:::

詳目顯示

回上一頁
題名:以建模為基礎的論證教學模式在國中自然科的教學成效之研究
作者:封中興
作者(外文):Chung-Hsing Feng
校院名稱:國立高雄師範大學
系所名稱:科學教育研究所
指導教授:洪振方
學位類別:博士
出版日期:2011
主題關鍵詞:建模論證以建模為基礎的論證教學模式教學成效modelingargumentationmodeling-based argumentation teaching modelteaching effectiveness
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
基於「科學即為建模」、「科學即為論證」、「學校的科學教育,應當反映當代科學實踐的理性與文化傳統」等論點,本研究發展「以建模為基礎的論證教學模式」。以準實驗研究法進行設計,研究對象為八年級學生,實驗組及對照組分別用「以建模為基礎的論證教學模式」及「教導的論證教學模式」進行教學,以國中自然與生活科技第三冊第四章「光學」作為教學單元。以「對科學模型的理解量表、論證能力測驗卷」蒐集資料進行統計考驗,探討上述教學模式在國中自然科的教學成效。研究結果發現:
一、 在對科學模型與建模的理解方面:
相依樣本t考驗及單因子共變數的分析結果,實驗組表現優於對照組,均達顯著差異,具有中度或大的效果量。
二、 在論證能力表現方面:
相依樣本t考驗及單因子共變數的分析結果,實驗組平均分數高於對照組,均達顯著差異,可達中度或大的效果量。
三、 學生對科學模型及建模的理解情況與其論證能力表現情況的相關性:
在教學後,實驗組在此兩變項的關係從低度正相關提升至中度正相關,而對照組仍然是低度正相關。
四、 對科學模型及建模的理解情況,不同理解程度的實驗組學生,其論證能力的表現情況:
單因子變異數的分析結果,以Schefee法進行事後比較,整體而言,在光學單元對科學模型與建模的理解程度越高,論證能力表現越佳。
依據上述研究結果,MBA教學模式是一個可運作的教學模式,可用於國中自然與生活科技的課程中,具有提升八年級學生在「對科學模型及建模的理解、論證能力表現」等面向的教學成效。
Base on the viewpoints of “Science as model building”, “Science as argument”, and “School science reflects the intellectual and cultural traditions that characterize the practice of contemporary science”, this research developed a teaching model which was named “Modeling-Based Argumentation (MBA) teaching model”. A quasi-experimental design was used in this study. The research samples were 8th graders. The experimental group was instructed in the MBA teaching model, while the contrast group was instructed in the “Didactic Argumentation (DA) teaching model.” The contents of teaching material in both groups were the Junior High School Science Textbook Volume Ⅲ Chapter 4 “Optics”. The instruments “Students’ Understanding of Science Models (SUMS)” and “Achievement Test of Students’ Argumentation Ability (ATSAA)” were used to collect data and analyzed as students’ learning effectiveness. The research results were as follows:
1. The results of SUMS: The paired-samples t-test and the ANCOVA analysis showed that the experimental group was significantly better than contrast group, and the effect sizes were moderate or large.
2. The results of ATSAA: The paired-samples t-test and the ANCOVA analysis showed that the experimental group was significantly better than contrast group, and the effect sizes were moderate or large.
3. The correlation between SUMS and ATSAA: After the experimental treatment, the correlation of SUMS and ATSAA of the experimental group raised to moderate positive correlation, while the correlation of SUMS and ATSAA of the contrast group still remained low positive correlation.
4. The Argumentation Ability Performance of different subgroups in the experimental group: In the results of the ANOVA analysis, the Schefee method showed that the more the students understood about scientific models and modeling, the better the students performed in ATSAA.
According to the results of this research, the MBA teaching model is workable and can be used in the junior high school science class to enhance the 8th graders’ Learning Achievements in SUMS and ATSAA.
一、中文部分
吳明隆(2007a)。SPSS統計應用學習實務:問卷分析與應用統計。台北:知城數位科技。
吳明隆(2007b)。SPSS操作與應用變異數分析。台北:五南。
周金城(2008):探究中學生對科學模型的分類與組成本質的理解。科學教育月刊,306,10-17。
林煥祥(2008)。台灣參加PISA2006成果報告。行政院國家科學委員會專題研究成果報告。編號:NSC 95-2522-S-026-002。
林靜雯、邱美虹(2008):從認知/方法論之向度初探高中學生模型及建模歷程之知識。科學教育月刊,307,9-14。
封中興、顏志昌、洪振方(2011)。「多元模型教學模式」的教學成效之評析-以國小星象觀測單元為例。屏東教育大學學報,36,25-62。
洪振方(1994)。從孔恩異例的認知與論證探討科學知識的重建。國立臺灣師範大學科學教育研究所博士論文,未出版,台北。
洪振方(2000):近代科學的發展。台北:台灣書店。
洪振方(2003):探究式教學的歷史回顧與創造性探究模式之初探,高雄師大學報,15,641-662。
馬文蔚、唐玄之、周永平(主編)(1987):物理發展史上的里程碑。台北:凡異。
張光熙、宋加麗(2002):科學的故事。台北:好讀。
張瓊、于祺明、劉文君(1994):科學理論模型的建構。台北:淑馨。
黃台珠、熊召弟、王美芳、佘曉清、靳知勤、段曉林等(譯)(2002)。促進理解之科學教學。台北:心理。
顏志昌(2006):以多元模型為基礎的教學對學生星象單元學習之影響。高雄師範大學科學教育研究所碩士論文,未出版,高雄。


二、英文部分
Acher, A., Arca, M., & Sanmarti, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398-418.
American Association for The Advancement of Science(1993). Benchmarks for Science Literacy. New York: Oxford University Press.
Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793.
Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93, 26-55.
Boulter, C. J., & Gilbert, J. K. (1995). Argument and science education. In P. S. M. Costello & S. Mitchell (Eds.), Competing and consensual voices: The theory and practice of argumentation (pp. 84-98). Clevedon, UK: Multilingual Matters.
Browne, M. N., & Keeley, S. M.(1998). Asking the Right Questions: A Guide to Critical Thinking (5th Ed.). New Jersey: Prentice Hall.
Bryce, T. G. K., & Robertson, I. J.(1985).What can they do? A review of practical assessment in science. Studies in science education, 12, 1-24.
Buckley, B. C., Gobert, J. D., Kindfield, A., Horwitz, P., Tinker, R., Gerlits, B., Wilensky, U., Dede, C., & Willett, J. (2004). Model-based Teaching and Learning with BioLogica™: What do they learn? How do they learn? How do we know? Journal of Science Education and Technology, 13(1), 23-41.
Chang, H. P., Chen, J. Y., Guo, C. J., Chen, C. C., Chang, C. Y., Lin, S. H., & Su, W. J. (2007). Investigating primary and secondary students? Learning of physics concepts in Taiwan. International Journal of Science Education, 29(4), 465-482.
Chin, C., & Osborne, J. (2010). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883-908.
Chinn, C., & Brown, D. E. (2000). Learning in science: A comparison of deep and surface approaches. Journal of Research in Science Teaching, 37, 109-138.
Chittleborough G.D., Treagust D.F., Mamiala T.L, Mocerino M. (2005)Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195-212.
Chiu, M. H. (2007). A National Survey of Students’Conceptions of Chemistry in Taiwan. International Journal of Science Education, 29(4), 421-452.
Chiu, M. H., Guo, C. J., & Treagust, D. (2007). Assessing Students’ Conceptual Understanding in Science: An Introduction about a National Project in Taiwan. International Journal of Science Education, 29(4), 379-390.
Clement, J. (2000) Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041-1053.
Clement, J. J., & Rea-Ramirez, M. A. (Eds.). (2008). Model Based Learning and Instruction in Science. Dordrecht, Netherlands: Springer.
Coll, R. K., France, B., & Taylor, I.(2005). The role of models and analogies in science education implications from research. International Journal of Science Education, 27(2), 183-198.
Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725-749.
Doerr, H. M., & Tripp, J. S. (1999) Understanding How Students Develop Mathematical Models. Mathematical Thinking and Learning, 1, 231-254
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.
Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.
Fretz, E. B., Wu, H. K., Zhang, B., Krajcik, J. S., Davis, E. A., & Soloway, E. (2002). An investigation of software scaffolds supporting modeling practices. Research in Science Education, 32(4), 567-589.
Giere, R. N. (1991). Understanding scientific reasoning (3rd ed.). Forth Worth, TX: Holt, Rinehart& Winston.
Gilbert, J. K. (1993) Models and modelling in science education Hatfield, Herts: Association for Science Education.
Gilbert, J. K. (1993). The role of models and modelling in science education. Presented at the 1993 Annual Conference of the National Association for Research in Science Teaching, Atlanta, GA, USA.
Gilbert, J. K. (1995). The role of models and modelling in some narratives in science learning. Presented at the Annual Meeting of the American Educational Research Association, April 18-22. San Francisco, CA, USA.
Gilbert, J. K., & Boulter, C. J. (1995) Stretching models too far. Paper presented at the annual meeting of the American Educational Research Association. San Francisco, 18-22 April.
Gilbert, J. K., & Boulter, C. J. (1998). Learning science through models and modelling. In B. Fraser & K. Tobin (eds), International Handbook of Science Education (pp.53-66). Dordrecht Netherlands: Kluwer.
Gilbert, J. K., & Boulter, C. J. (eds.) (2000). Developing Models in Science Education. Dordrecht: Kluwer.
Gobert, J. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
Gobert, J. D., O’Dwyer, L., Horwitz, P., Buckley, B. C., Levy, S. T. & Wilensky, U. (2011). Examining the Relationship Between Students’ Understanding of the Nature of Models and Conceptual Learning in Biology, Physics, and Chemistry. International Journal of Science Education 33(5), 653-684.
Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991) Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799-822.
Hacking, I. (1983). Representing and Intervening. Cambridge, UK: Cambridge University Press.
Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.
Harrison, A. G., & Treagust, D. F. (2000a) A typology of school science models. International Journal of Science Education, 22, 1011-1026.
Harrison, A. G., & Treagust, D. F. (2000b) Learning about atoms, molecules and chemical bonds: a case-study of multiple model use in grade-11 chemistry. Science Education, 84, 352-381.
Hazel, E., & Baillie, C. (1998). Improving Teaching and Learning in Laboratories, Higher Education Research and Development Society of Australasia, Jamison Centre, Australia
Herrenkohl, L. R., & Guerra, M. R. (1998). Participant structures, scientific discourse, and student engagement in fourth grade. Cognition and Instruction, 16, 431-473.
Hesse, M. (1966). Models and analogies in science. Notre Dame, Indiana: The University of Notre Dame Press.
Jiménez-Aleixandre, M. P., Rodríguez, A. B., & Duschl, R. A. (2000), “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757-792.
Justi R.S., & Gilbert J.K. (2000) History and philosophy of science through models: some challenges in the case of the ‘atom’. International Journal of Science Education, 22, 993-1009.
Justi R.S., & Gilbert J.K.(2002) Science teachers' knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24, 1273-1292.
Kim, H., & Song, J. (2005) The Features of Peer Argumentation in Middle School Students' Scientific Inquiry. Research in Science Education, 36(3), 211-233.
Kuhn, D. (1991). The skills of argument. New York: Cambridge University Press.
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337.
Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824.
Kuhn, D., Shaw, V., & Felton, M.(1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15(3), 287-315.
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.
Lawson, A. E. (2000). How do humans acquire knowledge? and What does that imply about the nature of knowledge? Science & Education, 9, 577-598.
Lee, M. H. (1999) On models, modelling and the distinctive nature of model-based reasoning. AI Communications, 12, 127-137.
Linn, M. C., & Muilenberg, L. (1996) Creating Lifelong Science Learners: What Models Form a Firm Foundation? Educational Researcher, 25(5), 18-24.
Magnani, L. (2004). Model-based and manipulative abduction in science, Foundations of Science 9(3), 219-247.
Màrquez, C., Izquierdo, M., & Espinet, M. (2006). Multimodal science teachers' discourse in modeling the water cycle. Science Education, 90, 202-226.
McNeill, K. L. (2009). Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233-268.
McNeill, K. L., & Pimentel, D. S. (2010). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203-229.
Millar, R. (1989). Bending the evidence: The relationship between theory and experiment in science education. In R. Millar (ed) doing science: Images of science in science education (pp. 38-61). London: the Falmer Press.
National Research Council. (1996).The national science education standards. Washington, DC: National Academy Press.
Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003).What ideas-about-science should be taught in school science. A Delphi study of the expert community. Journal of Research in Science Teaching 40(7), 692-720
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020
Ratcliffe, M. (1997). Pupil decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167-182.
Rath, A., & Brown, D. E.(1996). Modes of engagement in science inquiry: A microanalysis of elementary students’ orientations toward phenomena at a summer science camp. Journal of research in science teaching, 33(10), 1083-1097.
Richmond, G., & Striley, J.(1996). Making meaning in classrooms: Social processes in small group discourse and scientific knowledge building. Journal of Research in Science Teaching, 33(8), 839-858.
Rubinstein, M. F., & Firstenberg, I. R. (1995) Patterns of Problem Solving (2nd ed.). New Jersey: Prentice Hall.
Russell, T. L. (1983). Analyzing arguments in science classroom discourse: Can teachers’ questions distort scientific authority? Journal of Research in Science Teaching, 20(1), 27-45.
Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93, 448-484.
Sandoval, W. A., & Millwood, K. A. (2005). The quality of students' use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55
Schauble, L., Klopfer, L. E., & Raghavan, K.(1991). Students’ transition from an engineering model to a science model of experiment. Journal of research in science teaching, 28(9), 859-882.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., O., Archer, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.
Seel, N. M. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition and Learning, 1(1), 59-85.
Simpson, J., & Weiner, E. (Eds.). (1989). The Oxford English Dictionary (2nd ed., Vols.1-20 ). Oxford, NY: Oxford University Press.
Stewart, J., Hafner, R., Johnson, S., & Finkel, E. (1992). Science as model building: Computers and high-school genetics. Educational Psychologist, 27, 317- 336.
Taylor, C. (1996). Defining science. Madison, WI: University of Wisconsin Press.
Thier M. and Daviss B.(2002). The New Science Literacy: Using Language Skills to Help Students Learn Science. Portsmouth NH: Heinemann.
Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.
Treagust D. F., Chittleborough G. D., & Mamiala T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357–368.
Treagust D. F., Chittleborough G. D.,& Mamiala T. L.(2004) Students' Understanding of the Descriptive and Predictive Nature of Teaching Models in Organic Chemistry. Research in Science Education, 34, 1-20.
Van Driel, J. H., & Verloop, N.(1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21, 1141-1153.
Van Driel, J.H., & Verloop, N.(2002). Experienced teachers’ knowledge of teaching and learning of models and modelling in science education .International Journal of Science Education, 24(12), 1255-1272.
Wang, M. N, Wu, K. C., & Huang, T. C. (2007). A study on the factors affecting biological concept learning of junior high school students. International Journal of Science Education, 29(4), 453-464.
White, R. T. (1996).The link between the laboratory and learning. International science education, 18(7), 761-774.
Windschitl, M., Thompson, J. and Braaten, M. (2008) Beyond the scientific method: model-based inquiry as a new paradigm of preference for school science investigations. Science Education 92, 941-967
Wotawa, F. (1999) Model-based reasoning. AI Communications, 12, 1-3.
Yen, C. F., Yao, T. W., & Mintzes, J. J. (2007). Taiwanese students’ alternative conceptions of animal biodiversity. International Journal of Science Education, 29(4), 535–553.
Yore, L. D., & Hand, B. M.(2003) Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689-725
Zambal-Saul, C. (2009). Learning to teach elementaru school science as argument. Science Education, 93, 687-719.
Zhang, B. H., Liu, X., & Krajcik, J. S. (2006). Expert Models and Modeling Processes Associated with a Computer Modeling Tool. Science Education, 90(4), 579-604
Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE