:::

詳目顯示

回上一頁
題名:色彩在對稱知覺各階層的角色
作者:吳佳瑾
作者(外文):Chia-Ching Wu
校院名稱:國立臺灣大學
系所名稱:心理學研究所
指導教授:陳建中
學位類別:博士
出版日期:2011
主題關鍵詞:對稱偵測高階色彩視覺顏色與形狀的整合心理物理學雜訊遮蔽symmetry detectionhigher-order color visioncolor and form integrationpsychophysicsnoise masking
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:44
對稱是一高階的視覺特徵,其辨識須仰賴人類視覺系統的複雜運算。在自然情境中,對稱圖形或物體通常伴隨著多種顏色,因此視覺系統必須整合顏色和形狀的訊息才能偵測到彩色的對稱圖形。本研究以五個實驗來探討顏色在對稱知覺中所扮演的角色。我們將對稱偵測機制分為兩階段—配對與統合,並分別檢驗此兩階段是否對顏色有選擇性反應。研究結果顯示此兩階段均對顏色有選擇性的反應,此表示視覺系統中有一組對顏色選擇性反應的對稱偵測系統。我們進一步操弄了影像中所包含的顏色數目,來探討視覺系統如何整合這些對稱偵測系統來偵測彩色對稱。研究結果顯示無論觀察者是否知道對稱圖案的對稱軸方向,一影像中顏色數目的增加都可以促進對稱偵測的表現。我們也比較了當兩不同顏色對稱圖形共享相同的對稱軸與否時的對稱偵測表現,以探討是否不同顏色能區隔兩圖形而促進對稱的偵測。研究結果顯示,當兩圖形共享一對稱軸時,其對稱的偵測會比兩圖形的對稱軸方向不同時要佳。我們提出一整合了線性的對稱偵測機制、非線性的反應模式、反應干擾的特性與多個系統的決策歷程的彩色對稱偵測模型來解釋以上的結果。此模型顯示一影像中顏色數目的增加會減少對稱偵測系統中的抑制作用,進一步促進對稱偵稱的表現。此外,當兩對稱圖形共享同一對稱軸時,兩對稱偵測系統間的抑制作用會減少,而導致其對稱偵測表現較兩圖形的對稱軸有不同方向的對稱軸時來得佳。
Symmetry is a higher-order form that requires a complicated computation in the visual system. In a nature scene, symmetric objects or stimuli may come with any combination of color. Hence, human visual system needs to integrate both color and form information to detect chromatic symmetry. In this study, we conducted five experiments to investigate the role of color in symmetry detection. We distinguished two stages, that is, matching and pooling stage, of the symmetry encoder and examined the color selectivity of these two stages of symmetry encoder. Our results showed that these two stages are color-selective. This suggests that there are a band of color-selective symmetry channels in our visual system. We further manipulated the number of the colors in the images to investigate how human visual system integrates the response of these symmetry channels to detect chromatic symmetry. Our results showed that the increment of the number of the colors facilitated the symmetry detection performance, regardless the observers had prior knowledge of the symmetry axis orientation or not. Finally, we examined the symmetry detection in two images sharing the same axis or not, to see whether the segmentation of two images with different colors helps symmetry detection. The results however showed better symmetry detection performance when two symmetric patterns shared the same axis than those did not. All these results can be accounted for by a computational model that incorporated linear symmetry encoding mechanisms, nonlinear transducer response, noise manipulation and a multiple channel based decision making process. The model fitting results suggests that the increment of the number of the color reduces the inhibition of the symmetry channels, and in turn facilitates the symmetry detection performance when the images contain more than one color. In addition, the inhibition between channels responding to the two symmetric patterns sharing the same axis is smaller than that between channels responding to two patterns in different axes, in turn facilitates the symmetry detection performance when the two images shared the same symmetry axis.
Barlow, H. B., & Reeves, B. C. (1979). The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Research, 19, 783-793.
Blum, H. (1973). Biological shape and visual science. Journal of Theoretical Biology, 38, 205-287.
