:::

詳目顯示

回上一頁
題名:運動後不同氧氣濃度恢復對醣類代謝的影響
作者:李文志 引用關係
作者(外文):Wen-Chih Lee
校院名稱:國立體育大學
系所名稱:教練研究所
指導教授:張嘉澤
郭家驊
學位類別:博士
出版日期:2010
主題關鍵詞:骨骼肌高氧5’-AMP活化的蛋白激酶肝醣低氧skeletal musclehypoxiahyperoxiaAMPKglycogen
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(1) 博士論文(1) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:1
  • 共同引用共同引用:0
  • 點閱點閱:22
在離體實驗發現低氧可以增加肌肉對葡萄糖的運輸速度,這個結果清楚顯示氧氣濃度對於醣類代謝影響力,因此本研究的主要目的為探討運動後在不同氧氣濃度下恢復對醣類代謝的影響。本論文分為兩部份,第一部分為人體實驗,以8名健康男性為對象,所有受試者皆需接受三次漸增式負荷運動,在每次運動後隨機在不同氧氣濃度下恢復90分鐘,氧氣濃度分別為常氧(21%)、低氧(12%)與高氧(60%),主要目的在了解不同氧氣濃度恢復對口服葡萄糖耐受度、股動脈血流與壓力荷爾蒙的影響。第二部為動物實驗,研究目的在探討氧氣濃度對於運動恢復期肌肉肝醣濃度與葡萄糖轉運蛋白表現量之影響,以及控制醣類代謝的訊息分子AMPKα2 THr172(AMP-activated protein kinase)與CaMK II (Calmodulin-dependent protein kinase II) 磷酸化的程度所扮演的角色。結果:第一個研究結果發現在高氧環境下恢復,人體血糖、可體松濃度與動脈血流顯著低於常氧恢復與低氧恢復,顯示運動後高氧環境恢復獲得較佳的葡萄糖耐受度,這樣的效果可能與可體松濃度下降有關。第二個研究發現運動高氧組胰島素顯著高於運動組,但運動低氧組白肌與紅肌肝醣卻高於運動組與運動高氧組。運動高氧組AMPK磷酸化顯著高於運動組與低氧組, CaMKII無顯著改變。結論:人體運動後在高氧環境下恢復可獲得較佳的葡萄糖耐受度,這樣的效果可能與可體松濃度下降有關。然而運動後低氧恢復卻有助於肌肉肝醣的恢復,這個較佳的肌肉肝醣恢復此效果與CaMKII與AMPK磷酸化無關。
In isolated skeletal muscle, hypoxia significantly increases the rate of glucose transport across sarcolemma, suggesting that oxygen availability directly influences carbohydrate metabolism. To determine the effect of oxygen availability on the post-exercise carbohydrate metabolism, two studies were performed. In the first study (pilot study), 8 male human subjects were recruited for a graded exercise protocol. Subjects were then recovered for 90 min under normoxic (21% oxygen), hyperoxic (60% oxygen), and hypoxic (12% oxygen) conditions. Oral glucose tolerance test OGTT, femoral artery blood flow, and plasma stress hormone cortisol were measured. In the second study, rats were used to determine the effect of oxygen availability on post-exercise glycogen storage and GLUT4 protien levels in red and white quadriceps muscles. The phosphorylation levels of AMP-activated protein kinase (AMPK) and calmodulin-dependent protein kinase II (CakMII) were determined. RESULTS: In the first study we found that glucose, cortisol, and femoral artery blood flow under hyperoxic recovery were significantly lowered than under normoxic and hypoxic conditions. Post-exercise hyperoxic recovery condition produced the best result in OGTT, and this appears to be related to the lower cortisol level. In the second study, we found that muscle glycogen levels in both white and red quadriceps muscles were greater in the hypoxia group than those in the hyperoxia group, despites serum insulin level were higher. Muscle AMPK phosphorylation (Thr 172) was elevated only in the exercised muscle under hyperoxic recovery. Muscle CaMKII phosphorylation was not significant difference among groups. CONCLUSION:Hyperoxia significantly improved post-exercise glucose tolerance in human, and this benefit appears to be associated to its cortisol-lowering effect. Intriguingly, recovery under hypoxia condition significantly increased glycogen storage in skeletal muscle. This result was not linked to AMPK and CaKII phosphorylations.
Ahlborg B, Bergstro¨m J, Ekelund LG, and Hultman E.(1967)Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70: 129–142.
Allen CB. Guo XL. White CW. (1998)Changes in pulmonary expression of hexokinase and glucose transporter mRNAs in rats adapted to hyperoxia. American Journal of Physiology. 274(3 Pt 1):L320-9.new window
Arciero, PJ. Smith D.L. CaUes-Escandon J.(1998) Effects of short-term inactivity on glucose tolerance, energy expenditure, and blood flow in trained subjects. Journal of Applied Physiology. 84:1365-1373.
Akermark, C., Jacobs, I., Rasmusson, M., &; Karlsson, J. (1996). Diet and muscle glycogen concentration in relation to physical performance in swedish elite ice hockey players. Int J Sport Nutr, 6(3), 272-284.
Baron, A. D., Steinberg, H., Brechtel, G., &; Johnson, A. (1994). Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Physiol Endocrinol Metab, 266(2), E248-253.
Bandali KS. Belanger MP. Wittnich C.(2003)Does hyperoxia affect glucose regulation and transport in the newborn?. Journal of Thoracic &; Cardiovascular Surgery. 126(6):1730-5.
Bergstorm, J., L. Hermansen, E. Hultman, and B. Saltin.(1967) Diet, muscle glycogen, and physical performance. Acta Physiologica Scandinavica. 71: 140-150.
Brozinick, J. T. Jr., &; Birnbaum, M. J. (1998). Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J Biol Chem, 273(24), 14679-14682.
Cartee, G. D., Douen, A. G., Ramlal, T., Klip, A., Holloszy, J. O. (1991). Stimulation of glucose transport in skeletal muscle by hypoxia. Journal of Applied Physiology, 70: 1593-1600.
Cearlock DM, Nuzzo NA Effects of sustained moderate exercise on cholesterol, growth hormone and cortisol blood levels in three age groups of women. Clin Lab Sci. 2001 Spring;14(2):108-11.
Chiu LL, Chou SW, Cho YM, Ho HY, Ivy JL, Hunt D, Wang PS, and Kuo CH. (2004).Effect of prolonged intermittent hypoxia and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats. Journal of Biomedical Science 11 (6): 838-846.
Choi JH, Park MJ, Kim KW, Choi YH, Park SH, An WG, Yang US, and Cheong J.(2005)Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation. FEBS Lett 579(13): 2795-801.
DeFronzo RA. Ferrannini E. Sato Y. Felig P. Wahren J (1981). Synergistic interaction between exercise and insulin on peripheral glucose uptake. Journal of Clinical Investigation. 68(6):1468-74.
Dela, F., Larsen, J., Mikines, K., &; Galbo, H. (1995). Normal effect of insulin to stimulate leg blood flow in NIDDM. Diabetes, 44(2), 221-226.
Dohm GL. Regulation of skeletal muscle GLUT-4 expression by exercise.(2002) J Appl Physiol 98: 782–787.
Eiken O. Hesser CM. Lind F. Thorsson A. Tesch PA.(1987) Human skeletal muscle function and metabolism during intense exercise at high O2 and N2 pressures. Journal of Applied Physiology. 63(2):571-5.
Ebeling, P., Bourey, R., Koranyi, L., Tuominen, J., Groop, L., Henriksson, J., et al. (1993). Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity. J Clin Invest, 92(4), 1623-1631.
Fluck, M., Waxham, M. N., Hamilton, M. T., &; Booth, F. W. (2000). Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running. J Appl Physiol, 88(1), 352-358.new window
Frosig, C., Jorgensen, S. B., Hardie, D. G., Richter, E. A., &; Wojtaszewski, J. F. P. (2004). 5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab, 286(3), E411-417.
Garcia-Roves PM, Han DH, Song Z, Jones TE, Hucker KA, and Holloszy JO.(2003)Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise. Am J Physiol Endocrinol Metab 285: E729–E736.
Gould, G., &; Holman, G. (1993). The glucose transporter family: structure, function and tissue-specific expression. Biochem J, 295 ( Pt 2), 329-341.
Greiwe, J. S., Holloszy, J. O., &; Semenkovich, C. F. (2000). Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling. J Appl Physiol, 89(1), 176-181.new window
Gulve EA &; Spina RJ (1995). Effect of 7–10 days of cycle ergometer exercise on skeletal muscle GLUT-4 protein content. J Appl Physiol 79, 1562–1566.
Hardie, D. G. (2004). The AMP-activated protein kinase pathway - new players upstream and downstream. J Cell Sci, 117(23), 5479-5487.
Hardin, D. S., B. Azzarelli, et al. (1995). Mechanisms of enhanced insulin sensitivity in endurance-trained athletes: effects on blood flow and differential expression of GLUT 4 in skeletal muscles. J Clin Endocrinol Metab 80(8): 2437-2446.
Haseler LJ. Hogan MC. Richardson RS.(1999)Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. Journal of Applied Physiology. 86(6):2013-8.
Hayashi T., Hirshman MF., Fujii N.(2000)Metabolic stress and altered Glucose transport: Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes. 49(4): 527-531.
Hayashi, T., Hirshman, M., Kurth, E., Winder, W., &; Goodyear, L. (1998). Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes, 47(8), 1369-1373.
Helmreich, E. J. M. (2001). The biochemistry of cell signaling. Regulation by a hormone: the insulin response.(pp.137-154). Oxford University Press, New York.
Hermansen L, Hultman E, and Saltin B.(1967)Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71: 129–139.
Holloszy JO. Schultz J. Kusnierkiewicz J. Hagberg JM. Ehsani AA. (1986)Effects of exercise on glucose tolerance and insulin resistance. Brief review and some preliminary results. Acta Medica Scandinavica - Supplementum. 711:55-65
Houmard, J. A., Hickey, M. S., Tyndall, G. L., Gavigan, K. E., &; Dohm, G. L. (1995). Seven days of exercise increase GLUT-4 protein content in human skeletal muscle. J Appl Physiol, 79(6), 1936-1938.
Houssiere, A., Najem, B., Cuylits, N., Cuypers, S., Naeije, R., &; van de Borne, P. (2006). Hyperoxia enhances metaboreflex sensitivity during static exercise in humans. Am J Physiol Heart Circ Physiol, 291(1), H210-215.new window
Ivy, J. L. (1999). Role of carbohydrate in physical activity. Clinics in Sports Medicine, 18(3), 469-484.
Ivy, J. L., Kuo, C. H. (1998). Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiologica Scandinavica, 162, 295-304.
Jensen, T. E., Rose, A. J., Jorgensen, S. B., Brandt, N., Schjerling, P., Wojtaszewski, J. F. P., et al. (2007). Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol Endocrinol Metab, 292(5), E1308-1317.
Jørgensen, S. B., Richter, E. A., &; Wojtaszewski, J. F. P. (2006). Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. The Journal of Physiology, 574(1), 17-31.new window
Kahn, C. R.(1994). Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43, 1066-1084.
Kamath, M. V. and E. L. Fallen (1993). Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng 21(3): 245-311.
Kennedy, J. W., Hirshman, M. F., Gervino, E. V., Ocel, J. V., Forse, R. A., Hoenig, S. J., et al. (1999). Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes, 48(5), 1192-1197.
Khani S, Tayek JA. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin Sci (Lond). 2001 Dec;101(6):739-47.
Knaupp, W., Khilnani, S., Sherwood, J., et al. (1992). Erythropoietin response to acute normobaric hypoxia in humans. Journal of Applied Physiology, 73, 837-40.
Kraniou, G. N., Cameron-Smith, D., &; Hargreaves, M. (2006). Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. J Appl Physiol, 101(3), 934-937.
Kuo, C. H., Browning, K. S., Ivy, J. L. (1999a). Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta Physiological Scandinavica, 165,193-201.
Kuo, C. H., Desmond, G., Hunt, Z. D., Ivy, J. L. (1999b). Effect of carbohydrate supplementation on postexercise GLUT4 protein expression in skeletal muscle. Journal of Applied Physiology, 87(6), 2290-2295.
Kuo C. H., Ding, Z., and Ivy, J. L. (1996). Interaction of exercise training and clenbuterol on GLUT-4 protein in muscle of obese Zucker rats. American Journal of Physiology. 271, E847-854.
Klimova, T. A., Bell, E. L., Shroff, E. H., Weinberg, F. D., Snyder, C. M., Dimri, G. P., et al. (2008). Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB J., fj.08-114256.
Laakso, M., Edelman, S. V., Brechtel, G., &; Baron, A. D. (1992). Impaired insulin-mediated skeletal muscle blood flow in patients with niddm. Diabetes, 41(9), 1076-1083.
Laakso, M., Edelman, S. V., Olefsky, J. M., Brechtel, G., Wallace, P., &; Baron, A. D. (1990). Kinetics of in vivo muscle insulin-mediated glucose uptake in human obesity. Diabetes, 39(8), 965-974.
Larsen, J. J., J. M. Hansen, et al. (1997). The effect of altitude hypoxia on glucose homeostasis in men. J Physiol 504(Pt_1): 241-249.
Lawrence, J. C., &; Roach, P. J.(1997). New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes, 46(4), 541-547.
Lee CL, Cheng CF, Lee WC ,Lin JC.(2007). The acute effects of inhaling different concentration of oxygen on heart rate variability after exhaustive exercise. Journal of Exercise Science and Fitness, 5(1):56-64.new window
Lee WC. Chen JJ. Ho HY. Hou CW. Liang MP. Shen YW. Kuo CH.(2003)Short-term altitude mountain living improves glycemic control. High Altitude Medicine &; Biology. 4(1):81-91.new window
Lee WC, Chen JJ, Hunt D, Hou CW, Lai YC; Lin FC; Chen CY; Lin CH; Liao YH; and Kuo CH.(2004) Effects of hiking at altitude on body composition and insulin sensitivity in recovery drug addicts. Preventive Medicine, 39(4):681-8.
LeFevre, P. G. (1948). Evidence of active transfer of certain non-electrolytes across the human red cell membrane. The Journal of General Physiology, 31(6), 505-527.
Liu, X., Lu, L., Zhong, C., Cheng, Z., Yuan, Q., &; Ren, H. (2001). [Analysis of heart rate variability during acute exposure to hypoxia]. Space Med Med Eng (Beijing), 14(5), 328-331.
Lund, V., J. Laine, et al. (2003). Instantaneous beat-to-beat variability reflects vagal tone during hyperbaric hyperoxia. Undersea Hyperb Med 30(1): 29-36.new window
Lund, V. E., E. Kentala, et al. (1999). Heart rate variability in healthy volunteers during normobaric and hyperbaric hyperoxia. Acta Physiol Scand 167(1): 29-35.new window
Mader, A., H. Liesen, H. Heck, H. Philippi, R. Rost, P. Schurch, W.Hollmann.(1976) : Zur Beurteilung der sportartspezifischen Ausdauerleistungsfahigkeit im Labor. Sportarzt und Sportmedizin 27(4): S. 80-88.
Maeda T. Yasukouchi A.(1998)Blood lactate disappearance during breathing hyperoxic gas after exercise in two different physical fitness groups--on the workload fixed at 130% AT. Applied Human Science. 17(2):33-40.
Maggiorini, M., B. Buhler, et al. (1990).Prevalence of acute mountain sickness in the Swiss Alps. BMJ 301(6756): 853-5.
Malik, M., J. T. Bigger, et al. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17(3): 354-381.
Maehlum, S., Hostmark, A. T., &; Hermansen, L. (1977). Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic and non-diabetic subjects. Scand J Clin Lab Invest, 37(4), 309-316.
McMahon M. Gerich I. Rizza R. (1988) Effects of elucocorticoids carbohydrate metabolim. Diabetes Metab Rev. 437-30.
Mu J., Brozinick JT., Valladares O., et al.(2001)A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell. 7(5): 1085–1094.
Musi, N., Hayashi, T., Fujii, N., Hirshman, M. F., Witters, L. A., &; Goodyear, L. J. (2001). AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab, 280(5), E677-684.
Muza, S. (2007). Military applications of hypoxic training for high-altitude operations. Med Sci Sports Exerc, 39(9), 1625-1631.
Nagata D, Mogi M, and Walsh K.(2003) AMP-activated Protein Kinase (AMPK) Signaling in Endothelial Cells Is Essential for Angiogenesis in Response to Hypoxic Stress. J Biol Chem 278: 31000-31006.
Nielsen, J. N., Mustard, K. J. W., Graham, D. A., Yu, H., MacDonald, C. S., Pilegaard, H., et al. (2003). 5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol, 94(2), 631-641.
Nummela A. Hamalainen I. Rusko H.(2002)Effect of hyperoxia on metabolic responses and recovery in intermittent exercise. Scandinavian Journal of Medicine &; Science in Sports. 12(5):309-15.
Oltmanns, K. M., H. Gehring, et al. (2004).Hypoxia Causes Glucose Intolerance in Humans. Am. J. Respir. Crit. Care Med. 169(11): 1231-1237.
Olson, A., &; Pessin, J. (1996). Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr, 16, 235-256.
Paccotti P, Minetto M, Terzolo M, Ventura M, Ganzit GP, Borrione P, Termine A, Angeli A. Effects of high-intensity isokinetic exercise on salivary cortisol in athletes with different training schedules: relationships to serum cortisol and lactate. Int J Sports Med. 2005 Nov;26(9):747-55
Pagani, M., F. Lombardi, et al. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59(2): 178-193.
Pedro Del Corral, Edward T. Howley, Mike Hartsell, Muhammad Ashraf, and Mary Sue Younger. Metabolic effects of low cortisol during exercise in humans J Appl Physiol 84: 939-947, 1998.
Phillips SM, Han XX, Green HJ &; Bonen A (1996). Increments in skeletal muscle GLUT-1 and GLUT-4 after endurance training in humans. Am J Physiol 270, E456–E462.
Pison, C. M., C. Chauvin, et al. (1998). "In vivo hypoxic exposure impairs metabolic adaptations to a 48 hour fast in rats." Eur Respir J 12(3): 658-665.
Price, T. B., Rothman, D. L., Taylor, R., Avison, M. J., Shulman, G. I. and Shulman, R. G. (1994). Human muscle glycogen resynthesis after exercise: insulin-dependent and -independent phases. Journal of Applied Physiology. 76: 104-11.
Ren, J. M., Semenkovich, C. F., Gulve, E. A., Gao, J., &; Holloszy, J. O. (1994). Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. Journal of Biological Chemistry, 269(20), 14396-14401.
Reynolds, T. H. IV., Brozinick, Jr. J. T., Rogers, M. A., Cushman, S. W. (1998) Mechanism of hypoxia-stimulated glucose transport in rat skeletal muscle: potential role of glycogen. American Journal of Physiology, 274: E773-E778.
Rizza, R. A., Mandarino, L. J., &; Gerich, J. E. (1982). Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J Clin Endocrinol Metab, 54(1), 131-138.new window
Romijn, J. A., E. F. Coyle, L. S. Sidossis, A. Gastaldelli, J. F. Horowitz, E. Endert, and R. R. Wolfe.(1993)Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology. 265: E380-91.
Rooney, D. P., Neely, R. D., Cullen, C., Ennis, C. N., Sheridan, B., Atkinson, A. B., et al. (1993). The effect of cortisol on glucose/glucose-6-phosphate cycle activity and insulin action. J Clin Endocrinol Metab, 77(5), 1180-1183.
Rose, A. J., Frøsig, C., Kiens, B., Wojtaszewski, J. F. P., &; Richter, E. A. (2007). Effect of endurance exercise training on Ca2+?almodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. The Journal of Physiology, 583(2), 785-795.
Rose, A. J., Kiens, B., &; Richter, E. A. (2006). Ca2+?almodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. The Journal of Physiology, 574(3), 889-903.
Romijn, J. A., E. F. Coyle, L. S. Sidossis, A. Gastaldelli, J. F. Horowitz, E. Endert, and R. R. Wolfe.(1993)Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology. 265: E380-91.
Rizza, R. A., Mandarino, L. J., &; Gerich, J. E. (1982). Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J Clin Endocrinol Metab, 54(1), 131-138.new window
Rooney, D. P., Neely, R. D., Cullen, C., Ennis, C. N., Sheridan, B., Atkinson, A. B., et al. (1993). The effect of cortisol on glucose/glucose-6-phosphate cycle activity and insulin action. J Clin Endocrinol Metab, 77(5), 1180-1183.
Shetty, M., Ismail-Beigi, N., Loeb, J. N., Ismail-Beigi, F. (1993). Induction of GLUT1 mRNA in response to inhibition of oxidative phosphorylation. American Journal of Physiology, 265:C1224-C1229.
Shibata, S., K. Iwasaki, et al. (2005). Cardiovascular neuroregulation during acute exposure to 40, 70, and 100% oxygen at sea level. Aviat Space Environ Med 76(12): 1105-10.
Shulman, G. I.(2000). Cellular mechanisms of insulin resistance. J. Clin. Inves, 106(2), 171-176. Smith, J. A. H., Collins, M., Grobler, L. A., Magee, C. J., &; Ojuka, E. O. (2007). Exercise and CaMK activation both increase the binding of MEF2A to the Glut4 promoter in skeletal muscle in vivo. Am J Physiol Endocrinol Metab, 292(2), E413-420.
Spraul, M., E. A. Anderson, et al. (1994). Muscle sympathetic nerve activity in response to glucose ingestion. Impact of plasma insulin and body fat. Diabetes 43(2): 191-196.
Steinberg, H., Brechtel, G., Johnson, A., Fineberg, N., &; Baron, A. (1994). Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest, 94(3), 1172-1179.
Stellingwerff, T., Glazier, L., Watt, M. J., LeBlanc, P. J., Heigenhauser, G. J. F., &; Spriet, L. L. (2005). Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise. J Appl Physiol, 98(1), 250-256.new window
Stellingwerff, T., LeBlanc, P. J., Hollidge, M. G., Heigenhauser, G. J. F., &; Spriet, L. L. (2006). Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise. Am J Physiol Endocrinol Metab, 290(6), E1180-1190.
Struder HK. Hollmann W. Donike M. Platen P. Weber K.(1996)Effect of O2 availability on neuroendocrine variables at rest and during exercise: O2 breathing increases plasma prolactin. European Journal of Applied Physiology &; Occupational Physiology. 74(5):443-9.
Tabata, I., Atomi, Y., &; Miyashita, M. (1984). Blood glucose concentration dependent ACTH and cortisol responses to prolonged exercise. Clin Physiol, 4(4), 299-307.
Thorens, B., &; Mueckler, M. (2009) Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab, 298(2), E141-145.
Utriainen, T., Nuutila, P., Takala, T., Vicini, P., Ruotsalainen, U., Ronnemaa, T., et al. (1997). Intact Insulin Stimulation of Skeletal Muscle Blood Flow, Its Heterogeneity and Redistribution, but Not of Glucose Uptake in Non-insulin-dependent Diabetes Mellitus. J. Clin. Invest., 100(4), 777-785.
Welch HG, Bonde-Petersen F, Graham T, Klausen K, and Secher N.(1977)Effects of hyperoxia on leg blood flow and metabolism during exercise. J Appl Physiol 42: 385–390.
Winder WW. Hardie DG.(1999)AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. American Journal of Physiology. 277(1 Pt 1):E1-10.new window
Winder, W. W. (2001). Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol, 91,1017-1028.
Wojtaszewski, J. F. P., MacDonald, C., Nielsen, J. N., Hellsten, Y., Hardie, D. G., Kemp, B. E., et al. (2003). Regulation of 5'AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab, 284(4), E813-822.
Wong T, Harber V. (2005). Lower excess postexercise oxygen consumption and altered growth hormone and cortisol response to exercise in obese men. J Clin Endocrinol Metab. 2005 Dec 6
Wright, D. C., Hucker, K. A., Holloszy, J. O., &; Han, D. H. (2004). Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes, 53, 330-335.
Wright, D. C., Geiger, P. C., Holloszy, J. O., &; Han, D. H. (2005). Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Am J Physiol Endocrinol Metab, 288, E1062-E1066.
Zawadzki, J., and Januszewicz, P. (1992). Disorders of tubular transport of uric acid leading to hyperuricemia. Poliskie Archiwum Medycyny Wewnetrznej. 88(1), 43-48.new window
Zuzewicz, K., B. Biernat, et al. (1999).Heart rate variability in exposure to high altitude hypoxia of short duration. Int J Occup Saf Ergon 5(3): 337-46.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE