:::

詳目顯示

回上一頁
題名:學童在論證導向的探究活動中其科學概念理解與論述策略之研究
作者:林燕文
作者(外文):Yen-Wen Lin
校院名稱:國立高雄師範大學
系所名稱:科學教育研究所
指導教授:洪振方
學位類別:博士
出版日期:2008
主題關鍵詞:論證導向探究活動基於論證的探究對話論證科學概念理解論述策略論述角色argumentation-orientedinquiry activitiesargumentation-based inquirydialogic argumentationscience conceptual understandingdiscourse strategydiscourse role
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
  本研究目的希望以論證導向的探究活動-「基於論證的探究」促進學童科學概念的理解,並比較其與一般性探究之差異。其中針對學童論述話語進行質性分析,以瞭解學童在對話論證過程中論述策略的使用型態與所扮演之論述角色,進而探討學童論述策略與其科學概念理解的關連性,與瞭解學童論述策略型態是否受到探究主題的影響。
  研究對象選取自高雄縣某國小一個五年級班級,全班共有28人,將其隨機分成六組,隨機選取其中三組進行「基於論證的探究」,其他三組進行一般性探究。研究方法採取質性分析為主,輔以量的研究。首先針對受試學童在兩種探究活動的前後進行科學解釋與科學概念的開放性問卷施測,以偵測學童在核心與相關科學概念理解上的差異。進而針對實驗組學童的論述話語進行論述策略的編碼分析,以探討其論述策略型態、學童論述策略與科學概念理解的關連性,擘劃學童論述策略分佈圖以瞭解學童論述角色,進而探討學童論述策略受探究主題的影響程度等。
  研究結果顯示:「基於論證的探究」對促進學童科學概念理解的成效優於一般性探究,而且學童在對話論證過程中所使用之論述策略與其科學概念理解具有正相關性,即善用論述策略的學童有助於其科學概念理解的提昇。研究結果也發現學童在對話論證過程中,依其論述策略的使用可將其論述角色區分為「提問兼陳述者」、「提問者」、「陳述者」、「靜默者」,以及「居間者」五種角色。由研究結果亦發現學童在對話論證中,最常使用的論述策略為「澄清?」、「辯護?」、「問題?」與「回應?」四種交互性問題策略,以及「回應」和「澄清」兩種交互性陳述策略,而且學童論述策略的使用型態不因探究主題的不同而產生明顯的差異。
The purpose of this study is to advance children’s scientific conceptual understandings with argumentation-oriented inquiry activities, an argumentation-based inquiry, and to compare its differences with general inquiries. Children’s discourses were qualitatively analyzed to understand their discourse strategy using patterns and related roles played in the dialogic argumentation processes. Furthermore, the correlations between children’s discourse strategy and their science conceptual understanding, as well as if their discourse strategy patterns were influenced by different inquiry topics were also investigated.
The subjects were one class of 5th graders chosen from one elementary school at the Kaohsiung County. Twenty eight participants were randomly divided into six groups during which three groups were assigned as argumentation-based inquiry group and three groups were general inquiry group. Research methodologies were mainly qualitative and quantitatively supplemented. First, an open ended questionnaire about scientific explanations and science conceptions were administered before and after two different inquiry activities to explore children’s differences in their understandings in core and related science conceptions. Secondly, children’s discourse strategies in experimental group were coded and analyzed to explore their patterns and relationships with science conceptual understandings. Thirdly, children’s discourse strategy profiles and their discourse roles were also investigated to explore the extent to which the strategies were influenced by different inquiry topics.
The results showed that argumentation-based inquiry was more effective in promoting children’s science conceptual understandings compared to general inquiry. It was also found that children’s discourse strategies and their science conceptual understandings were positively related. That is, children who were good at using discourse strategies can effectively promote their science conceptual understandings. In addition, based on their discourse strategy performances, the roles played by children in dialogic argumentations can be classified as “questioner and declarer”, “questioner”, “declarer”, “mummer” and “mediator”. Moreover, the results also indicated that children’s most often used discourse strategies in dialogic argumentations were four transactive question strategies ( “clarify ?”, “justify ?”, “question ?” and “respond ?” ) and two transactive statement strategies ( “respond” and “clarify” ). Finally, it was noted that children’s discourse strategy using patterns were not significantly differentiated owing to different inquiry topics.
參考文獻

中文部份
林永喜(1997):略述杜威教育思想對科學教育的啟示。科學教育研究與發 展, 8, 4-13。
林德宏(1997): 科學思想史。新竹:理藝。
林燕文、洪振方(2007):對話論證的探究對促進學童科學概念理解之探討。花蓮教育大學學報, 24, 139-177。
林燕文、洪振方(2007):對話論證的探究中學童論述策略對促進科學概念理解之研究。屏東教育大學學報, 26, 285-324。
周邦立譯(1998): 小獵犬號環球航行記。台北:商務。
周寄中譯(1992): 批判與知識的增長。台北:桂冠。
金觀濤(1988): 人的哲學。台北:商務。
洪振方(1994):從孔恩異例的認知與論證探討科學知識的重建。國立台灣師範大科學教育研究所博士論文(未出版)。
洪振方(2002): 美國「國家科學教育標準」之科學的歷史和本質的標準。中華科技史同好會會刊, 2(2), 89-94。
洪振方(2003):探究式教學的歷史回顧與創造性探究模式之初探。高雄師大學報, 15(3), 641-662。
陳衛平譯(1992): 科學的進步與問題。台北:桂冠。
程樹德等譯(1994): 科學革命的結構。台北:遠流。
温明麗(2002): 皮亞傑與批判性思考教學。台北:洪葉。
黃幸美(2003): 兒童的問題解決思考研究。台北:心理。
舒煒光、邱仁宗(1998): 當代西方科學哲學述評。台北:水牛。
楊龍立(2002): 中西科學教育發展簡史。台北:文景。
劉佩雲等譯(2003): 問題解決的教與學。台北:高等教育。
蔡偉鼎譯(2002): 批判性思考導論-如何精進辯論。台北:學富。
顏瓊芬、黃世傑(2003): 學生在開放式科學探究過程中互動模式之研究。科學教育學刊, 11(2), 141-169。
羅雅芬譯(2003):兒童認知。台北:心理。


英文部份
AAAS (American Association for the Advancement of Science) (1993). Benchmarks for scientific literacy. New York: Oxford University Press.
Anderson, R. D. (1996). Study of curriculum reform. Washington, DC: U. S. Government Printing Office.
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1-12.
Anderson, R. C., Nguyen-Jahiel, K., McNurlen, B., Archodidou, A.,Kim,S., Reznitskaya, A., Tillmanns, M., & Gilbert, L. (2001). The snowball phenomenon: Spread of ways of talking and ways of thinking across groups of children. Cognition and Instruction, 19(1), 1-46.
Baker, M. (1999). Argument and constructive integration. In G. Rijlaarsdam & E. Esperet, (Series Eds.), J. Andriessen, & P. Coirier (Vol. Eds.), Foundations of argumentative text processing, 179-201. Amsterdam: Amsterdam University Press.
Bartholomew, H., & Osborne, J. (2004). Teaching students “ideas-about-science”: Five dimensions of effective practice. Science Education, 88, 655-682.
Bishop, M. A., & Downes, S. M. (2002). The theory theory thrice over: the child as scientist, superscientist or social institution? Studies in History and Philosophy of Science, 33, 121-136.
Brewer, W., & Samarapungavan, A. (1991). Children’s theories versus scientific theories: Differences in reasoning or differences in knowledge? In R. Hoffman, & D. Palermo (Eds.), Cognition and the symbolic processes: Applied and ecological perspectives (Vol.3). Hillsdale, NJ: Lawrence Erlbaum.
Brewer, W. F., & Chinn, C. A. (1994). The theory-ladenness of data: An experimental demonstration. In A. Ram, & K. Eiselt (Eds.), Proceedings of the sixteenth annual conference of the cognitive science societ (pp.61-65). Hillsdale, NJ: Lawrence Erlbaum.
Brown, A., & Campione, J. (1994). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 29-70). London: MIT Press.
Brown, D. E., & Clement, J. (1992). Classroom teaching experiments in mechanics. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies. Institute for Science Education at the University of Kiel, Germany, 380-397.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18, 32-42.
Bybee, R. W., & DeBoer, G. (1993). Goals for the science curriculum. Handbook of Research on science teaching and learning. Washington, DC: National Science Teachers Association.
Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
Carey, S. (1991). Knowledge acquistion: Enrichment or conceptual change?. In S. Carey, & R. Gelman (Eds.), The epigenesis of mind: Essays on biology and cognition (pp. 257-291). Hillsdale, NJ: Lawrence Erlbaum.
Cartier, J. L., & Stewart, J. (2000). Teaching the nature of inquiry: Further developments in a high school genetics curriculum. Science and Education, 9, 247-267.
Chamberlain, T. C. (1965). The method of multiple working hypotheses. Science, 148,754-759.
Chi, M. (1988). Children’s lack of access and knowledge reorganization: A example from the concept of animism. In F. Weinert, & M. Perlmutter (Eds.), Memory development: Universal changes and individual differences (pp. 160-194). Hillsdale, NJ: Lawrence Erlbaum.
Chi, M. ( 1992). Conceptual change within and across ontological categories: Implications for learning and discorvery in science. In R. Giere (Ed.), Minnesota studies in the philosophy of science: Cognitive models of science (pp. 129-186). Minneapolis: University of Minnesota Press.
Chin, C., Brown, D. E., & Bruce, B. C. (2002). Student-generated questions: a meaningful aspect of learning in science. International Journal of Science Education, 24(4), 531-549.
Chinn, C. A. (1993). Constructing scientific explanations from text: A theory with implications for conceptual change. Technical Report (No. 626). Champaign, IL: Center for the study of reading.
Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63, 1-49.
Chinn, C. A., & Brewer, W. F. (1998). Theories of knowledge acquisition. In B. J. Fraser, & K. G. Tobin (Eds.), International handbook of science education: Learning (pp. 97-113). Netherlands: Kluwer Academic Publishers.
Chinn, C. A., & Malhotra, M. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86, 175-218.
Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.
Cobb, P. (1994). Constructivism in mathematics and science education. Education Researcher, 23(4), no consecutive page numbering.
Connelly, F. M., & Finegold, M. (1977). Patterns of enquiry project: Scientific enquiry and the teaching of science. Toronto: The Ontario Institute of Studies in Education Press.
Damon, W. (1984). Peer education: The untapped potential. Journal of Applied Developmental Psychology, 5, 331-343.
DeBoer, G. E. (1991). A history of ideas in science education: Implications for practice. New York: Teachers College Press, Columbia University.
Desautels, J., & Larochelle, M. (1998). The epistemology of students: The ‘Thingified’nature of scientific knowledge. In B. J. Fraser, & K. G. Tobin, (Eds.), International handbook of science education: Learning (pp.115-126). Netherlands: Kluwer Academic Publishers.
de Vries, E., Lund, K., & Brker, M. (2002). Computer-mediated epistemic dialogue: Explanation and argumentation as vehicles for understanding scientific notions. The Journal of the Learning Science, 11(1), 63-103.
diSessa, A. (1988). Knowledge in pieces. In G. Forman, & P. Pufall (Eds.), Constructivism in the computer age (pp. 49-70). Hillsdale, NJ: Lawrence Erlbaum.
DiSessa, A. (1993). Toward an epistemology of physics. Cognition and instruction, 10, 105-225.
Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher , 23, 5-12.
Driver, R., Leach, J., Millar, R., & Scott. P. (1996). Young people’s images of science. Philadephia: Open University Press.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.
Duschl, R. A. (1986). Textbooks and the teaching of fluid inquiry. School Science and Mathematics, 86(1), 27-32.
Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.
Duschl, R. A. (1991). Epistemmological perspectives on conceptual change: Implications for educational practice. Journal of Research in Science Teaching, 28(9), 839-858.
Duschl, R. A. (1994). Research on the history and philosophy of science. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 443-465). New York: MacMillan Publishing Company.
Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38, 39-72.
Duschl, R. A., ABD-EL-Khalic, F., Boujaoude, S., Lederman, N. G., Mamlok-Naaman, R., Niaz, M., Treagust, D., & Tuan, H.-L. (2004). Inquiry in science education: International perspectives. Culture and Comparative Studies, 397-419.
Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355-385.
Felton, M. K. & Kuhn, M. (2001). The development of argumentive discourse Skill. Discourse Processes, 32(2 & 3), 135-153.
Felton, M. K. (2004). The development of discourse strategies in adolescent argumentation. Cognitive Development, 19, 35-52.
Ferguson-Hessler, M. G. M., & de Jong, T. (1990) . Studying physics texts: Differences in study processes between good and poor performers. Cognition and Instruction, 7, 41-54.
Flick, L. B. (2000). Cognitive scaffolding that fosters scientific inquiry in middle level science. Journal of Science Teacher Education, 11(2), 109-129.
Forman, P. (1971). Weimar culture causality, and quantum theory, 1918-1927: Adaptation by german physicists and mathematicians to a hostile intellectual environment. In R. McCormmach (Ed.), Historical studies in the physical sciences (vol. 3, pp. 1-115). Philadelphia, PA : University of Pennsylvania Press.
Geddis, A. (1991). Improving the quality of classroom discourse on controversial issues. Science Education, 75, 169-183.
Gee, J. (1999). An introduction to discourse analysis. New York: Routledge.
Geyer, S. (1997). Some conceptual considerations on the sense of coherence. Social Science & Medicine, 44(12), 1771-1779.
Gitomer, D. H., & Duschl, R. A. (1995). Moving toward a portfolio culture in science education. In S. M. Glynn, & R. Duit (Eds.), Learning science in the schools: Research reforming practice. Mahwah, NJ: Erlbaum.
Glaser, R. (1984). Education and thinking: The role of knowledge. American Psychologist, 39, 93-104.
Glaser, R. (1995). Application and theory: Learning theory and the design of learning environments. Paper presented at the 23r International Congress of Applied Psychology, July 17-22, 1994, Madrid, Spain.
Greeno, J. (1997). On claims that answer the wrong question. Educational Researcher, 26(1), 5-17.
Gorsky, P., & Finegold, M. (1994). The role of anomaly and of cognitive dissonance in restructureing students’ concepts of force. Instructional Science, 22,75-90.
Hager, P., Sleef, R., Logan, P., & Hooper, M. (2003). Teaching critical thinking in undergraduate science courses. Science & Education, 12, 303-313.
Halpern, D. F. (1996). Thought & Knowledge. Mahwah, NJ: Lawrence Erlbaum.
Hebb, D. O. (1949). The roganization of behavior. New York: Wiley.
Hempel, C. (1966). Philosophy of natural science. Upper Saddle River, NJ: Prentice-Hall.
Hewson, M. G. A’B. (1985). The role of intellectual environment in the origin of conceptions: An exploratory study. In L.H.T. West, & A. L. Pines (Eds.), Cognitive Structure and Conceptual Change (pp. 153-161). Floirda, Orlando: Academic Press, Inc.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3, 383-396.
Hewson, P. W., Beeth, M. E., & Thorley, N. R. (1998). Teaching for conceptual change. In B. J. Fraser, & K. G. Tobin (Eds.), International handbook of science education: Teaching (pp.199-218). Netherlands: Kluwer Academic Publishers.
Herrenkohl, L., & Guerra, M. (1998). Participant structures, scientific discourse, and student engagement in fourth grade. Cognition and Instruction, 16(4), 431-473.
Herrenkohl, L., Palincsar, A., Dewater, L., & Kawasaki, K. (1999). Developing scientific communities in classrooms: A sociocognitive approach. The Journal of Learning Sciences, 8, 451-494.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3, 383-396.
Heyman, G. D., Phillips, A. T., & Gelman, S. A. (2003). Children’s reasoning about physics within and across ontological kinds. Cognition, 89, 43-61.
Hogan, K. (1994). Eco-Inquiey: A guide to ecological learning experiences in the upper elementary/middle grades. Dubuque, IA: Kendall/Hunt.
Hogan, K., & Fisherkeller, J. (1996). Representing students’ thinking about nutrient cycling in ecosystems: Bidimensional coding of a complex topic. Journal of Research in Science Teaching. 33(9), 941-970.
Hogan, K., & Pressley, M. (Eds.) (1997a). Scaffolding student learning: Instructional approaches and issues. Cambridge, MA: Brookline Books.
Hwang, A. S. (1996). Positivist and constructivist Persuasions in instructional development. Instrctional Science, 24, 343-356.
Jimenez-Aleixandre, M., Rodriguez, A., & Duschl, R. (2000). ‘Doing the lesson’ or ‘doing science’: Argument in high school genetics. Science Education, 84(6), 757-792.
Johnson, D., Maruyama,G., Johnson, R., Nelson, D., & Skon, L. (1981). Effects of cooperative, competitive, and Individualistic goal structures on achievement: A meta-analysis. Psychological Bulletin, 89, 47-62.
Joyce, B., & Calhoun, E. (1995). School renewal: An inquiry, not a formula. Educational Leadership, 52, 51-55.
Karmiloff-Smith, A. (1988). The child is a theoretician, not an inductivist. Mind and Language, 3, 183-195.
Karmiloff-Smith, A. (1992). Beyond modularity. Cambridge, MA : MIT Press.
Key, C. W., & Bryan, L. A. (2001). Co-Constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38(6), 631-645.
Keil, F. (1989). Concepts, kinds, and cognitive development. Cambridge, MA: MIT Press.
Kelly, G. J., & Crawford, T. (1997). An ethnographic investigation of the discourse processes of school science. Science Education, 81(5), 533-560.
Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578.
Kittleson, J. M., & Southerland, S. A. (2004). The role of discourse in group knowledge construction: A case study of engineering students. Journal of Research in Science Teaching, 41(3), 267-293.
Klahr, D. (1984). Transition processes in quantitative development. In R. J. Sternberg (Ed.), Mechanisms of Cognitive Development (pp. 102-139). New York: Freeman .
Klahr, D. & Siegler, R. S. (1978). The representation of children’s knowledge. In H. W. Reese, & L. P. Lipsitt (Eds.), Advances in child development and behavior (pp. 61-116). New York: Academic Press
Krajick, J., Czerniak, C. M., & Berger, C. F. (1998). Teaching children science: A project-based approach, Boston, MA: McGraw-Hill.
Krems, J., & Johnson, T. R. (1995). Integration of anomalous data in multicausal explanations. In J. D. Moore, & J. F. Lehman (Eds.), Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society (pp.277-282). Hillsdale, NJ: Lawrence Erlbaum.
Kuhn, D. (1989). Children and Adults as intuitive scientists. Psychological Review, 96, 674-689.
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77, 319-337.
Kuhn, D., & Lao, J. (1998). Contemplation and conceptual change: Integrating perspectives from social and cognitive psychology. Developmental Review, 18, 125-154.
Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28(2), 16-26.
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.
Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago: University of Chicago Press.
Lakatos, I. (1970). Falsification and the methodology of scientific research programmers. In I. Lakatos, & A. Musgrave (Eds.), Criticism and the growth and the knowledge (pp. 91-195). Cambridge University Press.
Lawson, A. E. (1982). Evolution, equilibration, and instruction. The American Biology Teacher, 44(7), 394-405.
Lawson, A. E. (1988). The acquisition of biological knowledge during childhood: Cognitive conflict or tabula rasa?, Journal of research in Science Teaching, 25, 185-199.
Lawson, A. E. (1994). Research on the acquisition of science knowledge: Epistemological foundations of cognition. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 131-176). New York: MacMillan Publishing Company.
Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont, California: Wadsworth Publishing Company.
Lawson, A. E. (2000). How do humans acquire knowledge? and What does that imply about the nature of knowledge? Science & Education, 9, 577-598.
Lawson, A. E. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching.International Journal of Science Education, 25(11), 1387-1408.
Lawson, A. E. (2003). Allchin’s Shoehorn, or why science is hypothetico-deductive. Science & Education, 12, 331-337.
Leach, J. (1999). Students’understanding of the co-ordination of theory and evidence in science. International Journal of Science Education, 21(8), 789-806.
Lederman, N. G., Wade, P. D., & Bell, R. L. (1998). Assessing the nature of science: What is the nature of our assessments? Science & Education, 7, 595-615.
Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of Nature of Science Questionnaire: Toward Valid and Meaningful Assessment of Learners’ Conceptions of Nature of Science. Journal of Research in Science Teaching, 39(6), 497-521.
Levin,I., Siegler, R. S., & Druyan, S. (1990). Misconceptions about motion: Development and training effects. Child Development, 61, 1544-1557.
Lewis, R. W. (1988). Biology: A hypothetico-deductive science. The American Biology Teacher, 50(6), 362-367.
Loving, C. C., & Cobern, W. W. (2000). Invoking Thomas Kuhn: What citation analysis reveals about science education. Science and Education, 9, 187-206.
Matthews, M. (1998). In defense of modest goals when teaching about the nature of science. Journal of Research in Science Teaching, 35(2), 161-174.
Medawar, P. B. (1969). Induction and intuition in scientific thought. Philadelphia, PA: American Philosophical Dociety.
Metz, K. E. (1998). Scientific inquiry within reach of young children. In B. J. Fraser, & K. G. Tobin (Eds.), International handbook of science education: Learning (pp.81-96). Netherlands: Kluwer Academic Publishers.
Minstrell, J., & van Zee, E. (Eds.), (2000). Teaching in the inquiry-based science classroom. Washington, DC: American Association for the Advancement of Science.
Mintzes, J. J., & Novak, J. D. (1999). Assessing science understanding: The epistemological vee diagram. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Assessing science understanding (pp. 41-69). California: A Harcourt Science and Technology Company Press.
Mintzes, J. J., Wandersee, J. H., & Novak, J. D. (1997). Teaching science for understanding. California: A Harcourt Science and Technology Company Press.
Mintzes, J. J., Wandersee, J. H., & Novak, J. D. (1999). Assessing science understanding. California: A Harcourt Science and Technology Company Press.
National Research Council (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21, 553-576.
Novak, J. D., & Tyler, R. W. (1977). A theory of education. NY: Cornell University Press.
Nussbaum, E. M., & Sinatra, G. M. (2003). Argument and conceptual engagement. Contemporary Educational Psychology, 28, 384-395.
Ohlsson, S. (1995). Learning to do and learning to understand? A lesson and a challenge for cognitive modeling. In P. Reimann, & H. Spads (Eds.), Learning in humans and machines (pp. 37-62). Oxford: Elsevier.
Orsolini, M., & Pontecorvo, C. (1992). Children’s talk in classroom discussion. Cognition and Instruction, 9, 113-136.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching. 41(10), 994-1020.
Perret-Clermont, A. N. (1980). Social interaction and cognitive development in children. London: Academic Press.
Piaget, J. (1952). The origins of intelligence in children. New York: International Universities Press.
Piaget, J. (1964). Cognitive development in children: Development and learning. Journal of Research in science teaching, 2(2), 176-186.
Piaget, J. (1971). Biology and knowledge. Chicago: University of Chicago Press.
Piaget, J. (1977). The development of thought: Equilibrium of cognitive structures. New York: Viking.
Polman, J. L., & Pea, R. D. (2001). Transformative communication as a cultural tool for guiding inquiry science. Science Education, 85, 223-238.
Popper, K. R. (1965). Conjectures and Refutations: The growth of scientific knowledge. New York: Basic Books.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
Romey, W. D. (1968). Inquiry techniques for teaching science. Englewood Cliffs: Prentice-Hall, Inc.
Rop, C. J. (2002). The meaning of student inquiry questions: A teacher’s beliefs and responses. International Journal of Science Education, 24(7), 717-736.
Roschelle, J. (1992). Learning by collaborating: Convergent conceptual. Journal of the Learning Sciences, 3(3), 235-276.
Rosebery, A. S., Warren, B., & Conant, F. R. (1992). Appropriating scientific discourse: Findings from language minority classrooms. The Journal of the Learning Sciences, 2, 61-94.
Rumelhart, D. E., & Ortony. A. (1977). The representation of knowledge in memory. In R. C. Anderson, R. J. Spiro & W. E. Montague (Eds.), Schooling and the acquisition of knowledge (pp. 99-135). Hillsdale, NJ: Lawrence Erlbaum.
Samarapungavan, A. (1990). Children’s metajudgments in theory choice tasks: An investigation of scientific rationality in childhood. Unpublished dissertation, The University of Illinois , Urbana-Champaign.
Samarapungavan, A. (1992). Children’s judgements in theory choice tasks: Scientific rationality in childhood. Cognition, 45, 1-32.
Samarapungavan, A. & Wiers, R. W. (1997). Children’s thoughts on the origin of species: A study of explanatory coherence. Cognitive Science, 21(2), 147-177.
Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. The Journal of the Learning Sciences, 12(1), 5-15.
Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88, 345-372.
Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition & Instruction, 23, 23-33.
Schwab, J. J. (1960). What do scientists do? Behavioral Science, 5, 1-27.
Schwab, J. J. (1962). The teaching of science as enquiry. In J. J. Schwab, & P. F. Brandwein (Eds.), The teaching of science. Cambridge, MA: Harvard University Press.
Shapere D. (1983). The character of scientific change. In T. Nickles (Ed.), Boston studies in the philosophy of science series: Science and discovery. Dordrecht, Holland: Reidel Publishing Co.
Shapere D. (1984). Reason and the search for knowledge. Dordrecht, Holland: Reidel Publishing Company.
Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hillsdale, NJ: Lawrence Erlbaum.
Sivaramakrishnan, M., & Patel, V. L. (1990). Explanations of nutritional concepts: Role of cultural and biomedical theories. Proceedings of the twelfth annual cognitive science society (pp. 931-938). Hillsdale, NJ: Lawrence Erlbaum.
Smith, J. P., diSessa, A. A., & Roschelle, J. (1993/1994), Misconceptions Reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3, 115-163.
Spelke, E. (1991). Physical knowledge in infancy: Reflection on Piaget’s Theory. In S. Carey, & R. Gelman (Eds.), The epigenesis of mind: essays on biology and cognition (pp.133-169). Hillsdale, NJ: Lawrence Erlbaum.
Staver, J. R. (1998). Constructivism: Sound theory of explicating the practice of science and science teaching. Journal of Research in Science Teaching, 35(5), 501-520.
Stoddart, T., Pinal, A., Latzke, M., & Canaday, D. (2002). Integrating inquiry science and language development for English language learners. Journal of Research in Science Teaching, 39(8), 664-687.
Suppe, F. (1998). The structure of a scientific paper. Philosophy of Science, 65(3), 381-405.
Taber, K. S. (2001). Shifting sands: a case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23(7), 731-753.
Thagard, P. (1992). Conceptual revolutions. Princeton, New Jersey: Princeton University Press.
Thagard, P. (1998). Ethical coherence. Philosophical Psychology, 11(4).
Thomson, N., & Stewart, J. (2003). Genetics inquiry: Strategies and knowledge geneticists use in solving transmission genetics problems. Science Education, 87, 161-180.
Tobin, K., & Tippins, D. (1993). Constructivism as a referent for teaching and learning. In K. Tobins & D. Tippins (Eds.), The practice of constructivism in science education (pp. 3-22). Hillsdale, NJ: Erlbaum.
Tomkins, S. P., & Tunnicliffe, S. D. (2002). Looking for ideas: observation, interpretation and hypothesis-making by 12-year-old pupils undertaking science investigations. International Journal of Science Education, 23(8), 791-813.
Toombs, E. (2003). Harmony , explanatory coherence and the debate between the reticular theory and neuron theory of nerve cell structure: ECHO’s resolution of a quiet revolution. Studies in History and Philosophy of Biological and Biomedical Sciences, 34, 615-632.
Toth, E. E., Suthers, D. D., & Lesgold, A. M. (2002). “Mapping to know”: The effects of representational guidance and reflective assessment on scientific inquiry. Science Education, 86, 264-286.
Toulmin, S. (1958). The Use of Argument. NY: Cambridge University Press.
Toulmin, S. (1972). Human understanding. Princeton, New Jersey: Princeton University Press.
van Eemeren, F. H., Grootendorst, R., & Snoeck Henkemans, F. S. (1996). Fundamentals of argumentation theory. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
van Zee, E. H. (2000). Analysis of a student-generated inquiry discussion. International Journal of Science Education, 22(2), 115-142.
Varelas, M., Becker, J., Luster, B., & Wenzel, S. (2002). When genres meet: Inquiry into a six-grade Urban science class. Journal of Research in Science Teaching, 39(7), 579-605.
Vosniadou, S. & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 177-210). New York: MacMillan Publishing Company.
Webster’s (1958). New collegiate dictionary. Cambridge, MA: Riverside Press.
Wellman, H. M. (1990). The child’s theory of mind. Cambridge, MA: MIT Press.
Wertsch, J. (1991). Voices of the mind. New York: Harvester.
White, B. Y., Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition & Instruction, 16(1), 3-118.
Willard, C. A. (1983). Argumentation and the social grounds of knowledge. Tuscaloosa: University of Alabama Press.
Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of the tutor in problem solving. Journal of Psychology and Psychiatry, 17, 89-100.
Yager, R. E., & Tamir, P. (1993). STS approach: reasons, intentions, accomplishments, and outcomes. Science Education, 77(6), 637-658.
Zarefsky, D. (1995). Argumentation in the tradition of speech communication studies. In F. H. van Eemeren, R. Grootendorst, J. A. Blair, & C. A. Willard (Eds.), Perspectives and approaches: Proceedings of the Third International Conference on Argumentation (Vol. 1, pp. 32-52). Amsterdam: Sic Sat.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關博士論文
 
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE