:::

詳目顯示

回上一頁
題名:短期捷運運量預測模式發展
作者:魏瑜
作者(外文):Wei, Yu
校院名稱:國立交通大學
系所名稱:交通運輸研究所
指導教授:陳穆臻
學位類別:博士
出版日期:2011
主題關鍵詞:短期運量時變預測經驗模態分解法共振經驗模態分解法希爾伯特-黃轉換類神經網路Short-term passenger flowTime variantForecastingEmpirical Mode DecompositionEnsemble Empirical Mode DecompositionHilbert-Huang transformNeural networks.
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
運量在運輸系統是一項基本的要素。探索短期運量的時變對於運輸規劃及營運是重要的課題。當運量資料被充分的分析時,不僅能提供給運輸規劃者做為決策正確的參考,而且亦能提升運輸系統的績效。本研究應用希爾伯特-黃轉換(Hilbert-Huang transform, HHT)探索運量時變,該方法包含經驗模態分解法(Empirical Mode Decomposition, EMD)及希爾伯特時頻分析(Hilbert Spectra Analysis, HSA)。本研究藉由經驗模態分解法,將短期運量資料分解出數個運量本質模態函數(intrinsic mode function) ,而這些本質模態函數將可呈現運量的局部特性及具有意義的時變,例如,尖峰時段型態、半營運型態、半日型態及全日型態。另外,藉由比較希爾伯特-黃轉換及傅立葉轉換(Fourier transform)的結果,本研究發現,希爾伯特-黃轉換能夠獲得較窄的頻寬,精準地獲得時間-頻率-能量分布,進而可提升運輸系統的績效。
此外,本研究應用共振經驗模態分解法(Ensemble Empirical Mode Decomposition, EEMD)萃取EEMD分量。結果顯示,被萃取的EEMD分量相較於EMD分量更能呈現出運量的局部特性,且更易於解釋運量的特性。在以EEMD分量為基礎的情況下,藉由比較希爾伯特-黃轉換及傅立葉轉換的結果,本研究發現,希爾伯特-黃轉換能夠獲得較窄的頻寬及精準地獲得時間-頻率-能量分布。
短期運量預測是運輸系統一項很重要的要素。運量預測的結果將可作為運輸系統管理參考,例如,營運規劃、車站人潮擁擠管制計畫等。本研究結合經驗模態分解法及導傳遞類神經網路(back-propagation neural networks, BPN)發展EMD-BPN混和預測模式,俾進行短期運量預測。混和預測模式包含三個階段,第一階段(EMD階段)如同上述EMD方法,第二階段(分量界定階段)係界定EMD分量的意涵,第三階段(BPN階段)則係應用BPN方法以進行短期運量預測。本階段預測模式輸入變數包含運量資料、EMD分量及時間因子(包含:星期、時段及上班日或周末型態)。本研究結果發現,以EMD-BPN進行捷運運量預測,其預測的準確度及穩定性皆佳。此外,為了改善EMD分量混疊情形,本研究結合共振經驗模態分解法與導傳遞類神經網路,並以EMD-BPN模式架構發展出EEMD-BPN短期預測模式,俾提升模式預測能力及系統績效。最後,本研究結果發現EEMD-BPN預測模式較EMD-BPN預測模式能夠獲得較佳的預測準確度與穩定度。
Passenger flow is a fundamental element in a transportation system. It is important to explore the time variants of short-term passenger flow for transportation planning. When the data are sufficiently analyzed, transportation planners not only can make better decisions, but also enhance the performance of transportation systems. This study applies Hilbert-Huang transform (HHT), including Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis, to explore the time variants of passenger flow. The intrinsic mode functions extracted by EMD can represent the local characteristics of passenger flow and imply its meaningful time variants such as peak period pattern, semi-service period pattern, semi-daily pattern and daily pattern. By comparing the results of HHT with that of fast Fourier transform, it indicates that HHT can obtain the narrower frequency band, capture accurately time-frequency-energy distribution, and help to enhance the performance of transportation systems.
Additionally, this study uses Ensemble Empirical Mode Decomposition (EEMD) to extract EEMD components. The results indicate that the extracted meaningful EEMD components reveal a more unique pattern than the extracted EMD components. The patterns of these EEMD components in the metro system are more specific and can be explained more easily for management purposes. Comparing HHT and FFT based on EEMD, the results indicate that HHT based on EEMD can obtain a narrower frequency band, and accurately capture the time-frequency-energy distribution.
Short-term passenger flow forecasting is a vital component of transportation systems. The forecasting results can be applied to support transportation system management such as operation planning, station passenger crowd regulation planning, and so on. In this study, a hybrid EMD-BPN forecasting approach which combines EMD and back-propagation neural networks (BPN) is developed to predict the short-term passenger flow in metro systems. There are three stages in the EMD-BPN forecasting approach. The first stage (EMD Stage) refers to the aforementioned EMD method. The second stage (Component Identification Stage) identifies the meaningful IMFs as inputs for BPN. The third stage (BPN Stage) applies BPN to perform the passenger flow forecasting. The historical passenger flow data, the extracted EMD components and temporal factors (i.e., the day of the week, the time period of the day, and weekday or weekend) are taken as inputs in the third stage. The experimental results indicate that the proposed hybrid EMD-BPN approach performs well and stably in forecasting the short-term metro passenger flow. Additionally, in order to deal with the problem of mode mixing of components, this study uses EEMD and BPN to develop another hybrid EEMD-BPN forecasting model which combines EEMD and BPN, and is based on the framework of the hybrid EMD-BPN model to enhance the capability of the forecasting model. The experimental results reveal that the hybrid EEMD-BPN forecasting model outperforms the hybrid EMD-BPN model.
1.Agard B, Morency C, Trépanier M. Mining public transport user behaviour from smart card data. In: 12th IFAC Symposium on Information Control Problems in Manufacturing, May 17-19, 2006.
2.Alfa AS. A review of models for the temporal distribution of peak traffic demand. Transport Research 1986;20(6):491-499.
3.Ahmed MS, Cook AR. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Record 1979;722:1-9.
4.Alfares HK, Nazeeruddin M. Electric load forecasting: literature survey and classification of methods. International Journal of Systems Science 2002;33(1):23-34.
5.Assis WO, Milani BEA. Generation of optimal schedules for metro lines using model predictive control. Automatica 2004;40(8):1397-1404.
6.Badoe DA. Forecasting travel demand with alternatively structured models of trip frequency. Transportation Planning and Technology 2007;30(5):455-475.
7.Balestrassi PP, Popova E, Paiva AP, Marangon Lima JW. Design of experiments on neural network’s training for nonlinear time series forecasting. Neurocomputing 2009;72(4-6):1160-1178.
8.Balocchi R, Menicucci D, Santarcangelo E, Sebastiani L, Gemignani A, Ghelarducci B, Varanini M. Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. Chaos, Solitons & Fractals 2004;20(1):171-177.
9.Bar-Gera H, Boyce D. Origin-based algorithms for combined travel forecasting models. Transportation Research Part B 2003;37(5):405-422.
10.Bhuiyan SMA, Adhami RR, Khan JF. Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation. Journal on Advances in Signal Processing 2008:164.
11.Blainey SP, Preston JM. Modelling local rail demand in South Wales. Transportation Planning and Technology 2010;33(1):55-73.
12.Blanco-Velasco M., Weng B, Barner KE. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine 2008;38(1):1-13.
13.Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997;97(1-2):245-271.
14.Box GEP, Jenkins GM. Time Series Analysis: Forecasting and Control. Holden-Day, Francisco, 1976.
15.Brooks C. Introductory Econometrics for Finance. Cambridge University Press 2008.
16.Bwire H. A unified framework for selecting a travel demand forecasting model for developing countries. Transportation Planning and Technology 2008;31:(3) 347-368.
17.Castillo E, Conejo AJ, Menéndez JM, Jiménez P. The observability problem in traffic models. Computer-Aided Civil and Infrastructure Engineering 2008;23(3): 208-222.
18.Castro-Neto M, Jeong Y-S, Jeong M-K, Lee DH. AADT prediction using support vector regression with data-dependent parameters. Expert Systems with Applications 2009a;36(2):2979-2986.
19.Castro-Neto M, Jeong Y-S, Jeong M-K, Lee DH. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications 2009b;36(3):6164-6173.
20.Celebi D, Bolat B, Bayraktar D. Light rail passenger demand forecasting by artificial neural networks. IEEE International Conference on Computers and Industrial Engineering 2009;1-3:239-243.
21.Celikoglu HB, Cigizoglu HK. Public transportation trip flow modeling with generalized regression neural networks. Advances in Engineering Software 2007;38(2):71-79.
22.Chandra SR, Al-Deek H. Predictions of freeway traffic speeds and volumes using vector autoregressive models. Journal of Intelligent Transportation Systems 2009;13(2):53-72.
23.Chen C-F, Chang Y-H, Chang Y-W. Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica 2009;5(2):125-140.
24.Chen HB, Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting. Transportation Research Part C 2001;9(5):319-336.
25.Chen H-K, Wu C-J. Travel time prediction for school bus. The 17th Intelligent Transport Systems World Congress, Busan , Korea 2010, 25-29 Oct.
26.Ciancimino A, Inzerillo G, Lucidi S, Palagi L. A Mathematical programming approach for the solution of the railway yield management problem. Transportation Science 1999;33(2):168-181.
27.Clark S. Traffic prediction using multivariate nonparametric regression. Journal of Transportation Engineering 2003;129(2):161-168.
28.Cummings DAT, Irizarry RA, Huang NE, Endy TP, Nisalak A, Ungchusak K, Burke DS. Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 2004;427:344-347.
29.De Gooijer JG, Hyndman RJ. 25 years of time series forecasting. International Journal of Forecasting 2006;22(3):443-473.
30.Demšar J. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning research 2006;2:1-30.
31.Dia H. An object-oriented neural network approach to short-term traffic forecasting. European Journal of Operational Research 2001;131:253-261.
32.Dong Y, Li Y, Xiao M, Lai M. Analysis of earthquake ground motions using an improved Hilbert-Huang transform. Soil Dynamics and Earthquake Engineering 2008;28(1):7-19.
33.Dougherty M. A review of neural networks applied to transport. Transportation Research Part C 1995;3(4):247-260.
34.Dougherty MS, Cobbett MR. Short-term inter-urban traffic forecasts using neural networks. International Journal of Forecasting 1997;13(1):21-31.
35.Elgammal A, Duraiswami R, Davis LS. Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 2003;25(11):1499-1504.
36.Faraway J, Chatfield C. Time series forecasting with neural networks: a comparative study using the airline data. Applied Statistics 1998;47(2):231-250.
37.Flandrin P, Rilling G, Gonçalvés P. Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters 2004;11(2):112-114.
38.Frejinger E, Bierlaire M. Capturing correlation with subnetworks in route choice models. Transportation Research Part B 2007;41(3):363-378.
39.Granger CWJ, Teräsvirta T. Modeling nonlinear economic relationships. Oxford University Press 1993, Oxford.
40.Grubb W, Mason A. Long lead-time forecasting of UK air passengers by Holt-Winters methods with damped trend. International Journal of Forecasting 2001;17(1):71-82.
41.Guhathakurta K, Mukherjee I, Chowdhury AR. Empirical mode decomposition analysis of two different financial time series and their comparison. Chaos, Solitons & Fractals 2008;37(4):1214-1227.
42.Guo K, Zhang X, Li H, Meng G. Application of EMD method to friction signal processing. Mechanical Systems and Signal Processing 2008;22(1):248-259.
43.Gurwicz Y, Lerner B. Bayesian network classification using spline-approximated kernel density estimation. Pattern Recognition Letters 2005;26 (11):1761-1771.
44.Hamad K, Shourijeh MT, Lee E, Faghri A. Near-term travel speed prediction utilizing Hilbert-Huang transform. Computer-Aided Civil and Infrastructure Engineering 2009;24(8):551-576.
45.Hamed MM, Al-Masaeid HR, Bani Said ZM. Short-term prediction of traffic volume in urban arterials. Journal of Transportation Engineering 1995;121(3):249-254.
46.Hansen JV, McDoald JB, Nelson RD. Time series prediction with genetic-algorithms designed neural networks: an empirical comparison with modern statistical models. Journal of Computational Intelligence 1999;15(3):171-183.
47.Highway Capacity Manual. Transportation Research Board, National Research Council, Washington, DC, 2000.
48.Huang D-W. Wavelet analysis in a traffic model. Physica A 2003;320(1-2):298-308.
49.Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society London. A 1998;454(1971):903-995.
50.Huang NE, Wu M-L, Qu W, Long SR, Shen SSP. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry 2003a;19(3):245-268.
51.Huang NE, Wu ML, Long SR, Shen, SSP, Qu WD, Gloersen P, Fan KL. A confidence limit for the empirical mode decomposition and the Hilbert spectral analysis. Proceedings of the Royal Society of London A 2003b;459(2037):2317-2345.
52.Huang NE, Wu ZH. A review on Hilbert-Huang transform: method and its applications to geophysical studies. Reviews of Geophysics 2008;46(2): RG2006.
53.Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. The Royal Society 2004;460:1597-1611.
54.Huisman D, Kroon LG, Lentink RM, Vromans MJCM. Operations research in passenger railway transportation. Statistica Neerlandica 2005;59(4):467-497.
55.Hwang PA, Huang NE, Wang DW. A note on analyzing nonlinear and nonstationary ocean wave data. Applied Ocean Research 2003;25(4):187-193.
56.Ince H, Trafalis TB. A hybrid model for exchange rate prediction. Decision Support Systems 2006;42(2):1054-1062.
57.Jang W. Travel time and transfer analysis using transit smart card data. Transportation Research Board 2010;2144:142-149.
58.Jiang X, Hon HA. Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering 2005;131(10):771-779.
59.Jiang R, Yan H. Studies of spectral properties of short genes using the wavelet subspace Hilbert-Huang transform (WSHHT). Physica A 2008; 387(16-17):4223-4247.
60.Jonaitis J. Planning of the amount of trains needed for transportation by rail. Transport 2007; 22(2):83-89.
61.Jovicic G, Hansen CO. A passenger travel demand model for Copenhagen. Transportation Research Part A 2003;37(4):333-349.
62.Karlaftis MG, Zografos KG, Papastavrou JD, Charnes JM. Methodological framework for air-travel demand forecasting. Journal of Transportation Engineering 1996;122(2):96-104.
63.Kesting A, Treiber M. How reaction time, update time, and adaptation time influence the stability of traffic flow. Computer-Aided Civil and Infrastructure Engineering 2008;23(2):125–137.
64.Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelligence 1997;97(1-2):273-324.
65.Kuby M, Barranda A, Upchurch C. Factors influencing light-rail station boardings in the United States. Transportation Research Part A 2004;38(3):223-247.
66.Kulshreshtha M, Nag B. Structure and dynamics of non-suburban passenger travel demand in Indian railways. Transportation 2000;27(2):221-241.
67.Kumar S. Neural networks: a classroom approach, McGraw-Hill Education 2005.
68.Kusakabe T, Iryo T, Asakura Y. Estimation method for railway passengers’ train choice behavior with smart card transaction data. Transportation 2010;37(5):731-749.
69.Lee S, Fambro DB. Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transportation Research Board 1999;1678:179-188.
70.Lee S, Lee Y-I, Cho B. Short-term travel speed prediction models in car navigation systems. Journal of Advanced Transportation 2006;40(2):123-139.
71.Lei Y, Zuo MJ. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs. Measurement Science and Technology 2009;20 (12):1-12.
72.Li HG, Meng G. Detection of harmonic signals from chaotic interference by empirical mode decomposition. Chaos, Solitons & Fractals 2006;30(4):930-935.
73.Li KP, Gao ZY, Zhao XM. Multiple scale analysis of complex networks using the empirical mode decomposition method. Physica A 2008;387(12):2981-2986.
74.Li QS, Wu JR. Time-frequency analysis of typhoon effects on a 79-storey tall building. Journal of Wind Engineering and Industrial Aerodynamics 2007;95(12): 1648-1666.
75.Liang H, Lin Q-H, Chen JDZ. Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease. IEEE Transactions on Biomedical Engineering 2005;52(10):1692-1701.
76.Liao A-H, Shen C-C, Li P-C. Potential contrast improvement in ultrasound pulse inversion imaging using EMD and EEMD. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Feb. 2010;57(2):317-326.
77.Lim C, McAleer M. Time series forecasts of international travel demand for Australia. Tourism Management 2002;23(4):389-396.
78.Lin, M-J, Jeng Y. Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan. Geomorphology 2010;119(1-2):97-110.
79.Ma W, Luo Z. Hand-motion pattern recognition of SEMG based on Hilbert-Huang transformation and AR-model. International Conference on Mechatronics and Automation 2007, 5-8 Aug.:2150-2154.
80.Maier HR, Dandy GC. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modelling and Software 2000;15(1):101-124.
81.Morency C, Trépanier M, Agard B. Measuring transit use variability with smart-card data. Transport Policy 2007;14 (3):193-203.
82.Mozolin M, Thill J-C, Usery EL. Trip distribution forecasting with multilayer perceptron neural networks: a critical evaluation. Transportation Research Part B 2000;34(1):53-73.
83.Park B, Messer CJ, Urbanik T. Short-term freeway traffic volume forecasting using radial basis function neural network. Annual Meeting of the Transportation Research Record 1998;1651:39-47.
84.Rai VK, Mohanty AR. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform. Mechanical Systems and Signal Processing 2007;21(6):2607-2615.
85.Rojas I, Valenzuela O, Rojas F, Guillen A, Herrera LJ, Pomares H, Marquez L, Pasadas M. Soft-computing techniques and ARMA model for time series prediction. Neurocomputing 2008;71:519-537.
86.Seaborn C, Wilson NH, Attanucci J. Using smart card fare payment data to analyze multi-modal public transport journeys (London, UK). In: The 88th Annual Meeting of the Transportation Research Board 2009;16 p. (CD-ROM).
87.Shafahi Y, Faturechi R. A new fuzzy approach to estimate the O-D matrix from link volumes. Transportation Planning and Technology 2009;32(6): 499-526.
88.Shen Z-X, Huang X-Y, Ma X-X. An intelligent fault diagnosis method based on empirical mode decomposition and support vector machine. Third International Conference on Convergence and Hybrid Information Technology 2008;1:865- 869.
89.Shi WZ, Tian Y, Huang Y, Mao HX, Liu KF. A two-dimensional empirical mode decomposition method with application for fusing panchromatic and multispectral satellite images. International Journal of Remote Sensing 2009;30(10): 2637-2652.
90.Smith BL, Demetsky MJ. Traffic flow forecasting: comparison of modeling approaches. Journal of Transportation Engineering 1997;123(4):261-266.
91.Smith BL, Williams BM, Keith Oswald R. Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C 2002;10(4):303-321.
92.Su Z-Y, Wang C-C, Wu T, Wang Y-T, Tang F-C. Instantaneous frequency-time analysis of physiology signals: The application of pregnant women’s radial artery pulse signals. Physica A 2008;387(2-3):485-494.
93.Suryani E, Chou S-Y, Chen C-H. Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Systems with Applications 2010;37(3):2324-2339.
94.Tan M-C, Wong SC, Xu J-M, Guan Z-R, Zhang P. An aggregation approach to short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 2009;10(1):60-69.
95.Tang YF, Lam WHK, Ng PLP. Comparison of four modeling techniques for short-Term AADT forecasting in Hong Kong. Journal of Transportation Engineering 2003;129(3):271-277.
96.Tao Q, Chen Q, Li L. Analytic unit quadrature signals with nonlinear phase, Physica D 2005;203(1-2):80-87.
97.Tapkın S, Akyılmaz Ö. A new approach to neural trip distribution models: NETDIM. Transportation Planning and Technology 2009;32(1):93-114.
98.Tsai T-H, Lee C-K, Wei C-H. Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Systems with Applications 2009;36(2):3728-3736.
99.Tsekeris T, Stathopoulos A. Gravity models for dynamic transport planning: Development and implementation in urban networks. Journal of Transport Geography 2006;14(2):152-160.
100.Tseng F-H, Yu H-S, Tzeng G-H. Combing neural network model with seasonal time series ARIMA model. Technological Forecasting & Social Change 2002;69(1):71-87.
101.Trépanier M, Morency C, Agard B. Calculation of transit performance measures using smart card data. Journal of Public Transportation 2009;12 (1):79-96.
102.Valenzuela O, Rojas I, Rojas F, Pomares H, Herrera LJ, Guillen A, Marquez L, Pasadas M. Hybridization of intelligent techniques and ARIMA models for time series prediction. Fuzzy Sets and Systems 2008;159 (7): 821-845.
103.Van Arem B, Kirby HR, Van Der Vlist MJM, Whittaker JC. Recent advances and applications in the field of short-term traffic forecasting. International Journal of Forecasting 1997;13(1):1-12.
104.Van Lint JWC, Hoogendoorn SP, Van Zuylen HJ. Accurate freeway travel time prediction with state-space neural networks under missing data. Transportation Research Part C 2005;13:347-369.
105.Vanajaksi L, Rilett LR. Support vector machine technique for the short term prediction of travel time. IEEE Intelligent Vehicles Symposium 2007, 13-15 June, 600-605.
106.Varagouli EG, Simos TE, Xeidarkis GS. Fitting a multiple regression line to travel demand forecasting: the case of the prefecture of Xanthi, Northern Greece. Mathematical and Computer Modeling 2005;42(7-8):817-836.
107.Vanajaksi L, Rilett LR. Support vector machine technique for the short term prediction of travel time. IEEE Intelligent Vehicles Symposium 2007:600-605.
108.Vlahogianni EI, Golia JC, Karlaftis MG. Short-term traffic forecasting: overview of objectives and methods. Transport Reviews 2004;24(5):533-557.
109.Vlahogianni EI, Karlaftis MG, Golias JC. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach. Transportation Research Part C 2005;13(3):211-234.
110.Vythoulkas PC. Alternative approaches to short term forecasting for use in driver information systems. Proceedings of the 12th International Symposium on Transportation and Traffic Theory, Berkeley, CA, 1993;485-506.
111.Wang Y, Papageorgiou M. Real-time freeway traffic state estimation based on extend Kalman filter: a case study. Transportation Science 2007;42(2):167-181.
112.Wardman M. Demand for rail travel and the effects of external factors. Transportation Research Part E 2006;42(3):129-148.
113.Williams BM, Durvasula PK, Brown DE. Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models. Transportation Research Record 1998;1644:132-141.
114.Williams BM, Hoel LA. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. Journal of Transportation Engineering 2003;129(6):664-672.
115.Wirasinghe SC, Kumarage AS. An aggregate demand model for intercity passenger travel in Sri Lanka. Transportation 1998;25(1):77-98.
116.Wu M-C, Phase correlation of foreign exchange time series, Physica A 2007;375(2):633-642.
117.Wu C-H, Ho J-M, Lee DT. Travel-time prediction with support vector regression. IEEE Transactions on Intelligent Transportation 2004;5(4):276-281.
118.Wu TY, Chung YL. Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach. Smart Materials and Structures 2009;18(9):095004.
119.Wu Z, Schneider EK, Kirtman BP, Sarachik E, Huang NE, Tucker CJ. The modulated annual cycle: an alternative reference frame for climate anomalies. Climate Dynamics 2008;31(7-8):823-841.
120.Wu Z, Huang NE. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis 2008;1(1):1-41.
121.Xie H, Wang Z. Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis. Computer Methods and Programs in Biomedicine 2006;82(2):114-120.
122.Xie Y, Zhang Y. A wavelet network model for short-term traffic volume forecasting. Journal of Intelligent Transportation Systems 2006;10(3):141-150.
123.Zeng D, Xu J, Gu J, Liu L, Xu G. Short term traffic flow prediction using hybrid ARIMA and ANN models. Proceedings of Workshop on Power Electronics and Intelligent Transportation System 2008:621-625.
124.Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003;50:159-175.
125.Zhang X, Lai KK, Wang S-Y. A new approach for crude oil price analysis based on Empirical Mode Decomposition. Energy Economics 2008;30(3):905-918.
126.Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 1998;14(1):35-62.
127.Zhang HM. Recursive Prediction of Traffic Conditions with Neural Network Models. Journal of Transportation Engineering 2000;126(6):472-481.
128.Zhang GP, Qi M. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 2005;160(2):501-514.
129.Zhang Y, Ye Z. Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation Systems 2008;12(3):102-112.
130.Zhang X, Yu L, Wang S, Lai KK. Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method. Energy Economics 2009;31(5):768-778.
131.Zheng S, Tian JW, Liu J, Xiong CY. Novel algorithm for image interpolation. Optical Engineering 2004;43(4):856-865.
132.Zheng WZ, Lee DH, Shi QX. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. Journal of Transportation Engineering 2006;132(2):114-121.
133.Zhou B, Kockelman KM. Predicting the distribution of households and employment: a seemingly unrelated regression model with two spatial processes. Journal of Transport Geography 2009;17(5):369-376.
134.Zhou Q, Lu H-P, Wei X. New travel demand models with back-propagation network. Natural Computation. The Third International Conference on Natural Computation 2007;3:311-317.
135.Zhou X, Zhao H, Jiang T. Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm. Optics Letters 2009;34(13):2033-2035.
136.Zhu Z, Sun Y. Application of EMD and SVD in fault identification. Power Engineering Conference 2007, 3-6 Dec.:1247-1250.
137.Žvokelj M, Zupan S, Prebil I. Multivariate and multiscale monitoring of large-size low-speed bearings using ensemble empirical mode decomposition method combined with principal component analysis. Mechanical Systems and Signal Processing 2010;24(4):1049-1067.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top