:::

詳目顯示

回上一頁
題名:環境相容碳纖維複合材料製備與應用之研究
作者:王榮彬
作者(外文):Wang, Jung-Pin
校院名稱:中華大學
系所名稱:科技管理博士學位學程
指導教授:楊錫麒
學位類別:博士
出版日期:2012
主題關鍵詞:活性碳纖維奈米銀粒子奈米碳管化學氣相沉積微波加熱法抗菌能力Activated carbon fabricsSilver nanoparticlesCarbon nanotubesChemical vapor adsorptionMicrowave heatingAnti-bacterial ability
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:3
本研究針對活性碳纖維、金屬銀及碳奈米管等不同類型之環境相容材料,透過化學氣相沉積法(Chemical Vapor Deposition, CVD)及微波輔助合成法,成功製備奈米碳管/活性碳纖維複合材、銀/活性碳纖維複合材等生態材料,其對環境污染小和循環再生利用率高,是為環境工程奈米複合材料之獨特材料。
本研究第一部份以化學氣相沉積法(Chemical Vapor Deposition, CVD)成長奈米碳管於活性碳纖布形成高性能吸附材,並探討其液相吸附行為。以觸媒催化CVD法可成功地裝飾奈米碳管於微米尺度之活性碳纖維上,形成一個多層活性碳纖複合材料。經本研究製備之奈米碳管具有形狀扭曲,其長度介於數個微米之間。奈米碳管之沉積有效地使活性碳纖維之微孔孔洞結構轉變為介孔性材料。本研究採用兩種常見的液相污染物–苯酚和染料(Basic Violet 10, BV10)之吸附量為評估指標。兩種污染物之等溫吸附曲線可由Freundlich、Dubinin-Radushkevich以及Langmuir吸附模式解釋。經實驗指出經奈米碳管沉積後,碳材之液相表面利用率(Surface Coverage)、平衡速率常數以及吸附能皆有明顯增強之趨勢。綜合以上所述,奈米碳管之植入促進被吸附物之孔洞利用率以及提供更多吸附活位以供液相吸附。
本研究第二部份使用微波輔助法合成奈米銀粒子並將奈米銀粒子沉積於活性碳纖維(Activated Carbon Fabrics, ACF)上。奈米銀對大部分細菌有使其喪失活性及抑制生長的特性。微波加熱1分鐘使銀奈米晶體之粒徑分佈均勻地分散於活性碳纖維上。微波加熱有利於溶液均勻加熱,且能均勻誘導成核和晶體快速生長,從而合成奈米銀粒子。主要利用奈米銀粒子及沉積於活性碳纖維表面之銀粒子抑制大腸桿菌(Escherchia coli, E. coli)之生長。20 mg L-1低濃度之銀膠體懸浮液對大腸桿菌仍然具有優越的抑菌能力,實際應用觀察得知,對綠膿桿菌和金黃色葡萄球菌之抗菌率為99.9 %。因此,本研究發展出一種簡單、有效且效率高的合成方法來製備奈米銀膠體懸浮液及銀/活性碳纖維複合材料。
This study investigates various kinds of environment-friendly materials including carbon nanotube (CNT), metallic silver and activated carbon fabric (ACF). The catalytic chemical vapor deposition (CCVD) and microwave-assisted deposition were employed to prepare CNT/ACF and Ag/ACF composites. Such unique eco-composites exhibit superior ability for removing pollutants and excellent regeneration efficiency, showing a great potential application in fields of civil and environment engineering.
The frist part of the liquid-phase adsorption of phenol and dye (Basic Violet 10) onto carbon nanotube (CNT)-activated carbon fabric (ACF) composites, prepared by a catalytic chemical vapor deposition (CCVD) approach, has been investigated. The CCVD technique enables the decoration of CNTs on microscaled ACFs, creating a hierarchy CNT-ACF composite. The as-grown nanotubes were found to have a tortuous shape and to be several micrometers in length. The deposition of CNTs efficiently shifts the micropore size distribution of ACFs to mesoporosity. The adsorption isotherms for phenol and BV10 on ACF and CNT/ACF adsorbents are well characterized by Freundlich, Dubinin-Radushkevich, and Langmuir models. The surface accessibility,the equilibrium rate constant, and the adsorption energy are significantly enhanced due to the deposition of CNTs, as analyzed by these models. Accordingly, the existence of CNTs on ACF adsorbent plays a positive role in (i) facilitating pore accessibility to adsorbate and (ii) providing more adsorptive sites for the liquid-phase adsorption.
The second part of this study reports a microwave-assisted route to synthesize nanosilver colloidal suspension and to deposit silver nanoparticles onto activated carbon fabrics (ACFs). The properties of the nanosilver suspension are characterized in terms of bacterial inactivation and growth inhibition. The metallic Ag nanocrystals with narrow size distribution are uniformly dispersed onto ACFs under the microwave irradiation of 1 min. Microwave irradiation is capable of heating up the reaction solution homogeneously, inducing uniform nucleation and rapid crystal growth to form the Ag crystallites. This work aims to elucidate how as-grown Ag nanoparticles affect the inactivation of Escherchia coli (E. coli) and how Ag/ACF surface inhibits the bacterial growth. The Ag colloidal suspension offers superior anti-bacterial ability against E. coli cells at a low concentration of 20 mg L-1. To inspect the practical application, the Ag-containing polyurethane and oil painting layers also exhibit a bacterial inhibition toward Pseudomonas aeruginosa and Staphylococcus aureus cells, i.e., both the reductions: 99.9%. Thus, the study has established a simple, efficient and effective process in the synthesis of both Ag colloidal suspension and Ag/ACF composite.
丁浩、童忠良、杜高翔(2007)。納米抗菌技術。北京市:化學工業出版社。

山本良一(1997)。環境材料。北京市:化學工業出版社。

王雨群、賈祥眾、張雲龍(2005) 。納米生態酶空氣材料及其在空氣淨化器中的應用。江蘇建築,(4),36-51。

王文雄、白玉綸(2004)。生態環境材料。台北縣:新文京開發出版股份有限公司。

王凱平(2005)。奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究。未出版之碩士論文,國立成功大學化學工程學系,台南市。

王大全(2006)。無機抗菌新材料與技術。北京市:化學工業出版社。

王敏泰(1982)。染料化學。台北市:五洲出版社。

王琳玲、胡睿、陸曉華(2008)。活性碳纖維對水中五氯酚的吸附性能研究。環境科學與技術,31(10),19-21。

王漢立(2007)。LCA與生態環境材料。湖北教育學院學報,24(8),74-76。

王廣健、尚德庫、胡琳娜、張楷亮、郭振華、郭亞傑(2004)。玄武岩纖維的表面修飾及生態環境複合過濾材料的製備與性能研究。複合材料學報,21(1),38-44。new window

伍安義(2006)。以化學還原法合成奈米銀-銅粒子及其特性分析研究。未出版之碩士論文,國清華大學化學工程系,新竹市。

李城(2005)。生態復合材料研究進展及發展前景。建築發展導向,3,70-73。

李愛民、孫康寧、尹衍陞、盧志華、畢見強、張玉軍(2003)。生態環境材料的發展及其對社會的影響。矽酸鹽通報,5,78-82。

李俊德、張皓(1994)。織染廢水臭氧脫色處理之研究。工業污染防治,49,27-45。

李炳楠(2001)。以觸媒濕式氧化法處理鐵氰錯合物或2,4二氯酚水溶液之研究。未出版之博士論文,國立中山大學環境工程所,高雄市。

李賢學(2005)。化學還原法製備奈米銀及其應用。未出版之博士論文,國清華大學化學工程系,新竹市。

宋欣真、鄭仁川(1994)。台灣區染整廢水污染防治現況。工業污染防治,49,27-45。

余振寶、宋乃忠(2005)。沸石加工與應用。北京市:化學工業出版社。

何志軒、陳俊成、楊禎祿(2008)。有機反應性染料之氧化去色反應特性。工業污染防治,27(4),1-20。

吳小琳(1998)。專利管理有助技術開發-專利管理高手。台北市:資策會科技法律中心。

吳侹賢(2009)。奈米銀離子的殺菌效果之研究。未出版之碩士論文,吳鳳技術學院光機電暨材料研究所,台南市。

花景柔(2008)。奈米銀應用於淨水系統之殺菌探討。未出版之碩士論文,逢甲大學環境工程與科學學系碩士論文,台中市。

林文清(2007)。微晶纖維素廢料之活性碳熱裂解資源化研究。未出版之碩士論文,國立中央大學環境工程研究所,桃園縣。

林正芳(1987)。工業廢水活性碳處理。工業污染防治,6,3-5。

林國海(2005)。以水熱法探討奈米級α-Al2O3披覆氫氧基之研究。未出版之碩士論文,國立成功大學資源工程研究所,台南市。

官振豐(2006)。環境相容奈米複合材料之製備與性質研究。未出版之博士論文,國立清華大學化學工程學系,新竹市。

周娟娟、胡中華、吳海芳(2003)。活性碳纖維及其在水處理中的應用。環境污染與防治,2(25),80-82。

周更生、李賢學、高振裕、盧育杰(2006)。功能性粉末奈米銀。科學發展,408,34-39。

俞建群、賈殿贈、鄭毓峰(1999)。納米氧化鎳、氧化鋅的合成新方法。無機化學學報,15(1),95-98。new window

洪志雄(2007)。奈米複合金屬製備及其對土壤/地下水污染整治應用之研究。未出版之博士論文,國立中山大學環境工程研究所,高雄市。

馬振基(2003)。奈米材料科技原理與應用。台北市:全華科技圖書股份有限公司。

柯柏輝(2009)。碳纖維廢料改質成活性碳纖維之可行性評估。未出版之碩士論文,國立雲林科技大學環境與安全衛生工程研究所,雲林縣。

柯澤豪、李建鴻、胡中華(1988)。活性碳纖維之發展及其應用。化工技術,4(6),134-141。

柯澤豪、洪凱旋(2002)。活性碳纖維的研發與最新應用。化工技術,2(10),134-154。

近藤精一、石川達雄、安部郁夫共著,李國希譯(2006)。吸附科學。北京:化學工業出版社。

張強華(2007)。木塑復合材料及其產業化現狀。新材料產業,11,51-54。

張樹良、王金平、趙亞娟(2010)。國際生態環境材料技術專利態勢分析。科學觀察,5(5),26-36。

張世燊(2006)。不同製備方法對於CeO2 觸媒催化含酚廢水濕式氧化反應之影響。未出版之碩士論文,嘉南藥理科技大學環境工程與科學系,台南市。

張安華(2005)。實用奈米技術。台北縣:新文京開發出版股份有限公司。

邱煥宗(2006)。奈米碳管吸附水中二價鋅離子之研究。未出版之碩士論文,國立中興大學環境工程系,台中市。

阮國棟(1984)。廢水中各種酚類去除之理論與實務。工業污染防治季刊,3(3),88-103。

馮燕(2003)。生態材料-保護人類健康及生存環境的新興材料。安徽衛生職業技術學院學報,2 (4),77-81。

馮海強(2010)。微波技術在環境污染治理中的研究發展。湖南有色金屬,26(4),43-45。

賀福、王茂章(1997)。碳纖維及其複合材料。北京市:科學出版社。

游輝智(2008)。氧化鋁被覆奈米銀微粒的製備及其抗菌性之研究。未出版之碩士論文,逢甲大學紡織工程研究所,台中市。

賈光、李文斯、金朝霞(2010)。奈米碳管生物效應與安全應用。北京市:科學出版社。

楊文博、李明春(2010)。微生物學,北京市:高等教育出版社。

葉瑞銘、翁暢健(2004)。有機無機混成奈米複合材料。Chemistry,4(62),473-482。

郭思攸(2008)。奈米氧化鋅於牙科瓷層表面抗菌性質之研究。未出版之碩士論文,國立台北科技大學材料科學與工程系,台北市。

劉榮昌(2004)。機能性染料之微波合成與應用研究。未出版之博士論文,國立清華大學化學工程研究所,新竹市。

陳國誠、詹益亮(1990)。含酚廢水的生物處理法。科學月刊,21,474-477。

陳郁文(2009)。97年度(綠色奈米技術之開發及應用-奈米金屬改質光觸媒於水中污染物及揮發性有機物控制之研究)專案研究計畫期末報告。台北市:行政院環境保護署。

陳耀茂(2004)。多變量分析的SPSS使用手冊。台北市:鼎茂圖書出版股份有限公司。

賴宏仁(2007) 。環境相容生態材料—人類永續發展的最佳抉擇。工業材料雜誌,251,58。

錢姍姍、李玉金、段德宏、王根霞(2005)。微波技術在環境樣品預處理的應用。甘肅聯合大學學報,19(1),44-46。new window

盧建銘(2008)。奈米碳管的挫曲與含水之熱機行為分析。未出版之博士論文,國立成功大學工程科學系,台南市。

鍾孟佳(2006)。奈米碳管吸附水中腐植酸之研究。未出版之碩士論文,國立中興大學環境工程系,台中市。

謝淑惠(2006)。環保應用之奈米鐵-鎳及碳管材料附著在氧化鋁粉的製備研究。未出版之博士論文,國立雲林科技大學工程科技研究所,雲林縣。

謝建德(2000)。微孔洞碳材固/液介面的吸附及電容行為。未出版之博士論文,成功大學化學工程系,台南市。

蔡竹固(2007)。微生物學實驗。嘉義市:國立嘉義大學微生物與免疫學系編。

經濟部中央標準局(1997)。纖維製品抗菌性試驗法。中國國家標準(CNS), 13907(L3284)。

經濟部工業局(1996)。工業減廢技術手冊。台北市:中國技術服務社工業染防治中心出版。

饒久平(2003)。木質複合材料的發展與展望。福建林學院學報,23(3),284-287。

Allen, S. J., Mckay, G. &; Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280(2), 322-333.

An, H., Qian, Y., Gu, X. &; Tang, W. Z. (1996). Biological treatment of dye wastewaters using an anaerobic–oxic system. Chemosphere, 33, 2533-2542.

Ania, C. O., Menendez, J. A., Parra, J. B. &; Pis, J. J. (2004). Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon, 42, 1377-1381.

Ansón, A., Jagiello, J., Parra, J. B., Sanjuán, M. L., Benito, A. M., Maser, et al. (2004). Porosity, surface area, surface energy and hydrogen adsorption in nanostructured carbons. Journal of Physical Chemistry B, 108, 15820-15826.

Babaa, M. R., Dupont-Pavlovsky, N., McRac, E. &; Masenelli-Varlot, K. (2004). Physical adsorption of carbon tetrachloride on as–produced and on mechanically opened single walled carbon nanotubes. Carbon, 42, 1549-1554.

Banat, I. M., Nigam, P., Singh, D. &; Marchant, R.(1996). Microbial decolorization of textile-dyecontaining effluent. Journal of Bioresource Technology, 58, 217-227.

Brunauer, S., Emmett, P. H. &; Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309-19.

Brunauer, S. (1943). The Adsorption of Gases and Vapor. NY: Princeton University, Princeton.

Cañizares, P ., Martínez, F ., Jiménez, C ., Lobato, J. &; Rodrigo, M. A. (2006). Coagulation and electrocoagulation of wastes polluted with dyes. Environmental Science &; Technolog , 40(20), 6418-6424.

Carneiro, P. A., Nogueira, R. F. P. &; Zanoni, M. V. B. (2007). Homogeneous photodegradation of C. I . Reactive Blue 4 using a photo-Fenton process under artificial and solar irradiation. Dyes Pigments, 74, 127-132.

Chang, Y. C. &; Yougen, K. (1995). Enhancement of NOx adsorption capacity and rate of char by microwaves. Carbon, 33(8), 1141-1146.

Che, G., Lakshmi, B. B., Fisher, E. R. &; Martin, C. R. (1998). Carbon Nanotubule Membranes and Possible Applications to Electrochemical Energy Storage and Production. Nature, 393, 346-347.

Cheng, L. I. (2005). Current research on ecomaterials and their development. fiber glass, (5), 11-14.

Chen, X. &; Schluesener, H. J. (2008). Nanosilver : a nanoproduct in medical application. Toxicology Letters, 176, 1-12.

Chung, K. T. &; Stevens, S. E. (1993). Degradation of azo dyes by environmental microorganisms and helminthes. Environmental Toxicology &; Chemistry, 12(11), 2121-2132.

Creighton, J. A. &; Eadon, D. G. (1991). Ultraviolet–visible absorption spectra of the colloidal metallic elements. Journal of the Chemical Society, 87, 3881-3891.

De Heer, W. A., Chatelain, A. &; Ugarte, D. (1995). A carbon nanotube field-emission electron source. Science, 270, 1179-1180.

Do, D. D. (1998). Adsorption analysis, Equilibria and Kinetics. London: Imperial College Press.

Elliott, P. B., Leslieg, J. &; Paulp, H. J. (1951). Amer. Soc., 73, 373.

Eswaramoorthy, M., Sen, R. &; Rao, C. N. R. (1999). A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chemical Physics Letters, 304, 207-210.

Fewson, C. A. (1988). Biodegradation of xenobiotic and other persistent compounds: The causes of recalcitrance. Trends in Biotechnology, 6(7), 148-153.

Frackowiak, E. &; Béguin, F. (2002). Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon, 40, 1775-1787.

Freundlich, H. (1907). Ueber die Adsorption in Loesungen. Zeitschrift für Physikalische Chemie, 57 A, 385-470.

Gregg, S. J. &; Sing, K. S. (1967). Adsorption area and porosity. London &; NY: Academic press.

Gültekin &; Ince, N. H. (2007). Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. Journal of Environmental Management, 85, 816-832.

Halada, K. (2003). Progress of ecomaterials toward a sustainable Society. Current Opinion in Solid State and Materials Science, 7, 209-216.

Hamouda, T. &; Baker, J. J. R. (2000). Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. Journal of Applied Microbiology, 89, 397-403.

Hasany, S. M. &; Saeed, M. M. (1992). A kinetic and thermodynamic study of silver sorption onto manganese dioxide from acid solutions. Separation Science and Technolog , 27, 1789-1800.

He, Z., Lin, L., Song, S., Xia, M., Xu, L., Ying, H., et al. (2008). Mineralization of C. I . Reactive Blue 19 by ozonation combined with sonolysis: Performance optimization and degradation mechanism. Separation and Purification Technology, 62, 376-381.

Hessel, C., Allegre, C., Maisseu, M., Charbit, F. &; Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management, 83, 171-180.

Hobson, J. P. (1969). Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure. Journal of Physicl Chemistry, 73, 2720-2727.

Hosseini, S. H. &; Borghei, S. M. (2005). The treatment of phenolic wastewater using a moving bed bio-reactor. Process Biochemistr , 40, 1027-1031.

Hsieh, C. T., Chen, W. Y. &; Lin, J. H. (2009). Synthesis of carbon nanotubes on carbon fabric for use as electrochemical capacitor. Microporous and Mesoporous Materials, 122, 155-159.

Hsieh, C. T., Chen, J. M., Kuo, R. R. &; Huang, Y. H. (2004). Fabrication of wellaligned carbon nanofiber array and its gaseous-phase adsorption behavior. Applied Physics Letters, 84, 1186-1188.

Hsieh, C. T., &; Teng, H. (2000). Langmuir and Dubinin–Radushkevich analyses on equilibrium adsorption of activated carbon fabrics in aqueous solutions. Journal of Chemical Technology &; Biotechnology, 75, 1066-1072.

Hsieh, C. T., Lin, Y. T., Lin, J. Y. &; Wei, J. L. (2009). Synthesis of carbon nanotubes over Ni-and Co–supported CaCO3 catalysts using catalytic chemical vapor deposition. Materials Chemistry and Physics, 114, 702-708.

Hsieh, C. T., Lin, Y. T., Lin, J. Y. &; Wei, J. L. (2009). Parameter setting on growth of carbon nanotubes over transition metal/alumina catalysts in a fluidized bed reactor. Powder Technology, 192, 16-22.

Hsieh, C. T. &; Teng, H. (2000). Liquid–phase adsorption of phenol onto activated carbons prepared with different activation levels. Journal of Colloid and Interface Science, 230, 171-175.

Hsieh, C.T., Hung, W.M. &; Chen, W.Y. (2010). Electrochemical activity and stability of Pt catalysts on carbon nanotube/carbon paper composite electrodes. International Journal of Hydrogen Energy, 35, 8425-8432.

Hsieh, C. T. &; Teng, H. (2000). Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon, 38, 863-869.

Hsieh, C. T., Chen, W. Y. &; Wu, F. L. (2008). Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two–tier roughness. Carbon, 46, 1218-1224.

Hsieh, C. T., Chou, Y. W. &; Lin, J. Y. (2007). Fabrication and electric capacitive behavior of hetero–junction carbon nanoclusters by using secondary chemical vapor deposition. Chemical Physics Letters, 444, 149-154.

Huling, S. G., Jones, P. K., Ela, W. P., &; Arnold, R. G. (2005). Fenton-driven chemical regeneration of MTBE-spent GAC. Water Research, 39, 2145-2153.

Janoš, P., Michálek, P. &; Turek, L. (2007). Sorption of ionic dyes onto untreated low–rank coal–oxihumolite: a kinetic study. Dyes Pigm, 74, 363-370.

Jonas, L. A. &; Rehrmann, J. A. (1978). Reaction Steps in gas sorption by impregnated carbon. Carbon, 16, 115-119.

Juang, R. S., Wu, F. C. &; Taeng, R. L. (1996). Adsorption Isotherms of Phenolic Compounds from Aqueous Solutions onto Activated Carbon Fibers. Journal of Chemical and Engineering Data, 41, 487.

Jüntgen, H. (1986). Activated carbon as catalyst support : A review of new research results. Fuel, 65, 1436-1446.
Jüntgen, H. (1977). New applications for carbonaceous adsorbents. Carbon, 15, 273-283.

Kang, S. F., Liao, C. H. &; Chen, M. C. (2002). Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46, 923-928.

Kim, T., Park, C., Shinb, E. &; Kim, S. (2004). Decolorization of disperse and reactive dye s olutions using ferric chloride. Desalination, 161, 49-58.

Kinoshita, K. (1987). Carbon: Electrochemical and Physicochemical Properties. NY: John &; Wiley.

Kreibig, U. &; Fragstein, C. V. (1969). The limitation of electron mean free path in small silver particles. Zeitschrift für Physik A Hadrons and Nuclei, 224, 307-323.

Krungleviciute, V., Heroux, L., Migone, A. D., Kingston, C. T. &; Simard, B. (2005). Isosteric heat of argon adsorbed on single–walled carbon nanotubes prepared by laser ablation. Journal of Physical Chemistry B, 109, 9317-9320.

Kumar, K. V. &; Sivanesan, S. (2006). Isotherm parameters for basic dyes onto activated carbon: Comparison of linear and non-linear method. Journal of Hazardous Materials, 129, 147-150.

Kumar, K. V., Ramamurthi, V. &; Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. Journal of Colloid and Interface Science , 284(1), 14-21.new window

Kurbus, T., Slokar, Y. M. &; Le Marechal, A. M. (2002). The study of the effects of the variables on H2O2/UV decoloration of vinylsulphone dye: part II. Dyes Pigments, 54, 67-78.

Kumar, K. V. &; Sivanesan, S. (2006). Isotherm parameters for basic dyes onto activated carbon: Comparison of linear and non-linear method. Journal of Hazardous Materials, 129, 147-150.

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.

Lee, J. W., Choi, S. P., Thiruvenkatachari, R., Shim, W. G. &; Moon, H. (2006). Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments, 69, 196-203.

Li, Y. H., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., et al. (2001). Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chemical Physics Letters, 350, 412-416.

Li, Y. H., Wang, S., Zhang, X., Wei, J., Xu, C., Luan, Z., et al. (2003). Adsorption of fluoride from water by aligned carbon nanotubes. Materials Research Bulletin, 38, 469-476.

Li, P., Zhao, H. L., Zhang, P., Jia, Z. B. &; Wei, Y. (2003). Preparation and characterization of nanon-sized zinc oxide by microwave heating. Fine Chemicals, 20(5), 265-267.

Liakou, S., Pavlou, S. &; Lyberatos, G. (1997). Ozonation of azo dyes. Water Science and Technology, 35, 279-286.

Liau, S.Y., Read, D.C., Pugh, W.J., Furr, J.R. &; RusseII, A.D. (1997). Interaction of sliver nitrate with readily idatifiable groups : relationship to theantibacterial action of silverions. Letters in Applied Microbiology, 25(4), 279-283.

Lim, J., &; Okada, M. (2005). Regeneration of granular activated carbon using ultrasound. Ultrasonics Sonochemistry, 12, 277-282.

Lin, S. H. &; Wang, C. S. (2002). Treatment of high-strength phenolic wastewater by a new two-step method. Journal of Hazardous Materials, 90, 205-216.

Lin, K. F., Cheng, H . M., Hsu, H. C., Lin L. J. &; Hsieh, W. F. (2005). Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chemical Physics Letters, 409, 208-211.

Long, R. Q. &; Yang, R. Y. (2001). Carbon nanotubes as superior sorbent for dioxin removal. Journal of The American Chemical Society, 123, 2058-2059.

McKay, G., Bino, M. J. &; Altamemi, A. R. (1985). The adsorption of various pollutants from aqueous solution on to activated carbon. Water Research, 19, 491-495.

Mittal, A., Gajbe, V. &; Mittal, J. (2008). Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. Journal of Hazardous Materials, 150, 364-375.

Moghaddam, F. M. &; Saeidiana, H. (2007). Controlled microwave-assisted synthesis of ZnO nanopowder and its catalytic activity for O-acylation of alcohol and phenol. Materials Science and Engineering: B, 139, 265-269.

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2353.

Namasivayam, C. &; Arasi, D. J. S. E. (1997). Removal of congo red from wastewater by adsorption onto red mud. Chemosphere, 34, 401-417.

Ni, K., Chen, L. &; Lu G. X. (2008). Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction. Electrochemistry Communications, 10, 1027-1030.

Noll, K. E., Gournaris, V. &; Hou, W. S. (1992). Adsorption technology for air and water pollution control. Chelsea: Lewis Publishers .

Ofomaja, A. E. (2008). Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. Chemical Engineering Journal, 143, 85-95.

Orlando, U. S., Baes, A. U., Nishijima, W., Okada, M. (2002). A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials. Bioresource Technology, 83(3), 195-198.

Orlando, U. S., Baes, A. U., Nishijima, W., Okada, M. (2002). Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity. Chemosphere, 48(10), 1041-1046.

Papic, S., Koprivanac, N., Bozic, A. L. &; Metes, A. (2004). Removal of some reactive dyes from synthetic wastewater by combined Al (III) coagulation/carbon adsorption process. Dyes Pigments, 62, 291-298.

Park, S. J. &; Jang, Y. S. (2003). Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior. Journal of Colloid and Interface Scienc , 261, 238-243.

Parida, K. M. &; Parija, S. (2006). Photocatalytic degradation of phenol under solar radiation using microwave irradiated zinc oxide. Solar Energy, 80, 1048-1054.

Pariente, S., Trens, P., Fajula, F., Renzo, F. D. &; Tanchoux, N. (2006). Heterogeneous catalysis and confinement effects: The isomerization of 1–hexene on MCM–41 materials. Applied Catalysis A, 307, 51-57.

Patel, K., Kapoor, S., Dave, D. P. &; Mukherjee, T. (2006). Synthesis of Au, Au/Ag,Au/Pt and Au/Pd nanoparticles using the microwave – polyol method. Research on Chemical Intermediates , 32(2), 103 -113.

Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., et al. (2003). Adsorption of 1, 2–dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 376, 154-158.new window

Qilin, L., Shaily, M., Delina, Y. L., Lena, B., Michael, V. L., Dong, L., et al. (2008). Antimicrobial nanomaterials for water disinfection and microbial control : Potential applications and implications. water research, 42 ,4591-4602.

Rabbi, M. F., Clark, B.,Gale, R. J., Acar, E. O., Pardue, J. &; Jackson, A. (2000). In situ TCE bioremediation study using electrokinetic cometabolite injection. Waste Management, 20, 279-286.

Randin, J. P. &; Yeager, E. (1971). Differential Capacitance Study of Stress-Annealed Pyrolytic Graphite Electrodes. Journal of The Electrochemical Society, 118, 711-714.

Raymunao, P. R., Cazorla, A. D. &; Linares, S. A. (2001). Temperature programmed desorption study on the mechanism on SO2 oxidation by activated carbon and activated carbon fibers. Carbon, 39, 231-232.

Reid, R. C., Prausnitz, J. M. &; Poling, B. E. (1987). The Properties of Gases and Liquids. Singapore: McGraw–Hill.

Robinson, T., McMullan, G., Marchant, R. &; Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255.

Sabio, E., González, E., González, J. F., González-García, C. M., Ramiro, A. &; Gañan, J. (2004). Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon, 42, 2285-2293.

Sakoda, A., Kawazoe, K. &; Suzuki, M. (1987). Adsorption of tri- andtetra-chloroethylene from aqueous solutions on activated carbon fibers. Water Research, 21, 717-722.

Sakoda, A., Suzuki, M., Hirai, R. &; Kawazoe, K. (1991). Trihalomethane adsorption on activated carbon fibers. Water Research, 25, 219-225.

Sani, R. K. &; Banerjee, U. C. (1999). Decolorization of triphenylmethane dyes and textile dye-stuff effluent by Kurthia sp. Enzyme and Microbial Technology, 24, 433-437.

Satterfield, C. N. (1980). Heterogeneous Catalysis in Practice. N Y: McGraw-Hill.

Seshadri, S., Bishop, P. L. &; Agha, A. M. (1994). Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 14(2), 127-137.

Sharifi, N., Tajabadi, F. &; Taghavinia, N. (2010). Nanostructured silver fibers: Facile synthesis based on natural cellulose and application to graphite composite electrode for oxygen reduction. International Journal of Hydrogen Energy, 35, 3258-3262.

Shende, R. V. &; Mahajani, V. V. (2002). Wet oxidative regeneration of activated carbon loaded with reactive dye. Waste Management, 22, 73-83.

Shrivastava, S., Bera, T., Roy, A., Singh, G. , Ramachandrarao, P. &; Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18(22), 225103-225111.

Slokar, Y. M. &; Majcen, M. A. (1997). Methods of decolorization of textile wastewater. Dyes and Pigments, 37(4), 335-356.

Smith, J. M., Van-Ness, H. C. &; Abbott, M. M. (1996). Introduction to Chemical Engineering Thermodynamics. NY: McGraw-Hill.

Sondi, I. &; Branka, S. S. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177-182.

Song, S., Ying, H. P., He, Z. Q. &; Chen, J. M. (2007). Mechanism of decolorization and degradation of CI Direct Red 23 by ozonation combined with sonolysis. Chemosphere, 66, 1782-1788.

Stoimenov, P. K., Klinger, R. L. , Marchin, G. L. &; Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18, 6679-6686.

Sue, K., Kimura, K., Yamamoto, M. &; Arai, K. (2004). Rapid hydrothermal synthesis of ZnO nanorods without organics. Materials Letters, 58(26), 3350-3352.

Sugio, Ō., Asao, Ō. &; Junichi, A. (1975). The effects of nickel on structural development in carbons. Carbon, 13, 353-356.

Suzuki, M. (1990). Adsorption Engineering. N Y: Amsterdam.

Tamai, H., Yoshida, T., Sasaki, M. &; Yasuda, H. (1999). Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon, 37, 983-989.

Teng, H. &; Hsieh, C. T. (1999). Liquid-phase adsorption of phenol by activated carbons prepared from bituminous coals with different oxygen contents. Journal of Chemical Technology &; Biotechnolog , 74, 123-130.

Teng, H. &; Hsieh, C. T. (1998). Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coal. Industrial &; Engineering Chemistry Research, 37, 3618-3624.

Tomaszewicz, E. &; Kurzawa, M. (2004). Use of XPS method in determination of chemical environment and oxidation state of sulfur and silver atoms in Ag6S3O4 and Ag8S4O4 compounds. Journal of Materials Science, 39, 2183-2185.

Vandevivere, P. C., Bianchi, P. &; Verstraete, W. (1998). Treatment and reuse of wastewater from the textile wet-processing industry review of emerging technologies. Journal of Chemical Technology &; Biotechnology, 72(4), 289-302.

Vladea, R. V., Hinrichs, N., Hudgins, R. R., Suppliah, S., Silveston, P. L. (1997). High efficiency, structured-packing catalysts with activated carbon for SO2 oxidation from flue gas. Energy Fuels, 11(2), 277-283.

Wadhawan, A., Stallcup II, R. E. &; Pere, Z, J. M. (2001). Effects of Cs Deposition on the Field-Emission Properties of Single-Walled Carbon-Nanotube Bundles. Applied Physics Letters, 78, 108.

Walker, G. M., Hansen, L., Hanna, J. A. &; Allen, S. J. (2003). Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Research, 37(9), 2081-2089.

Walker, G. M. &; Weatherley, L. R. (1997). Adsorption of acid dyes on to granular activated carbon in fixed beds. Water Research, 31, 2093-2101.

Walker, J. D. (1998). Effects of chemicals on microorganisms. Journal of the Waste Pollution Control Federation, 60, 1106-1121.

Wang, T. M. &; Chang, H. W. (2002). Ecomaterials - substance of sustainable development ment society. Acta aeronautica et astronautica sinica, 23(5), 459-466.

Wang, S., Boyjoo, Y., Choueib, A. &; Zhu, Z. H. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39(1), 129-138.new window

Wang, J. M., Huang, C. P., Allen, H. E., Cha, O. K. &; Kim, D.W. (1998). Adsorption characteristics of dye onto sludge particulates. Journal of Colloid and Interface Science, 208, 518-528.

Watanabe, K., Hino, S. &; Takahashi, N. (1996). Responses of activated sludge to an increase in phenol loading. Journal of Fermentation and Bioengineering, 82, 522-524.

Weber, T. W. &; Chskrsvorti, R. K. (1974). Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE Journal, 20, 228.

Xie, X., Gao, L. &; Sun, J. (2007). Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes. Colloids and Surfaces A, 308, 54-59.

Xu, X., Lia, H., Wang, W. &; Gu, J. (2004). Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere, 57, 595-600.

Xu, X. H. N., Brownlow, W. J., Kyriacou, S. V., Wan, Q. &; Viola, J. J. (2004). Real-Time Probing of Membrane Transport in Living Microbial Cells Using Single Nanoparticle Optics and Living Cell Imaging. Biochemistry, 43, 10400-10413.

Yang, O. B., Kim, J. C., Lee, J. S. &; Kim ,Y. G. (1993). Use of activated carbon fiber for direct removal of iodine from acetic acid solution. Industrial &; Engineering Chemistry Research, 32, 1692-1697.

Yang, S., Li, J., Shao, D., Hu, J. &; Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. Journal of Hazardous Materials, 66, 109-116.

Yan, X. M., Shi, B. Y., Lu, J. J., Feng, C. H., Wang, D. S. &; Tang, H. X. (2008). Adsorption and desorption of atrazine on carbon nanotubes. Journal of Colloid and Interface Science, 321, 30-38.

Yin, H., Yamamoto, T., Wada, Y. &; Yanagida, S. (2004). Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics, 83(1), 66-70.new window

Ying, W. C. (1989). Proceedings of the 44th Purdue Industrial Waste Conference, Lewis Publishers, Chelsea, Michigan.

Zcan, A. O., Merog˘lu, C., Erdog˘an, Y. &; Zcan, A. (2007). Modification of bentonite with a cationic surfactant: an adsorption study of textile dye Reactive Blue 19. Journal of Hazardous Materials, 140, 173-179.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關期刊論文
 
1. 1
 
1. 1
2. 1
 
無相關著作
 
QR Code
QRCODE