Bowmaker, J. K., & Dartnall, H. J. A. (1980). Visual pigments of rods and cones in a human retina, Journal of Physiology (London), 298, 501-511.
Brainard, D. H. (1996). Cone contrast and opponent modulation color spaces. In P. K. Kaiser, & R. M. Boynton, Hunam color vision. Washington DC: Optical Society of America.
Brooks, A., & van der Zwan, R. (2002). The role of ON- and OFF-channel processing in the detection of bilateral symmetry. Perception, 31, 1061-1072.
Burbeck, C. A., & Pizer, S. M. (1995). Object representation by cores: Identifying and representing primitive spatial regions. Vision Research, 35, 1917-1930.
Callaghan, T. (1984) Dimensional interaction of hue and brightness in preattentive field segregation. Perception & Psychophysics, 36, 25-34.
Cant, J. S., & Goodale, M. A. (2007). Attention to form or surface properties modulates different regions of human occipitotemporal cortex. Cerebral Cortex, 17, 713-731.
Cardinal, K. S., & Kiper, D. C. (2003). The detection of colored Glass patterns. Journal of Vision, 3(3):2,199-208.
Carmody, D. P., Nodine, C. F., & Locher, P. J. (1977). Global detection of symmetry. Perceptual & Motor Skills, 45, 1267-1273.
Cavina-Pratesi, C., Kentridge, R. W., Heywood, C. A., & Milner, A. D. (2010). Separate channels for processing form, texture and color: evidence from fMRI adaptation and visual object agnosia. Cerebral Cortex, 20, 2319-2332.
Chen, C. C. (2009). A masking analysis of Glass pattern perception. Journal of Vision, 9(12):22, 1-11.
Chen, C. C., & Tyler, C. W. (1999). Accurate approximation to the extreme order statistics of Gaussian samples. Communications in Statistics: Simulation and Computation, 28, 177-188.
Chen, C. C., & Tyler, C. W. (2010). Symmetry: modeling the effect of masking noise, axial cueing and salience. Public Library of Science One, 5, 1-10.
Chen, C. C., Foley, J. M., & Brainard, D. H. (2000). Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements, Vision Research, 40, 773-788.
Csathó, A., van der Vloed, G., & van der Helm, P. A. (2004). The force of symmetry revisited: symmetry-to-noise ratios regulate (a)symmetry effects. Acta Psychologica, 117, 233¬-250.
CIE (2007). Fundamental chromaticity diagram with physiological axes - Parts 1 and 2. Technical Report 170-1. Vienna: Central Bureau of the Commission Internationale de l'' Éclairage.new window
Dakin, S. C., & Herbert, A. M. (1998). The spatial region of integration for visual symmetry detection. Proceedings of the Royal Society of London, Series B: Biological Sciences, 265, 659-664
Dakin, S. C., & Hess, R. F. (1997). The spatial mechanisms mediating symmetry perception. Vision Research, 37, 2915-2930.
Dakin, S. C., & Watt, R. J. (1994). Detection of bilateral symmetry using spatial filters. Spatial Vision, 8, 393-413.
De Valois, R. L., & De Valois, K. K. (1993). A multi-stage color model. Vision Research, 22, 549-559.
Derrington, A. M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology (London), 357, 241-265.
Dosher, B. A., & Lu, Z. L. (1999). Mechanisms of perceptual learning. Vision Research, 39, 3197-3221.
Dorais, A., & Sagi, D. (1997). Contrast asking effects change with practice. Vision Research, 37(13), 1725-1733.
Dow, B. M., & Gouras, P. (1973). Color and spatial specificity of single units in rhesus monkey foveal striate cortex. Journal of Neurophysiology, 36, 79-100.
Driver, J., Baylis, G. C., & Rafal, R. D. (1992). Preserved figure-ground segregation and symmetry in visual neglect. Nature, 360, 73-75.
Eskew, R. T. Jr. (2009). Higher order color mechanisms: A critical review. Vision Research, 49, 2686-2704.
Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 11, 1710-1719.
Foley, J. M., & Chen, C. C. (1997). Analysis of the effect of pattern adaptation on pattern pedestal effects: A two-process model. Vision Research, 37, 2779-2788.
Foley, J. M., & Chen, C. C. (1999). Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model. Vision Research, 39, 3855-3872.
Gegenfurtner, K. R., & Kiper, D. C. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America A, 9, 1880-1888.
Gegenfurtner, K. R., & Kiper, D. C. (2004). The processing of color in extrastriate cortex. In L. M. Chalupa & J. S. Werner (Eds.), The visual neurosciences (pp. 1017-1028). Boston, MA: MIT Press.
Gegenfurtner, K. R., Kiper, D. C., & Fenstemaker, S. B. (1996). Processing of color, form, and motion in macaque area V2. Visual Neuroscience, 13, 161-172.
Gegenfurtner, K. R., Kiper, D. C., & Levitt, J. B. (1997). Functional properties of neurons in macaque area V3. Journal of Neurophysiology, 77, 1906-1923.
Gegenfurtner, K. R., & Rieger, J. (2000) Sensory and cognitive contributions of color to the recognition of natural scenes. Current Biology, 10, 805-808.
Giulianini, F., & Eskew, R. T. Jr., (1998). Chromatic masking in the (DL/L, DM/M) plane of cone-contrast space reveals only two detection mechanisms. Vision Research, 38, 3913-3926.
Glass, L. (1969). Moire effect from random dots. Nature, 223, 578.
Glass, L., & Perez, R. (1973). Perception of random dot interference patterns. Nature, 246, 360-362.
Goodale, M. A., & Milner, A. D. (2004). Sight unseen: An exploration of conscious and unconscious vision. Oxford: Oxford University Press.
Gouras, P. (1974). Opponent-colour cells in different layers of foveal striate cortex. Journal of Physiology, 199, 533-547.
Graham, N., Robson, J. G., & Nachmias, J. (1978). Grating summation in fovea and periphery. Vision Research, 21(3), 409-418.
Green, D. M. and Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.
Gurnsey, R., Herbert, A. M., & Kenemy, J. (1998). Bilateral symmetry embedded in noise is detected accurately only at fixation. Vision Research, 38, 3795-3803.
Hadjikhani, N., Liu, A. K., Dale, A. M, Cavanagh, P., & Tootell, R. B. (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience, 1, 235-241.new window
Hansen, T., & Gegenfurtner, K. R. (2006). Higher level chromatic mechanisms for image segmentation. Journal of Vision, 6, 239-259.
Harris, J. M., & Parker, A. J. (1995). Independent neural mechanisms for bright and dark information in binocular stereopsis. Nature, 374, 808-811.
Hegger, D. J. (1992). Half-squaring in responses of cat striate cells. Visual Neuroscience, 9, 427-443.
Hogben, J. H., Julesz, B., & Ross, J. (1976). Short-term memory for symmetry. Vision Research, 16, 861-866.
Huang, L., & Pashler, H. (2002). Symmetry detection and visual attention: A “binary-map” hypothesis. Vision Research, 42, 1421-1430.
Humphrey, G. K., Goodale, M, A,, Jakobson, L. S., & Servos, P. (1994). The role of surface information in object recognition: studies of a visual form agnosic and normal subjects''. Perception, 23, 1457-1481.
Ito, M., Fujita, I., Tamura, H. and Tanaka, K. (1994) Processing of contrast polarity of visual images in the inferotemporal cortex. Cerebral Cortex, 5, 499-508.
Jacobs, G. H., & Neitz, J. (1993). Electrophysiological estimates of individual variation in the L/M cone ratio. In B. Drum (Ed.), Documenta Ophthalmologica Proceedings Series 56, Colour Vision Deficiencies XI (pp. 107-112). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Johnson, E. N., Hawken, M. J., & Shapley, R. (2001). The spatial transformation of color in the primary visual cortex of the macaque monkey. Nature Neuroscience, 4, 409-416.
Julesz, B. (1971). Foundations of cyclopean perception. Chicago: University of Chicago Press.
Knoblauch, K., & Shevell, S. K. (2004). Color appearance. In L. M. Chalupa & J. S. Werner (Eds.), The visual neurosciences (pp. 892-907). Boston, MA: MIT Press.
Koffka, K. (1935). Principles of Gestalt psychology. London: Routledge and Kegan Paul.
Köhler, W. (1929). Gestalt psychology. New York: Liveright.
Komatsu, H., & Ideura, Y. (1993). Relationships between color, shape and pattern selectivities of neurons in the inferior temporal cortex of the monkey. Journal of Neurophysiology, 70(2), 677-694.
Komatsu, H., Ideura, Y., Kaji, S., & Yamane, S. (1992). Color selectivity of neurons in the inferotemporal cortex of the awake macaque monkey, Journal of Neuroscience, 12(2), 408-424.
Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39, 2729-2737.
Kovacs, I., Feher, A., & Julesz, B. (1998). Medial-point description of shape: A representation for action coding and its psychophysical correlates. Vision Research, 38, 2323–2333.
Krauskopf, J., Williams, D. R., & Heeley, D. W. (1982). Cardinal directions of color space. Vision Research, 22, 1123-1131.
Large, M. E., Aldcroft, A., & Vilis, T. (2005). Perceptual continuity and the emergence of perceptual persistence in the ventral visual pathway. Journal of Neurophysiology, 93, 3453-3462.
Leeuwenberg, E. L. J., & Buffart, H. F. J. M. (1984). The perception of foreground and background as derived from structural information theory. Acta Psychologica, 55, 249-272.
Lennie, P. (1999). Color coding in the cortex. In K. R. Gegenfurther & L. T. Sharpe (Eds.), Color vision (pp. 235-247). Cambridge: Cambridge University Press.
Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y., & Ault, S. J. (1995). Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex, Journal of Neuroscience, 15, 1808-1818.
Levitt, J. B., Kiper, D. C., Movshon, J. A. (1994). Receptive fields and functional architecture of macaque V2. Journal of Neurophysiology, 71, 2517-2542.
Li, A., & Lennie, P. (1997). Mechanisms underlying segmentation of colored textures. Vision Research, 37, 83-97.
Livingstone, M. S., & Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex, Journal of Neuroscience, 4, 309-356.
Locher, P. J., & Nodine, C. F. (1989). The perceptual value of symmetry. Computers & Mathematics with Applications, 17, 475-484.
Lu, Z. L., & Dosher, B. A. (2008). Characterizing observers using external noise and observer models: assessing internal representations with external noise. Psychological Review, 115, 44-82.
MacLeod, D. I. A., & Boynton, R. M. (1979). A chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69, 1183-1186.
Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., Ledden, P. J., Brady, T. J., Rosen, B. R., Tootell, R. B. H. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 8135-8139.
Mancini, S., Sally, S. L., & Gurnsey, R. (2005). Detection of symmetry and anti-symmetry. Vision Research, 45(16), 2145-2160.
Mandelli, M. J., & Kiper, D. C. (2005). The local and global processing of chromatic Glass patterns. Journal of Vision, 5(5):2, 405-416.
Marr, D. (1982). Vision. San Francisco: W.H. Freeman and Company.
McKeefry, D. J., & Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain, 120, 2229-2242.
Michael, C. R. (1978a). Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. Journal of Neurophysiology, 41, 572-588.
Michael, C. R. (1978b). Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color concentric receptive fields. Journal of Neurophysiology, 41, 1233-1249.
Michael, C. R. (1978c). Color-sensitive complex cells in monkey striate cortex. Journal of Neurophysiology, 41, 1250-1266.
Michael, C. R. (1979). Color-sensitive hypercomplex cells in monkey striate cortex. Journal of Neurophysiology, 42, 726-744.
Milner, A. D., Perrett, D. I., Johnston, R. S., Benson, P. J., Jordan, T. R., Heeley, D. W., Bettucci, D., Mortara, F., Mutani, R., & Terazzi, E. (1991). Perception and action in ‘visual form agnosia’. Brain, 114, 405-428.
Morales, D., & Pashler, H. (1999). No role for colour in symmetry perception. Nature, 399, 115-116.
Newcombe, F., & Ratcliff, G. (1975). Agnosia: a disorder of object recognition. In F. Michel & B. Schott (Eds.), Les Syndromes de disconnexion calleuse chez l’homme (pp.317-340). Lyon: Colloque International.
Osorio, D. (1996). Symmetry detection by categorization of spatial phase, a model. The Proceedings of the Royal Society: Biological Sciences, 263, 105-110.
Pelli, D. C. (1985). Uncertainty explains many aspects of visual contrast detection and discrimination. Journal of the Optical Society of America A, 2, 1508-1532.
Peuskens, H., Claeys, K. G., Todd, J. T., Norman, J. F., Van Hecke, P., Orban, G. A. (2004). Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays. Journal of Cognitive Neuroscience, 16, 665-682.
Quick, R. F. (1974). A vector magnitude model of contrast detection. Kybernetic, 16, 65-67.
Rainville, S. J., & Kingdom, F. A. (1999). Spatial-scale contribution to the detection of mirror symmetry in fractal noise. Journal of the Optical Society of America A, 16, 2112-2123.
Rainville, S. J., & Kingdom, F. A. (2000). The functional role of oriented spatial filters in the perception of mirror symmetry--psychophysics and modeling. Vision Research, 40, 2621-2644.
Rainville, S. J., & Kingdom, F. A. (2002). Scale invariance is driven by stimulus density. Vision Research, 42, 351-367.
Rentzeperis, I., & Kiper, D. C. (2010). Evidence for color and luminance invariance of global form mechanisms. Journal of Vision, 10(12):6, 1-14.
Shapley, R. (1990). Visual sensitivity and parallel retinocortical channels. Annual Review of Psychology, 41, 635-658.
Shevell S. K. and Kingdom F. A. A. (2008) Color in complex scenes. Annual Review of Psychology, 59, 143-166.
Saarinen, J., & Levi, D. M. (2000). Perception of mirror symmetry reveals long-range interactions between orientation-selective cortical filters. Neuroreport, 11, 2133-2138.
Sasaki Y, Wanduffel W, Knutsen T, Tyler C, Tootell R. (2005). Symmetry activates extrastriate visual cortex in human and non-human primates. Proceedings of the National Academy of Sciences of the United States of America, 102, 359-363.
Schein, S. J., & Desimone, R. (1990). Spectral properties of V4 neurons in the macaque. Journal of Neuroscience, 10, 3369-3389.
Schiller, P. H. (1992). The ON and OFF channels of the visual system. Trends in Neurosciences, 15(3), 86-92
Schnapf, J. L., Kraft, T. W., & Baylor, D. A. (1987). Spectral sensitivity of human cone photoreceptors, Nature, 325, 439-441.
Scognamillo, R., Rhodes, G., Morrone, C., & Burr, D. (2003). A feature-based model of symmetry detection. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 1727-1733.
Smith, M. A., Bair, W., & Movshon, J. A. (2002). Signals in macaque striate cortical neurons that support the perception of Glass patterns. Journal of Neuroscience, 22, 8334-8345.
Smith, V. C., & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500nm. Vision Research, 15, 161–171.
Stockman, A., & Sharpe, L. T. (2000). Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Research, 40, 1711-1737.
Switkes, E., Bradley, A., & De Valois, K. K. (1988). Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. Journal of the Optical Society of America A, 5, 1149-1162.
Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 66, 170–189.
Tanaka, J., Weiskopf, D., & Williams, P. (2001). The role of color in high-level vision. Trends in Cognitive Science, 5(5), 211-215.
Thorell, L. G., De Valois, R. L., & Albrecht, D. G. (1984). Spatial mapping of monkey V1 cells with pure color and luminance stimuli, Vision Research, 24, 751-769.
Tjan, B. S., & Liu, Z. (2005). Symmetry impedes symmetry discrimination. Journal of Vision, 5, 888-900.
Tootell, R. B. H., Mendola, J. D., Hadjikhani, N. K., Ledden, P. J., Lui, A. K., Reppas, J. B., Sereno, M. I., & Dale, A. M. (1997). Functional analysis of V3A and related areas in human visual cortex. Journal of Neuroscience, 17, 7060-7078.
Troscianko, T. (1987). Perception of random-dot symmetry and apparent movement at and near isoluminance. Vision Rearch, 27, 547-554.
Ts’o, D.Y., & Gilbert, C.D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. The Journal of Neuroscience, 8(5), 1712-1727.
Tyler, C. W., Baseler, H. A., Kontsevich, L. L., Likova, L. T., Wade, A. R., Wandell, B. A. (2005). Predominantly extra-retinotopic cortical response to pattern symmetry. Neuroimage, 15, 306-314.
Tyler, C. W., & Chen, C. C. (2000). Signal detection theory in the 2AFC paradigm: attention, channel uncertainty and probability summation. Vision Research, 40, 3121-3144.
Tyler, C. W., & Hardage, L. (1996). Mirror symmetry detection: predominance of second order pattern processing throughout the visual field. In C. W. Tyler (Ed.), Human Symmetry Perception and its Computational Analysis (pp. 157-171). Utrecht: VSP.
van der Helm, P. A., & Leeuwenberg, E. L. (1996). Goodness of visual regularities: a nontransformational approach. Psychological Review, 103, 429-456.
van der Helm, P. A., & Leeuwenberg, E. L. J. (1999). A better approach to goodness: Reply to Wagemans (1999). Psychological Review, 106, 622-630.
Van der Zwan, R., Badcock, D. R., & Parkin, B. (1999). Global form perception: Interactions between luminance and texture information. Australian and New Zealand Journal of Ophthalmology, 27(3-4), 268-270.
von Kries, J. (1905). Die Gesichtsempfindungen, In W. Nagel (Ed.), Handbuch der Physiologie des Menschen (pp. 109-282). Braunschweig: Vieweg.
Vos, J. J., & Walraven, P. L. (1971). On the derivation of the foveal receptor primaries. Vision Research, 11, 799-818.
Wagemans, J., Van Gool, L., & d’Ydewalle, G. (1991). Detection of symmetry in tachistoscopically presented dot patterns: effects of multiple axes and skewing. Perception & Psychophysics, 50, 413-427.
Wagemans, J., Van Gool, L., Swinnen, V., & Van Horebeek, J. (1993). Higher-order structure in regularity detection. Vision Research, 33, 1067-1088.
Webster, M. A., De Valois, K. K., & Switkes, E. (1990). Orientation and spatial-frequency discrimination for luminance and chromatic gratings. Journal of the Optical Society of America A, Optics and image science, 7, 1034–1049.
Wenderoth, P. (1996). The effects of the contrast polarity of dot-pair partners on the detection of bilateral symmetry. Perception, 25, 757-771.
Wertheimer, M. (1938). Laws of organization in perceptual forms. In W. Ellis (Ed.), A source book of Gestalt psychology. New York: Harcourt.
Wilson, J. A., & Switkes, E. (2005). Integration of differing chromaticities in early and midlevel spatial vision. Journal of the Optical Society of America A, 22, 2169-2181.
Wilson, J. A., Switkes, E., & De Valois, R. L. (2004). Glass pattern studies of local and global processing of contrast variations. Vision Research, 44, 2629-2641.
Wilson, H., & Wilkinson, F. (1998). Detection of global structure in Glass patterns: Implications for form vision. Vision Research, 38, 2933-2947.
Yates, J. T. (1974). Chromatic information processing in the foveal projection (area striata) of unanesthetized primate. Vision Research, 14, 163-173.
Zhang, L., & Gerbino, W. (1992). Symmetry in opposite-contrast dot patterns. Perception, 21, Supplement 2, 95.
Zeki, S. (1973). Color coding in rhesus monkey prestriate cortex. Brain Research, 53, 422-427.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE