:::

詳目顯示

回上一頁
題名:品質機能展開應用於新產品開發之模糊數學規劃模式
作者:柯文長 引用關係
作者(外文):Wen-Chang Ko
校院名稱:國立成功大學
系所名稱:工業與資訊管理學系碩博士班
指導教授:陳梁軒
學位類別:博士
出版日期:2008
主題關鍵詞:品質機能展開風險分析新產品開發模糊數學規劃模式Kano 概念模式Fuzzy mathematical programming modelsRisk analysisKano’s conceptNew product development (NPD)Quality function deployment (QFD)
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
面對產品生命週期愈來愈短的客戶導向時代,在新產品開發 (new product development, NPD)的活動中,四階段的品質機能展開 (QFD) 是一項有效的客戶導向工具,並且有助於客戶滿意度最大化的達成。 利用QFD於新產品的設計與開發活動中必須包含完整的四個階段,主要的決策工作在於決定“如何做” (how)的執行度水平,其中分別包括:設計需求 (design requirements, DRs)、設計特徵零組件 (part characteristics, PCs)、製程參數 (process parameters, PPs) 和生產需求(production requirements, PRs)等四項。 然而,在QFD的研究文獻中,大部分的研究僅聚焦在QFD第一階段有關決定設計需求或客戶滿意度最大化的問題上。 本研究延伸Chen and Weng (2003) 所提出之QFD第一階段的研究模式,考慮風險分析與產品開發價值鏈一致性等相關因素,作為模式中的限制條件,首先,建立QFD四階段活動一系列的模糊線性規劃模式。 其次,考慮QFD各階段輸出項之重要性非一致的概念,利用Kano概念模式與模糊數排序法對QFD各階段之“如何做”進行分類,並考慮相似於模糊線性規劃模式的相關限制條件,提出一系列QFD四階段活動的模糊非線性規劃模式。 由於新產品在設計開發階段具有不確定性的本質,模糊理論的方法在本研究中被應用於QFD與風險分析等相關的問題上。最後,經由個案的演算來說明本研究所提出之決策模式的實用性。
In the short life-cycle and customer-driven markets, quality function deployment (QFD) is a useful customer-driven tool in processing new product development (NPD) in order to maximize customer satisfaction. Determining the fullfillment levels of “how”, including design requirement (DRs), parts characteristics (PCs), process parameters (PPs) and production requrement (PRs) is an important decision problem during the four-phase QFD activity processes for NPD. Unlike the existing literature, only focusing on the determination of DRs, this study extends Chen and Weng’s model (2003) and presents a serious of fuzzy linear programming models to achieve the determined contribution levels of each “how” for customer satisfaction. In addition, considering the risk analysis and NPD value chain, this study incorporates these issues into QFD processes, which are treated as the constraints in the models. According to the fact that the importance of the each “how” of QFD is not consensus, this study uses Kano’s concept and fuzzy number ranking method to categorize each “how” and then constructs a serious of fuzzy nonlinear programming models based on the similar conditions of the fuzzy linear programming models for the sme purposes. To cope with the vague nature of NPD processes, fuzzy approaches are used for QFD, risk analysis and relevant issues. Finally, the illustration of the prosed models is performed with a numerical example to demonstrate the applicability in practice.
[1] Chan, L. K. and Wu, M. L., Quality function deployment: A literature review. European Journal of Operational Research, 143, 463-497, 2002.
[2] Akao, Y. and Mazur,G. H., The leading edge in QFD: past, present and future, International Journal of Quality & Reliability Management, 20 (1), 20-35, 2003.
[3] ReVelle, J.B., Moran, J. W., and Cox, C. A., The QFD handbook, John Wiley & Sons, NY., 1998.
[4] Terninko, J., Step-by-step QFD: Customer-driven product design, second edition, CRC Press LLC, FL., 1997.
[5] Cohen, L., Quality function deployment: How to make QFD work for you, Addison-Wesley, MA., 1995.
[6] Cristiano J. J., White III C. C., Liker J. K., Application of multiattribute decision analysis to quality function deployment for target setting. IEEE Transactions on Man, and Cybernetics-Part C: Applications and Reviews, 31 (3); 366-382, 2001.
[7] Cristiano, J. J., Liker, J. K. and White, III, C. C., Key factors in the successful application of quality function deployment (QFD), IEEE Transactions on Engineering Management, 48 (1), 81-95, 2001.
[8] Chen, L. H. and Weng, M. C., A fuzzy model for exploiting quality function deployment, Mathematical and Computer Modeling, 38, 559-570, 2003.
[9] Sullivan, L.P., Quality function deployment, Quality Progress, 19, June, 39-50, 1986.
[10] Hauser J. R. and Clausing D., The house of quality, Harvard Business Review, May-June, 63-73, 1988.
[11] Bossert, J. L., Quality function deployment–a practitioner approach, ASQC Quality Press Inc., NY., 1991.
[12] Griffin, A., and Hauser, J. R.,. The voice of customer, Marketing Science, 12 (1), 1–27, 1993.
[13] Tan, K. C. and Shen, X. X., Integrating Kano’s model in the planning matrix of quality function deployment, Total Quality Management, 11 (8), 1141-1151, 2000.
[14] Sireli, Y., Kauffmann, P. and Ozan, E., Integration of Kano’s model into QFD for multiple product design, IEEE Transactions on Engineering Management, 54 (2), 380-390, 2007.
[15] Armacost, R. L., Componation, P. J., Mullens, M. A., and Swart, W. W., An AHP framework for prioritizing customer requirements in QFD: An industrialized housing application, IIE Transactions, 26 (4), 72–79, 1994.
[16] Lu, M., Madu, C. N., Kuei, C., and Winokur, D., Integrating QFD, AHP, and benchmarking in strategic marketing, Journal of Business and Industrial Marketing, 9 (1), 41–50, 1994.
[17] Kano, N., Seraku, N., Takahaashi, F. and Tsuji, S., Attractive quality and must-be quality, Hinshitsu : The Journal of the Japanese Society for Quality Control, April, 39-48, 1984.
[18] Karsak, E. E., Sozer, S. and Alptekin, S. E., Product planning in quality function deployment using a combined analytic network process and goal programming approach, Computers & Industrial Engineering, 44, 171-190, 2002.
[19] Chan, L. K., Kao, H. P., Ng, A., and Wu, M. L., Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods, International Journal of Production Research, 37 (11), 2499–2518, 1999.
[20] Chan, L. K. and Wu, M. L., A systematic approach to quality function deployment with a full illustrative example, Omega – The International Journal of Management Science, 33 (2), 119-139, 2005.
[21] Wasserman, G. S., On how to prioritize design requirements during the QFD planning process, IIE Transactions, 25 (3), 59–65, 1993.
[22] Temponi, C., Yen, J. and Tiao, W. A., House of quality:A fuzzy logic-based requirements analysis. European Journal of Operational Research, 117, 340-354, 1999.
[23] Vanegas, L. V. and Labib, A. W., Application of new fuzzy-weighted average (NFWA) method to engineering design evaluation, Journal of Production Research, 39, 1147-1162, 2001.
[24] Kwong, C. K. and Bai, H., Determining the importance weights for the customer requirements in QFD using fuzzy AHP with an extent analysis approach, IIE Transactions, 35, 619-626, 2003.
[25] Yang, Y. Q., Wang, S. Q., Dulaimi, M. and Low, S. P., A fuzzy quality function deployment system for buildable design decision-makings, Automation in Construction, 12, 381-393, 2003.
[26] Karsak, E. E., Fuzzy multiple objective decision making approach to prioritize design requirements in quality function deployment, International Journal of Production Research, 42(18), 3957-3974, 2004.
[27] Fung, R. Y., Tang, T., Tu, Y., and Wang, D., Product design resources optimization using a non-linear fuzzy quality function deployment model, International Journal of Production Research, 40, 585-599, 2002.
[28] Chen, L. H. and Weng, M. C., An evaluation approach to engineering design in QFD processes using fuzzy goal programming models, European Journal of Operational Research, 172, 230-248, 2006.
[29] Chen, Y. Fung, R. Y. K. and Tang, J., Rating technical attributes in fuzzy QFD by integrating fuzzy weight average method and fuzzy expected value operator, European Journal of Operational Research, 174, 1553-1566, 2006.
[30] Cheng, B. W. and Chiu, W. H., Two-dimensional quality function deployment:An application for deciding quality strategy using fuzzy logic, Total Quality Management, 18 (4), 451-470, 2007.
[31] Park, T. and Kim, K. J., Determination of an optimal set of design requirements using house of quality, Journal of Operations Management, 16, 569-581, 1998.
[32] Han, S. B., Chen, S. K., Ebrahimpour, M. and Sodhi, M. S., A conceptual QFD planning model, International Journal of Quality & Reliability Management, 18, 796-812, 2001.
[33] Askin, R. G. and Dawson, D. W., Maximizing customer satisfaction by optimal specification of engineering characteristics, IIE Transactions, 32, 9-20, 2000.
[34] Kim, K. J., Moskowitz, H., Dhingra, A. and Evans, G., Fuzzy multicriteria models for quality function deployment, European Journal of Operational Research, 121, 504-518, 2000.
[35] Karsak, E. E., Fuzzy multiple objective programming framework to prioritize design requirements in quality function deployment, Computers & Industrial Engineering, 47, 149-163, 2004.
[36] Stamatis, D. H., Failure mode and effect analysis – FMEA from theory to execution, ASQC Press, NY, 1995.
[37] Hawkins, P. G., Failure modes and effects analysis of complex engineering systems using functional models, Artificial Intelligence in Engineering, 12, 375-397, 1998.
[38] Chao, L. P. and Ishii, K., Design process error proofing: Failure modes and effects analysis of the design process, Journal of Mechanical Design, 129, 491-501, 2007.
[39] Pillay, A. and Wang, J., Modified failure mode and effects analysis using approximate reasoning, Reliability Engineering & System Safety, 79, 69-85, 2003.
[40] Xu, K., Tang, L. C., Xie, M., Ho, S. L. and Zhu, M. L., Fuzzy assessment of FMEA for engine systems, Reliability Engineering & System Safety, 75, 17-29, 2002.
[41] Guimarães, A. C. F. and Lapa, C. M. F., Fuzzy FMEA applied to PWR chemical and volume control system, Progress in Nuclear Energy, 44 (3), 191-213, 2004.
[42] Sharma, R. K., Kumar, D. and Kumar, P., Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modeling, The International Journal of Quality & Reliability Management, 22 (9), 986-1004, 2005.
[43] Kmenta, S. and Ishii, K., Scenario-based failure modes and effects analysis using expected cost, Journal of Mechanical Design, 126, 1027-1035, 2004.
[44] Tan, C. M., Customer-focused build-in reliability: a case study, The International Journal of Quality & Reliability Management, 20 (2/3), 378-397, 2003.
[45] Klir, G. and Yuan, B., Fuzzy sets and fuzzy logic: Theory and application, third impression, Pearson Education, Taiwan, 2003.
[46] Zadeh, L. A., Fuzzy set as a basis for a theory of possibility, Fuzzy Sets and Systems 1, 3-28, 1978.
[47] Zimmermann, H. J., Fuzzy Set Theory and its Applications, second edition, Kluwer-Nijhoffg, Boston, MA, 1991.
[48] Xu, Z. S. and Da, Q. L., An overview of operators for aggregating information, International Journal of Intelligent Systems, 18, 953-969, 2003.
[49] Wu, H. C., Linear regression analysis for fuzzy input and output data using the extension principle, Computers and Mathematics with Applications, 45, 1849-1859, 2003.
[50] Bondia, J. and Picó, J., Analysis of linear systems with fuzzy parametric uncertainty, Fuzzy sets and Systems, 135, 81-121, 2003.
[51] Chang, P. T. and Lee, E. S., A generalized fuzzy weighted least-squares regression, Fuzzy sets and Systems, 82, 289-298, 1996.
[52] Mon, D. L., Cheng, C. H. and Lu, H. C., Application of fuzzy distributions on project management, Fuzzy sets and Systems, 73, 227-234, 1995.
[53] Myint, S., A framework of an intelligent quality function deployment (IQFD) for discrete assembly environment, Computers & Industrial Engineering, 45, 269-283, 2003.
[54] Yager, R. R. and Filev, D. P., SLIDE: A simple adaptive defuzzification method, IEEE Transactions on Fuzzy System, 1(1), February, 69-78, 1993.
[55] Chen, L. H. and Lu, H. W., An approximate approach for ranking fuzzy numbers based on left and right dominance, Computers and Mathematics with Applications, 41, 1589-1602, 2001.
[56] Chen, K. M., Horng, K. H. and Chiang, K. N., Coplanarity analysis and validation of PBGA and T2-BGA packages, Finite Elements in Analysis and Design, 38, 1165-1178, 2002.
[57] Kaufmann, A. and Gupta, M. M., Fuzzy Mathematical Models in Engineering and Management Science, Elsevier Science Inc., NY, 1988.
[58] Bojadziev, G. and Bojadziev, M., Fuzzy Sets, Fuzzy Logic, Applications- Advances in Fuzzy Systems- Applications and Theory Vol. 5, World Scientific, Singapore, 1995.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top