issues and empirical studies - Proceedings of an international workshop (pp.29-39). Kiel, Germany: IPN.
Grayson, D. J. (1996). Concept substitution: A strategy for promoting conceptual change. In D. F. Treagust, Duit, R., & Fraser, B. J. (Eds.). Improving teaching and learning in science and mathematics (pp.152-161). New York: Teachers College Press.
Griffard, P. B., & Wandersee, J. H. (2001). The two-tier instrument on photosynthesis: What does it diagnose? International Journal of Science Education, 23(10), 1039–1052.
Gunstone, R. (1987). Student understanding in mechanics: a large population survey. America Journal of Physics, 55(8), 691-696.
Gunstone, R. (1988). Learners in science education. In P. Fensham (Ed.), Development and dilemmas in science education (pp. 73-95). London: Falmer Press.
Halloun, J. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065.
Hanson, N. R. (1958). Patterns of Discovery. Cambridge: Cambridge University Press.
Heisenberg, W. (1958). Physics and Philosophy: The Revolution in Modern Science. NY: Harper & Row, Publishers.
Hodson, D. (1986). Philosophy of Science and Science Education. Journal of Philosophy of Education, 20(2), 215-225.
Johnson, L. (1991). Postformal reasoning facilitates behavioral change: a case study of an international development project. In J. D. Sinnott & J.Cavanaugh (Eds.), Bridging paradigms: Positive development in adulthood and cognitive aging (pp.59-72). New York: Praeger.
Jones, M. F., Carter, G., & Rua, M. (2000). Exploring the development of conceptual ecologies: communities of concepts related to convection and heat. Journal of Research in Science Teaching, 37(2), 139-159.
Kuhn, T. (1970). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.
Lauer, R. M. (1998). Teaching psychology according to a quantum physics paradigm: A summary. ETC: A Review of General Semantics, 55(1), 95-101.
Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Norwood, NJ: Ablex Publishing.
Liégeois, L., & Mullet, E. (2002). High school students’ understanding of resistance in simple series electric circuits. International Journal of Science Education, 24(6), 551–564.
Magnusson, S. J., Boyle, R. A., & Templin, M. (1997). Dynamic science assessment: Anew approach for investigating conceptual change. The Journal of Learning Sciences, 6(1), 91-142.
Millar, R., & Beh, K. L. (1993). Students’ understanding of voltage in simple parallel electric circuits. International Journal of Science Education, 15(4), 351-361.
Mintzes, J. J., Novak, J. D., & Wandersee, J. H. (1998). Teaching science for understanding : A human constructivist view. San Diego: Academic Press.
Mintzes, J. J., Wandersee, J. H., & Novak, J. D. (2000). Assessing Science Understanding: A Human Constructivist View. San Diego: Academic Press.
Moore, F. (2001). Rethinking measurement in psychology and education: a quantum perspective. An unpublished doctoral dissertation of The Queen’s University of Belfast.
Odom, A. L., & Barrow, L. H. (1995). Development and application of a two-tier diagnostic test measuring college biology students' understanding of diffusion and osmosis after a course of instruction. Journal of Research in Science Teaching, 32(1), 45-61.
Omnés, R. (1999). Quantum philosophy. Princeton, NJ: Princeton University Press.
Osborne, R. (1981). Children’s ideas about electrical current. New Zealand Science Teacher, 29(1), 9–12.
Osborne, R. (1983). Towards modifying children's ideas about electric current. Research in Science and Technological Education, 1(1), 73-82.
Osborne, R. (1984). Childrens' dynamics. The Physics Teacher, 22, 504-508.
Osborne, R., & Freyberg, P. (1985). Assumption about teaching and learning. In R. Osborne & P. Freyberg (Eds.), Learning in science: The implications of children’s science. Auckland, New Zealand: Heinemann Publishers.
Palmer, D. H. (2001). Students' alternative conceptions and scientifically acceptable conceptions about gravity. International Journal of Science Education, 23(7), 691-706.
Pardhan, H., & Bano, Y. (2001). Science teachers’ alternate conceptions about direct-currents. International Journal of Science Education, 23(3), 301-318.
Penrose, R. (1994). Shadows of the Mind. Oxford: Oxford University Press.
Pine, K., Messer D., & John K. (2001). Children’s misconceptions in primary science: a survey of teachers’ view. Research in Science and Technological Education, 19(1), 79-96.
Pintrich, P. R., Mark, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167–199.
Polkinghorne, J. (1996). Beyond science. Cambridge: Cambridge University Press.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a Scientific Conception: Toward a Theory of Conceptual Change. Science Education, 66(2), 211-227.
Potari, D., & Spiliotopoulou, V. (1996). Children's approaches to the concept of volume. Science Education, 80(3), 341-360.
Pritscher, C. P. (2001). Quantum learning beyond duality. New York: Amsterdam.
Rumelhart, D. E., & Norman, D. A. (1981). Accretion, tuning and restructuring: Three modes of learning. In R. Klatsky & J. W. Cotton (Eds.), Semantic factors in cognition(pp.136-158). Hillsdale, NJ: Lawrence Erllbaum Associates.
Shepardson, D. P., & Moje E. B. (1999). The role of anomalous data in restructuring fourth graders’ frameworks for understanding electric circuits. International Journal of Science Education, 21(1), 77-94.
Shipstone, D. M. (1984). A study of children's understanding of electricity in simple DC circuits. European Journal of Science Education, 6(2), 185-188.
Shipstone, D. M. (1985). Electricity in simple circuits. In R. Driver., E. Guesne, & A. Tiberghien (Eds.). Children's ideas in science (pp.33-51). Milton Keynes: Open University Press.
Shipstone, D. M., Rhöeneck, C. von., Jung, W., Kärrqvist, C., Dupin, J. J., Johsua, S., & Licht, P. (1988). A study of students' understanding of electricity in five European countries. International Journal of Science Education, 10(3), 303-316.
Singer, M. D. (2004). Shifting worlds: Leading educational change in a quantum universe. Ph. D. Thesis, University of New Hampshire.
Sinnott, J. D. (1994). New science models for teaching adults: Teaching as a dialogue with reality. In J. D. Sinnott (Ed.), Interdisciplinary Handbook of Adult Lifespan Learning (pp.90-104). Westport: Greenwood Press.
Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions Reconceived: A Constructivist Analysis of Knowledge in Transition. The Journal of the learning sciences, 3(2), 115-163.
Stenhouse, D. (1985). Active philosophy in education and science. Boston, MA: G. Allen & Unwin Ltd.
Stepans, J. (1991). Developmental patterns in students’ understanding of physics concepts. In S. M. Glynn, R. H. Yeany., & B. K. Britton. (Eds.), The psychology of learning science (pp.89-115). Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.
Taber, K. S. (1997). Student understanding of ionic bonding: Molecular versus electrostatic framework. School Science Review, 78(2), 85-95.
Taber, K. S. (2000). Multiple frameworks?: Evidence of manifold conc eptions in indiv idual cognitive structure. International Journal of Science Education, 22(4), 399-417.
Taber, K. S. (2001). Shifting sands: a case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23(7), 731-753.
Tarnas, R. (1991). The passion of the western mind: Understanding ideas that have shaped our world view. New York: Ballantine Books.
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
Treagust, D. F. (1997). Diagnostic assessment of students’ science knowledge. Paper presented at the 1997 International workshop on students’ concept development, understanding diagnosis and teaching. Feb. 17-20, Taipei.
Tsai, C. H., Chen, H. Y., Chou, C. Y., & Lain, K. D. (2007). Current as the key concept of Taiwanese students understanding on electric circuits. International Journal of Science Education, 29(4), 483-496.
Tsai, C. H., Chen, H. Y., & Chou, C. Y. (2006). What does it diagnose?: The alternative conceptions on the diagnosis of students’ conceptual understanding. Paper presented at 1st International Conference on SENS, November 16-18, Seoul.
Tsai, C. H., Lain, K. D., & Chou, C. Y. (2003). A Study on Misconceptions of Magnetic Effect of Current for Ninth Graders. Paper presented at the International Conference on Science & Mathematics Learning, December 16-18, Taipei.
Tsai, C. C. (1998). An analysis of scientific epistemological beliefs and learning orientations of Taiwanese eighth graders. Science Education, 82(4), 473-489.
Tsai, C. C. (2000). The effects of STS-oriented instruction on female tenth graders’ cognitive structure outcomes and the role of student scientific epistemological beliefs. International Journal of Science Education, 22(10), 1099-1115.
Tsai, C. C. (2003). Using a conflict map as an instructional tool to change student alternative conceptions in simple series electric circuits. International Journal of Science Education, 25(3), 307-327.
Tsai, C. C., & Wen. C. L. (2005). Research and trends in science education from 1998 to 2002: a content analysis of publication in selected journals. International Journal of Science Education, 27(1), 3-14.
Tyson, L. M., Venville, G. J., Harrsion, A. L., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4), 387-404.
Tytler, R. (1994). Consistency of children’s use of science conceptions: Problems with the notion of ‘conceptual change’. Research in Science Education, 24(4), 338-347.
Tytler, R. (1998). Children’s conceptions of air pressure: exploring the nature of conceptual change. International Journal of Science Education, 20(8), 929-958.
Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: Dimensions of conceptual progression. International Journal of Science Education, 22(5), 447-468.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gabel (ed.), Handbook of Research on Science Teaching and Learning (pp.177-210). New York: Macmillan.
Watson, J. R., Prieto, T., & Dillon, J. S. (1997). Consistency of students’ explanations about combustion. Science Education, 81(4), 425-444.
Watts, D. M. (1983). Some alternative views of energy. Physics Education, 18, 213-217.
Wheeler, J. A. (1998). Geons, black holes and quantum foam. New York, NJ: W. W. Norton and Company.
White, R., & Gunstone, R. (1992). Probing Understanding. London: The Falmer Press.
Whitehead, D. (2001). Quantum literacy. Teaching in higher education, 6(4), 519-526.
Wood-Robinson, C. (1994). Young people's ideas about inheritance and evolution. Studies in Science Education, 24(1), 29-47.
Zohar, D., & Marshall, I. (1990). The quantum self: Human nature and consciousness defined by the new physics. New York: Quill/William Morrow.
Zohar, D., & Marshall, I. (1994). The quantum society: Mind, physics and a new social vision. New York: Quill/William Morrow
Zohar, D. (1997). Rewiring the corporate brain: Using the new science to rethink how we structure and lead organizations. San Francisco: Berett-Koehler.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE