:::

詳目顯示

回上一頁
題名:整合性組裝順序規劃之KBE系統
作者:戴培豪
作者(外文):TAI, PEI-HAO
校院名稱:中華大學
系所名稱:科技管理學系(所)
指導教授:陳文欽
謝玲芬
學位類別:博士
出版日期:2009
主題關鍵詞:組裝規劃組裝優先順序圖類神經網路實驗設計田口方法assembly planningassembly precedence diagramsneural networksdesign of experimentTaguchi method
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:63
產品組裝規劃研究一般可分成圖形導向、知識導向及人工智慧等三類,而其三種研究的各自缺點在於圖形導向需耗費大量時間,知識導向很困難去發掘最佳解,人工智慧需要高度計算效率。為了克服上述問題,本研究發展一個整合三階段圖形導向啟發式作業規則,並以田口及實驗設計建構穩健倒傳遞神經網路預測器與智慧型物件導向的知識工程(KBE)系統。
首先協助工程師依據產品上位圖規則去產生一正確CAD爆炸圖,並依據圖形導向啟發式作業規則,建構關係模型圖及組裝優先順序圖,進而產生圖形解之最佳組裝順序-當作倒傳遞類神經網路學習訓練樣本;再則透過倒傳遞類神經網路穩健預測器及物件導向的KBE系統,產生可行的組裝順序。本研究所建立之組裝順序規劃KBE系統,係利用Siemens NX/KF二次開發軟體模組與結合倒傳遞神經網路預測器,預測並獲得較佳的機構件或塑膠件產品的組裝順序;其中在使用者UI介面可獲取CAD系統組合件的體積、重量、特徵數量等資訊,並輸入相關參數(接觸關係值與總懲罰值),以倒傳遞類神經網路訓練樣本,建構穩健的組裝順序預測引擎,預測可行的組裝順序;本系統不但可顯示其爆炸圖及動態組裝模擬,並可將所有組裝資訊儲存,建立完善的知識庫。
最後應用三種實體樣品在組裝順序規劃KBE系統上,以玩具模型車當為學習(訓練)樣本,玩具摩托車模型與無刷直流風扇當為測試樣本,去評估及驗證上述方法的可行性。結果顯示所提的研究模式,可有效率地建立穩健倒傳遞神經網路引擎及快速預測可行的組裝順序,並讓R&D設計者深入了解組裝接觸關係、組裝困難度與虛擬3D實體組裝限制因素。
Research in assembly planning can be categorized into three types of approach: graph-based, knowledge-based and artificial intelligence approaches. The main drawbacks of the above approaches are as follows: the first is time-consuming; the second approach is difficult to find the optimal solution; and the third approach requires a high computing efficiency.
To tackle these problems, this study develops a three-stage approach (i.e., firstly create a correct CAD-oriented explosion graph and then find a graph-based assembly sequence using Above graph, relational model graph and assembly precedence diagram; at last, generating a feasible assembly sequence) integrated with robust back-propagation neural network (BPNN) engines via Taguchi method and design of experiment (DOE), and a knowledge-based engineering (KBE) system to assist the assembly engineers in promptly predicting a near-optimal assembly sequence for mechanical or plastic products. The research focuses on building a novel KBE system for assembly sequence planning (ASP), which joins BPNN predictor and Siemens NX/KF second development module together to create feasible assembly sequences. System user can easily access the volume, weight and feature number through Unigraphics NX system interface, and input the related parameters such as contact relationship number and total penalty value, and predict the feasible assembly sequence via a robust BPNN engine. Furthermore, the proposed system can demonstrate the explosion views and vivid assembly simulations, save the entire assembly information, and setup a consolidate knowledge base.
Finally, three real-world examples- the toy car model as a learning (training) sample, toy motorbike model and a brushless DC fan as verifying (testing) samples, are dedicated to evaluating the feasibility of the proposed KBE system in terms of the differences in assembly sequences. The results show that the proposed model can efficiently generate robust BPNN engines, facilitate feasible assembly sequences and allow the designers to recognize the contact relationships, assembly difficulties and assembly constraints of three-dimensional (3D) components in a virtual environment type.
Amen, M. (2001). Heuristic methods for cost-oriented assembly line balancing: A comparison on solution quality and computing time. International Journal of Production Economics, 69 (3), 255-264.

Andrew, K. (1992). Intelligent design and manufacturing. New York: John Wiley & Sons Inc.

Anjum, M. F., Tasadduq, I., & Al-Sultan, K. (1997). Response surface methodology: A neural network approach. European Journal of Operational Research, 101, 65-73.

Ben-Arieh, D., Kumar, R. R., & Tiwari, M. K. (2004). Analysis of assembly operations’ difficulty using enhanced expert high-level colored fuzzy Petri net model. Robotics and Computer-Integrated Manufacturing, 20, 385-403.

Boart, P. (2005). Life cycle simulation support for functional products. M.Sc. thesis, Luleå University of Technology, SWEDEN.

Bourjault, A. (1984). Contribution á une approche méthodologique de l’assemblage automatisé: Elaboration automatique des séquences opératoires, Unpublished doctoral dissertation, Faculté des Sciences et des Techniques de l’Université de Franche-Comté, France.

Chen, C. L. P. (1990). Neural computation for planning and/or precedence-constraint robot assembly sequences. In: Proceedings of the International Conference on Neural Networks. 127-142. San Diego, CA.

Chen, R. S., Lu, K. Y., & Tai, P. H. (2004a). Optimization of assembly plan through a three-stage integrated approach. International Journal of Computer Applications in Technology, 19(1), 28-38.

Chen, R. S., Lu, K. Y., & Tai, P. H. (2004b). Optimizing assembly planning through a three-stage integrated approach. International Journal of Production Economics, 88, 243-256.

Chen, W. C., & Hsu, S. W. (2007). A neural-network approach for an automatic LED inspection system. Expert Systems with Applications, 33(3), 531-537.

Chen, W. C., Tai, P. H., Deng, W. J., & Hsieh, L. F. (2008). A three-stage integrated approach for assembly sequence planning using neural networks. Expert Systems with Applications, 34, 1777-1786.

Cheng, C. S., & Tseng, C. A. (1995). Neural network in detecting the change of process mean value and variance. Journal of the Chinese Institute of Industrial Engineers, 12 (3), 215-223.

Clive, L. D., & Patric, L. (2009). Engineering Design: a project-based introduction. USA, John Wiley & Sons.

Crowson, R. D. (2006). Assembly Processes: finishing, packaging, and automation. Taylor & Francis, New York.

De Fazio, T. L., & Whitney, D. E. (1987). Simplified generation of all mechanical assembly sequences. IEEE Transactions on Robotics and Automation, 3(6), 640-658.

Eng, T. H., Ling, Z. K., Olson, W., & Mclean, C. (1999). Feature-based assembly modeling and sequence generation. Computers & Industrial Engineering, 36, 17-33.

Fogel, D. B. (1991). An information criterion for optimal neural network selection. IEEE Transaction on Neural Network, 2(5), 490-497.

Gu, P., & Norrie, D. H. (2006). Intelligent Manufacturing Planning. USA, Chapman & Hall.

Gu, P., & Yan, X. (1995). CAD-directed automatic assembly sequence planning. International Journal of Production Research, 33(11), 3069-3100.

Guo, Y. W., Li, W. D., Mileham, A. R., & Owen, G. W. (2009). Applications of particle swarm optimization in integrated process planning and scheduling. Robotics and computer-integrated manufacturing, 25, 280-288.

Haupt, R. L. (2004). Practical genetic algorithms. 2nd ed. USA, Wiley-Interscience Publication.

Haykin, S. (1999). Neural Networks: A comprehensive foundation. Canada, Prentice Hall.

Henrioud, J. M., Relange, L., & Perrard, C. (2003). Assembly sequences, assembly constraints, precedence graphs. In: Proceedings of the fifth IEEE symposium on assembly and task planning, France, July 10-11, 90-5.

Holland, W. V., & Bronsvoort, W. F. (2000). Assembly features in modeling and planning. Robotics and Computer Integrated manufacturing, 16, 277-294.

Homen de Mello, L. S., & Sanderson, A. C. (1991a). Representations of mechanical assembly sequences. IEEE Transactions on Robotics and Automation, 7(2), 211-227.

Homen de Mello, L. S., & Sanderson, A. C. (1991b). A correct and complete algorithm for the generation of mechanical assembly sequence. IEEE Transactions on Robotics and Automation, 7(2), 228-240.

Hong, D. S., & Cho, H. S. (1995). A neural network based computational scheme for generating optimized robotic assembly sequences. Engineering Application Artificial Intelligence, 8(2), 129-45.

Huang, G. Q. (1996). Design for X: Concurrent Engineering Imperatives. London, Chapman & Hall.

Huang, G. Q., & Mak, K. L. (1997). The DFX shell: a generic framework for developing design for X tools. Robotics & Integrated Manufacturing, 13 (3), 271-300.

Hush, D. R., & Horne, B. G. (1993). Progress in supervised neural networks. IEEE Signal Processing Magazine, January, 8-39.

Kai, Y., & Basem, E. H. (2003). Design for Six Sigma: a roadmap for product development, McGraw-Hill, New York.

Kalpakjian, S. (1992). Manufacturing process for engineering materials. 2nd ed. USA, Addison-Wesley.

Khaw, J. F. C., Lim, B. S., & Lim, L. E. N. (1995). Optimal design of neural network using the Taguchi method. Neurocomputing, 7, 225-245.

Kroll, E. (1994). Intelligent assembly planning on triaxial products. Concurrent Engineering: Research and Applications, 1(2), 311-319.

Kulon, J., Broomhead, P., & Mynors, D. J. (2003). Applying knowledge-based engineering to traditional manufacturing design. International Journal of Advanced Manufacturing Technology, 30, 945-951.

Kuo, T. C., Huang, S. H., & Zhang, H. C. (2001). Design for manufacture and design for‘X’: Concepts, applications, and perspectives. Computers & Industrial Engineering, 41, 241-260.

Lai, H. Y., & Huang, C. T. (2004). A systematic approach for automatic assembly sequence plan generation. International Journal of Advanced Manufacturing Technology, 24, 752-763.

Lee, K. (1999). Principles of CAD/CAM/CAE systems. USA, Addison-Wesley.

Lee, S. (1989). Disassembly planning by subassembly extraction. In: M.A., Proceedings of the third ORSA/TIMS Conference on flexible manufacturing systems (pp. 383-388). Cambridge.

Levitin, A. V. (2007). Introduction to the design and analysis of algorithms. 2nd ed. USA, Addison-Wesley.

Lim, S. S., Lee, B. H., Lim, E. N., & Ngoi, B. K. A. (1995). Computer-aided concurrent design of product and assembly processes: a literature review, Journal of Design and Manufacturing, 5, 67-88.

Lin, A. C., & Chang, T. C. (1993). An integrated approach to automated assembly planning for three-dimensional mechanical products. International Journal of Production Research, 31(5), 1201-1227.

Liu, Y., Liu, W., & Zhang, Y. (2001). Inspection of defects in optical fibers based on back-propagation neural networks. Optics Communications, 198(4-6), 369-378.

Lotter, B. (1989). Manufacturing assembly handbook, Butterworths, London.

Lu, C., Wong, Y. S., & Fuh, J. Y. H. (2006). An enhanced assembly planning approach using a multi-objective genetic algorithm. Journal of Engineering Manufacture, 220, 255-272.

Maier, H. R., & Dandy, G. C. (1998). Understanding the behaviour and optimising the performance of back-propagation neural networks: an empirical study. Environmental Modelling & Software, 13, 179-191.

Marian, R.M., Luong, L.H.S., & Abhary, K. (2003). Assembly sequence planning and optimisation using genetic algorithms. Applied Soft Computing, 2(3), 223-253.

Mascle, C., & Zhao, H. P. (2008). Integrating environmental consciousness in product/process development based on life-cycle thinking. International Journal of Production Economics, 12, 5-17.

McDonald, D. B., Grantham, W. J., Tabor, W. L., & Murphy, M. J. (2007). Global and local optimization using radial basis function response models. Applied Mathematical Modelling, 31, 2095-2110.

Murata, N., & Yoshizawa, S. (1994). Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Transaction on Neural Network, 5, 865- 872.

Nof, S. Y., Wilhelm, W. E., & Warnecke, H. J. (1997). Industrial Assembly. Chapman & Hall, London.

Onoda, T. (1995). Neural network information criterion for optimal number of hidden units. Proceedings of the IEEE International Conference on Neural Networks, 1, 270-280.

Prasad, B. (1997). Concurrent engineering fundamentals: Integrated product development. New Jersey, Prentice-Hall.

Ramos, C., Rocha, J., & Vale, Z. (1998). On the complexity of precedence graphs for assembly and task planning. Computers in Industry, 36, 101-111.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1996). Learning representations of back- propagation errors. Nature(London), 323, 533-536.

Sage, A. P. (1990). Concise encyclopedia of information processing in systems and organizations. New York, Pergamon.

Santos, M. S., & Ludermir, B. (1999). Using factorial design to optimize neural networks, International Joint Conference on IEEE Neural Networks, 2, 857-861. Washington, DC.

Saridakis, K. M., & Dentsoras, A. J. (2008). Soft computing in engineering design- A review. Advanced Engineering Informatics, 22, 202-221.

Sinanog˘lu, C. (2006). A neural predictor to analyze the effects of metal matrix composite structure (6063 Al/SiCp MMC) on journal bearing. Industrial Lubrication and Tribology, 58(2), 95-109.

Smith, G. C., & Smith, S. S. F. (2002). An enhanced genetic algorithm for automated assembly planning. Robotics and Computer-Integrated Manufacturing, 18, 355-364.

Su, Q. (2009). A hierarchical approach on assembly sequence planning and optimal sequence analyzing. Robotics and Computer-Integrated Manufacturing, 25, 224-234.

Tai, P. H. (1997). Feature-based assembly modeling for assembly sequence planning of three-dimensional products. Unpublished master’s thesis, Cranfield University, UK.

Tripathi, M., Agrawal, S., Pandey, M. K., Shankar, R., & Tiwari, M. K. (2009). Real world disassembly modeling and sequencing problem: Optimization by Algorithm of Self-Guided Ants (ASGA). Robotics Computer-Integrated Manufacturing, 25(2009), 483-496.

Wang, J. F., Liu, J. H., & Zhong, Y. F. (2005). A novel ant colony algorithm for assembly sequence planning, International Journal of Advanced Manufacturing Technology, 25, 1137-1143.

Yao, S., Yan, B., Chen, B., & Zeng, Y. (2005). An ANN-based element extraction method for automatic mesh generation. Expert Systems with Applications, 29, 193-206.

Yin, Z. P., Ding, H., & Xiong, Y. L. (2004). A virtual prototyping approach to generation and evaluation of mechanical assembly sequences. In: Proceedings of the Institution of Mechanical Engineering, January, 218, 87-102.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top