:::

詳目顯示

回上一頁
題名:兩週捷泳SIT與SIT攝取高氧對生理代謝與短距離速度之效果
作者:黃濬棋
作者(外文):Jiun-Chi Huang
校院名稱:國立體育大學
系所名稱:教練研究所
指導教授:張嘉澤
學位類別:博士
出版日期:2010
主題關鍵詞:間歇衝刺訓練(SIT)100m成績表現乳酸排除2 - 4 m m o l / l 閾值能力划頻sprint interval training (SIT)100m performancelactate elimination2-4mmol/l threshold capacitiesstroke rate
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(1) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:63
於競技運動訓練科學的領域中,能夠有效提升運動表現以及訓練效率的型態或者是外加性的輔助策略,一直是運動訓練科學的首要研究重心。因此,本研究目的旨在探討2週間歇衝刺訓練(sprint interval training, SIT) 對於短距離捷泳運動表現及生理代謝之效果;同時,亦探討於捷泳SIT期間攝取高濃度氧氣(hyperoxia),對於衝刺速度表現與生理代謝之效果。本研究以8名健康國中男性游泳選手為對象,進行2週捷泳SIT對於100m專項成績、划頻、划長、心跳率恢復%、結束後最大乳酸形成率、NH3、2-4mmol/l閾值能力與RPE之效果;另外,於SIT期間攝取高濃度氧氣對於衝刺速度、乳酸排除、RPE、結束後心跳率、SpO2以及血液自由基(H2O2)之影響。研究結果發現:SIT訓練型態具有僅在2週8 階段的訓練期後,顯著提升100m捷泳運動成績表現與4mmol/l閾值速度能力;以及,高濃度氧氣具有顯著提升SIT的訓練品質,並且在較佳的乳酸排除情況下,而能夠額外的降低血液自由基之效果。本研究證實SIT是一種超高效率的專項訓練型態,若能夠再加上高濃度氧氣的使用,則可再進一步地提升SIT的訓練品質。
The training pattern and extra helping strategy that improve the sports performance and training efficiency are always been the center points of research in the field of competitive sports training science. Therefore, the purposes of this study were to investigate the effects of two weeks crawl-stroke sprint interval training (SIT) and SIT with hyperoxia on physiological metabolism and sprint performance. Eight health junior high school male swimmers participated in this study for the effects of 2 weeks crawl-stroke SIT on 100m crawl-stroke result, stroke rate, stroke length, heart rate recovery %, end maximum lactate eliminated rate, NH3, 2-4mmol/l threshold capacities and RPE. Furthermore, to understand the effects of SIT with hyperoxia on speed of sprints, lactate elimination, RPE, ended heart rate, SpO2 and blood free radicals (H2O2). Results showed that 100m crawl-stroke performance and 4mmol/l threshold capacity were all significantly improved after only 8 sessions of 2 weeks’ SIT. Meanwhile, the training quality of SIT, lactate elimination and decrease of H2O2 were all improved with hyperoxia. Conclusion, this research demonstrated that SIT is a super efficient training pattern, and moreover, SIT with extra hyperoxia results the better training (SIT) quality.
參考文獻
張嘉澤(2008)。訓練學。台北縣林口鄉:臺灣運動能力診斷協會。
黃鱗棋、張嘉澤(2007)。血液NH3 Index與田徑運動訓練應用之研究。國立體育學院論叢,第18卷3期,73-80頁。new window
黃鱗棋、王錠堯、張嘉澤 (2008)。高濃度氧氣對高強度間歇運動負荷之血乳酸、心跳率與RPE之影響。運動教練科學學刊,第11期,13-22頁。new window
黃鱗棋、李玉麟、張嘉澤 (2008)。高強度間歇運動負荷前中後持續攝取高濃度氧氣對新陳代謝與體循環之影響。國立臺灣體育大學論叢,第19卷1期,49-62頁。new window
Baechle, T. R., & Earle, R. W. (2000). Essentials of strength training and conditioning (2nd ed.). United States: Human Kinetics.
Balsom, P. D., Seger, J. Y., Sjodin, B., & Ekblom, B. (1992). Physiological responses to maximal intensity intermittent exercise. European Journal of Applied Physiology and Occupational Physiology, 65(2), 144-149.
Bassett, D. R., Jr., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine & Science in Sports & Exercise, 32(1), 70-84.new window
Billat, V., Renoux, J. C., Pinoteau, J., Petit, B., & Koralsztein, J. P. (1994). Reproducibility of running time to exhaustion at VO2max in subelite runners. Medicine & Science in Sports & Exercise, 26(2), 254-257.
Billat, V. L., Flechet, B., Petit, B., Muriaux, G., & Koralsztein, J. P. (1999). Interval training at VO2max: effects on aerobic performance and overtraining markers. Medicine & Science in Sports & Exercise, 31(1), 156-163.new window
Bogdanis, G. C., Nevill, M. E., Boobis, L. H., & Lakomy, H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. Journal of Applied Physiology, 80(3), 876-884.
Bompa, T. O. (1999). Periodization : theory and methodology of training (4th ed.). Champaign, IL: Human Kinetics.
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377-381.
Broberg, S., & Sahlin, K. (1989). Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. Journal of Applied Physiology, 67(1), 116-122.new window
Brooks, G. A., Brauner, K. E., & Cassens, R. G. (1973). Glycogen synthesis and metabolism of lactic acid after exercise. American Journal of Physiology, 224(5), 1162-1166.
Burgomaster, K. A., Heigenhauser, G. J., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of Applied Physiology, 100(6), 2041-2047.
Burgomaster, K. A., Hughes, S. C., Heigenhauser, G. J., Bradwell, S. N., & Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology, 98(6), 1985-1990.
Colwin, C. M. (2002). Breakthrough Swimming. United States: Human Kinetics.
Conley, M. S., Stone, M. H., O'Bryant, H. S., Johnson, R. L., Honeycutt, D. R., & Hoke, T. P. (1993). Peak power versus power at maximal oxygen uptake (abstract). Journal of strength and conditioning research / National Strength & Conditioning Association, 7(4), 253.
Cooper, C. E., Vollaard, N. B., Choueiri, T., & Wilson, M. T. (2002). Exercise, free radicals and oxidative stress. Biochemical Society Transactions, 30(2), 280-285.
Costill, D. L., Flynn, M. G., Kirwan, J. P., Houmard, J. A., Mitchell, J. B., Thomas, R., et al. (1988). Effects of repeated days of intensified training on muscle glycogen and swimming performance. Medicine & Science in Sports & Exercise, 20(3), 249-254.
Costill, D. L., Thomas, R., Robergs, R. A., Pascoe, D., Lambert, C., Barr, S., et al. (1991). Adaptations to swimming training: influence of training volume. Medicine & Science in Sports & Exercise, 23(3), 371-377.
Daniels, J., & Scardina, N. (1984). Interval training and performance. Sports Medicine, 1(4), 327-334.new window
Edge, J., Bishop, D., Goodman, C., & Dawson, B. (2005). Effects of high- and moderate-intensity training on metabolism and repeated sprints. Medicine and science in sports and exercise, 37(11), 1975-1982.
Essen, B., Hagenfeldt, L., & Kaijser, L. (1977). Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. Journal of Physiology, 265(2), 489-506.
Faude, O., Meyer, T., Scharhag, J., Weins, F., Urhausen, A., & Kindermann, W. (2008). Volume vs. intensity in the training of competitive swimmers. International Journal of Sports Medicine, 29(11), 906-912.
Forbes, S. C., Slade, J. M., & Meyer, R. A. (2008). Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Applied physiology, nutrition, and metabolism = Physiologie appliquée, nutrition et métabolisme, 33(6), 1124-1131.
Fukuba, Y., Walsh, M. L., Morton, R. H., Cameron, B. J., Kenny, C. T., & Banister, E. W. (1999). Effect of endurance training on blood lactate clearance after maximal exercise. Journal of Sports Science, 17(3), 239-248.
Gaitanos, G. C., Williams, C., Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. Journal of Applied Physiology, 75(2), 712-719.
Galy, O., Hue, O., Boussana, A., Peyreigne, C., Mercier, J., & Prefaut, C. (2005). Blood rheological responses to running and cycling: a potential effect on the arterial hypoxemia of highly trained athletes? International Journal of Sports Medicine, 26(1), 9-15.new window
Gerschler, Rosskamm, & Reindell (1964). Das Interval Training [Interval Training]. Paper presented at the Congress on running, Duisberg: Deutscher Leichtatletiek.
Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., et al. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. Journal of Physiology (Lond), 575(Pt 3), 901-911.
Haseler, L. J., Hogan, M. C., & Richardson, R. S. (1999). Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. Journal of Applied Physiology, 86(6), 2013-2018.
Hickson, R. C., Bomze, H. A., & Holloszy, J. O. (1977). Linear increase in aerobic power induced by a strenuous program of endurance exercise. Journal of Applied Physiology, 42(3), 372-376.
Hill, D. W., & Rowell, A. L. (1997). Responses to exercise at the velocity associated with VO2max. Medicine & Science in Sports & Exercise, 29(1), 113-116.new window
Hollmann, W., & Hettinger, T. (1990). Sportmedizin-Arbeits- und Trainingsgrundlagung (pp. 22-32): Schattauer Verlag.
Hollmann, W., & Hettinger, T. H. (1980). Sportmedizin: Schattauer.
Hollmann, W., Strueder, H. K., Rojas, S., & Vega (2002). Einfluss von respiraorischem Stress auf die Prolaktinsekretion bei ausdauersportlern. BISp-Jahrbuch, 91-94.
Houssière, A., Najem, B., Cuylits, N., Cuypers, S., Naeije, R., & van de Borne, P. (2006). Hyperoxia enhances metaboreflex sensitivity during static exercise in humans. The American Journal of Physiology - Heart and Circulatory Physiology, 291(1), H210-215.new window
Itoh, H., & Ohkuwa, T. (1990). Peak blood ammonia and lactate after submaximal, maximal and supramaximal exercise in sprinters and long-distance runners. European Journal of Applied Physiology and Occupational Physiology, 60(4), 271-276.
Jang, J. (2003). Ueber den Einfluss von Sauerstoffatmung auf haemodynamische und metabolische Parameter beim Intervalltraining von 400-m-Laeufern. Germany sport university, Cologne.
Kinnunen, S., Hyyppa, S., Lappalainen, J., Oksala, N., Venojarvi, M., Nakao, C., et al. (2005). Exercise-induced oxidative stress and muscle stress protein responses in trotters. European Journal of Applied Physiology, 93(4), 496-501.
Knight, D. R., Poole, D. C., Hogan, M. C., Bebout, D. E., & Wagner, P. D. (1996). Effect of inspired O2 concentration on leg lactate release during incremental exercise. Journal of Applied Physiology, 81(1), 246-251.new window
Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports medicine (Auckland, NZ), 32(1), 53-73.new window
Linossier, M. T., Dormois, D., Arsac, L., Denis, C., Gay, J. P., Geyssant, A., et al. (2000). Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiologica Scandinavica, 168(3), 403-411.
Liu, Y., Lormes, W., Wang, L., Reissnecker, S., & Steinacker, J. M. (2004). Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training. European Journal of Applied Physiology, 91(2-3), 330-335.
Lo, P. Y., & Dudley, G. A. (1987). Endurance training reduces the magnitude of exercise-induced hyperammonemia in humans. Journal of Applied Physiology, 62(3), 1227-1230.
Lowenstein, J. M. (1972). Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiology Review, 52(2), 382-414.
MacDougall, J. D., Hicks, A. L., MacDonald, J. R., McKelvie, R. S., Green, H. J., & Smith, K. M. (1998). Muscle performance and enzymatic adaptations to sprint interval training. Journal of Applied Physiology, 84(6), 2138-2142.
Mader, A. (1994). Die Komponenten der Stoffwechselleistung in den leichtahtletischen ausdauerdiziplinen – Bedeutung für die Wettkampfleistung und Moeglichkeiten zu ihrer Bestimmung. In P. H. Tschiene (Ed.), Neue tendenzen im Ausdauertraining (Vol. 12 pp. 127-219): Frankfurt.
Mader, A., Lisen, H., Heck, H., Philippi, H., Rost, R., Schurch, P., et al. (1976). Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt und Sportmedizin 27(4), 80-88.
McGovern, J. P., Sasse, S. A., Stansbury, D. W., Causing, L. A., & Light, R. W. (1996). Comparison of oxygen saturation by pulse oximetry and co-oximetry during exercise testing in patients with COPD. Chest, 109(5), 1151-1155.
Morton, J. P., Maclaren, D. P., Cable, N. T., Campbell, I. T., Evans, L., Kayani, A. C., et al. (2008). Trained men display increased Basal heat shock protein content of skeletal muscle. Medicine & Science in Sports & Exercise, 40(7), 1255-1262.
Mutch, B. J., & Banister, E. W. (1983). Ammonia metabolism in exercise and fatigue: a review. Medicine & Science in Sports & Exercise, 15(1), 41-50.new window
Pansold, B., Roth, W., Zinner, J., Hasart, E., & Gabriel, B. (1982). Die Leistungs-Kurve ein Grundprinzip sportmedizinischer Leistungsdiagnostik. Med u. sport, 22, 107-112.
Parolin, M. L., Chesley, A., Matsos, M. P., Spriet, L. L., Jones, N. L., & Heigenhauser, G. J. (1999). Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. American Journal of Physiology, 277(5 Pt 1), E890-900.new window
Parra, J., Cadefau, J. A., Rodas, G., Amigo, N., & Cusso, R. (2000). The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiologica Scandinavica, 169(2), 157-165.
Perry, C. G., Reid, J., Perry, W., & Wilson, B. A. (2005). Effects of Hyperoxic Training on Performance and Cardiorespiratory Response to Exercise. Medicine and science in sports and exercise, 37(7), 1175-1179.
Perry, C. G., Talanian, J. L., Heigenhauser, G. J., & Spriet, L. L. (2007). The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance. Journal of Applied Physiology, 102(3), 1022-1027.
Pierce, S. J., Hahn, A. G., Davie, A., & Lawton, E. W. (1999). Prolonged incremental tests do not necessarily compromise VO2max in well-trained athletes. Journal of science and medicine in sport, 2(4), 356-363.
Plet, J., Pedersen, P. K., Jensen, F. B., & Hansen, J. K. (1992). Increased working capacity with hyperoxia in humans. European Journal of Applied Physiology and Occupational Physiology, 65(2), 171-177.
Plowman, S. A., & Smith, D. L. (2003). Exercise physiology for health, fitness, and performance (2nd ed.). Francisco: Benjamin Cummings.
Poortmans, J. R. (1984). Protein turnover and amino acid oxidation during and after exercise. Medicine and sport science, 17, 133-147.
Rodas, G., Ventura, J. L., Cadefau, J. A., Cussó, R., & Parra, J. (2000). A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. European Journal of Applied Physiology, 82(5-6), 480-486.
Ross, A., & Leveritt, M. (2001). Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports medicine (Auckland, NZ), 31(15), 1063-1082.
Ryan, R., Coyle, E. F., & Quick, R. W. (1990). Blood lactate profile throughout a training season in elite female swimmers. Journal of Swimming Research 6(3), 5-9.
Schlicht, W., Naretz, W., Witt, D., & Rieckert, H. (1990). Ammonia and lactate: differential information on monitoring training load in sprint events. International Journal of Sports Medicine, 11 Suppl 2, S85-90.
Stellingwerff, T., Glazier, L., Watt, M. J., Leblanc, P. J., Heigenhauser, G. J., & Spriet, L. L. (2005). Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise. Journal of Applied Physiology, 98(1), 250-256.new window
Stellingwerff, T., LeBlanc, P. J., Hollidge, M. G., Heigenhauser, G. J., & Spriet, L. L. (2006). Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise. AJP: Endocrinology and Metabolism, 290(6), E1180-E1190.
Tabata, I., Nishimura, K., Kouzaki, M., Hirai, Y., Ogita, F., Miyachi, M., et al. (1996). Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Medicine & Science in Sports & Exercise, 28(10), 1327-1330.
Talanian, J. L., Galloway, S. D., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439-1447.
Taylor, A. D., Bronks, R., Smith, P., & Humphries, B. (1997). Myoelectric evidence of peripheral muscle fatigue during exercise in severe hypoxia: some references to m. vastus lateralis myosin heavy chain composition. European Journal of Applied Physiology and Occupational Physiology, 75(2), 151-159.
Tjorhom, A., Riiser, A., & Carlsen, K. H. (2007). Effects of formoterol on endurance performance in athletes at an ambient temperature of -20 degrees C. Scandinavian Journal of Medicine & Science in Sports, 17(6), 628-635.
Tremblay, A., Simoneau, J. A., & Bouchard, C. (1994). Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism, 43(7), 814-818.
Tucker, R., Kayser, B., Rae, E., Rauch, L., Bosch, A., & Noakes, T. (2007). Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. European Journal of Applied Physiology, 101, 771-781.
Weicker, H. (1988). Purinnukleotidzyklus und muskuläre ammoniakproduktion. Dtsch Z Sportmed 39, 172-178.
Welch, H. G. (1987). Effects of hypoxia and hyperoxia on human performance. Exercise and sport sciences reviews, 15, 191-221.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE