:::

詳目顯示

回上一頁
題名:雙子星晶圓廠之生產支援決策模式
作者:盧俊偉
作者(外文):Lu, Chun-Wei
校院名稱:中華大學
系所名稱:科技管理博士學位學程
指導教授:杜瑩美
學位類別:博士
出版日期:2013
主題關鍵詞:自動化搬運系統產能決策產能支援績效評估模式AMHS capacity policy decisionCapacity backupPerformance estimation model
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:14
近年來在半導體產業機台設置費逐漸升高以及產品毛利率逐漸下滑的趨勢下,管理者對於未來的新建廠房之概念也漸漸有所轉變,從原先的單一廠房概念逐漸轉型為雙子星廠之建廠模式。所謂雙子星晶圓廠通常位於同一地理位置且產能技術上之配置通常存在著一定的差異性,因此為了提高整體之績效表現以及符合市場之需求變化,廠區之間可以透過自動化搬運系統達到產能互相支援之行為,以解決暫時性產能不足或是機台負荷不平衡等問題。有鑒於此,本研究主要是針對雙子星晶圓廠環境提出一套有效之生產管控決策模式,以解決面對上述之相關問題時能有一系統性之決策參考依據。
本研究將從生產系統績效角度提出有相關之生產支援決策之模式架構。首先,針對自動化搬運系統之產能進行規劃,以了解欲進行生產支援時各廠區應保有多少自動化搬運系統產能。另一方面,關於產能支援決策則是包含產能支援時間點與支援效益觀點等方向進行探討與研究,制定良好的產能支援流程邏輯以協助管理者進行管控。接著針對雙子星晶圓廠在生產支援情況下,建構其相關之績效預估模式,運用先前提出之管控機制,藉由修正傳統等候模型等方式著手發展出較準確之預估模式。
最後透過數值範例、統計分析與模擬系統之配合,針對各模式進行相關之驗證與實驗探討,其結果顯示各模式皆能有效達到相關之表現,如以最少車輛數達到生產系統較佳之產出量與產品生產週期時間,透過產能支援管控模式使得工件生產週期時間與瓶頸工作站前WIP皆有所改善,以及在產能支援之生產績效預估上亦有不錯的準確度。
藉由上述三大方面之考量,發展建立一套有效的雙子星生產支援決策模式,最終協助管理者得以使雙子星晶圓廠之生產效能與績效能夠得到充分的利用,提高公司於市場上之利潤與競爭力。
Semiconductor manufacturing is one of the most complicated industries in the world. In order to reduce some facility costs and increase production flexibility, twin-fab concept has been established over the past decade, which means two neighboring fabs can be connected to each other by automatic material handling system (AMHS). Through the design of twin-fab, the manufacturing performance of two fabs, such as total throughput and products’ cycle times, can be improved and enhanced effectively by different capacity backup policies. However, if lacking of completed production planning and control models, the benefit of twin-fab will be decreased significantly.
In this study, a completed production planning and control model for capacity backup of twin fabs is developed. There are three modules included in the proposed model, AMHS capacity determination module, capacity backup module and performance estimation module. The AMHS capacity determination module helps to set up the suitable AMHS capacity for each fab of twin fabs under the purpose of maintaining the originally designed optimal production throughput or cycle time of products. Therefore, a GI/G/m queuing model based on FCFS (First-come-first-serve) dispatching rule of AMHS is applied to determine the required number of vehicles. Regarding to the capacity backup module, the control policy of capacity support is established and two control thresholds are developed. The concept of protective capacity and GI/G/m queuing model were utilized to design these two control thresholds. Moreover, the performance evaluation model is proposed to estimate the whole production performance of twin fabs under backup policy. The queuing theory and Little’s Law are applied to the estimation model.
Finally, the numerical experiment, statistical analysis and simulation system are used to validate the proposed model. The result showed that each module can achieve the research targets. The better cycle times and throughput can be reached by using less AMHS capacity. The WIP (work in process) of the bottleneck for twin fabs can be improved by the capacity backup module. The production performance under capacity backup policy can be estimated accurately.
Based on the production planning and control model, the machines blocking and starving phenomena will be avoided and it will result in reducing the cycle time of products and increasing the total throughput of twin fabs.
Bahri, N., Reiss, J. &; Doherty, B. (2001). Comparison of unified vs. segregated automated material handling, Proceedings of IEEE International Symposium on Semiconductor Manufacturing, Billerica : MA.
Benjaafar, S. (2002). Modeling and analysis of congestion in the design of facility layouts, Management Science, 48(5), 679-704.
Bozer, Y. A., &; Park, J. H. (2001). Expected move request waiting times in single-device, polling-based material handling systems, IIE Transactions, 33(1), 55-63.
Chen, H., Harrison, J. M., Mandelbaum, A., Ackere, A. V. &; Wein, L. M. (1988). Empirical evaluation of a queuing network model for semiconductor wafer fabrication, Operations Research, 36(2), 202-215.
Chen, J. C., Fan, Y. C. &; Chen, C. W. (2009). Capacity requirements planning for twin Fabs of wafer fabrication, International Journal of Production Research, 7(16), 4473-4496.
Chung, S. H. &; Huang, H. W. (2002). Cycle time estimation for wafer fab with engineering lots, IIE Transactions, 34(2) 105-118.
Chung, S. H., Pearn, W. L., Kang, H. Y., Chen, C. C. &; Ke, W. T. (2001). Cycle time estimation for wafer fabrication with multiple-priority Orders, Semiconductor Manufacturing Operational Modeling and Simulation Symposium, 22-26.
Curry, G. L., Peters, B. A., &; Lee, M. (2003). Queueing network model for a class of material-handling systems, International Journal of Production Research, 41(16), 3901-3920.
Delp, D., Si, J., &; Fowler, J. (2006). The development of the complete X-factor contribution measurement for improving cycle time and cycle time variability, IEEE Transactions on Semiconductor Manufacturing, 19(3), 352-362.
Delp, D., Si, J., Hwang, Y., Pei, B. &; Fowler, J. (2005). Availability adjusted X-factor, International Journal of Production Research, 43(18), 3933-3953.
Egbelu, P. J. (1993). Concurrent specification of unit load sizes and automated guided vehicle fleet size in manufacturing system, International Journal of Production Economics, 29(1), 49-64.
Fowler, J. W., Phojanamongkolkij, N., Cochran, J. K., &; Montgomery, D. C. (2002). Optimal batching in a wafer fabrication facility using a multiproduct G/G/c model with batch processing. International Journal of Production Research, 40(2), 275-292.
Frazelle, E. H., (1986). Material handling: A technology for industrial competitiveness. Material Handling Research Center Technical Report, Georgia Institute of Technology, Atlanta.
Glassey, C. R. &; Resende, M. G. C. (1988). A scheduling rules for job release in semiconductor fabrication, Operations Research Letters, 7(5), 213-217.
Herrmann, J. W., Ioannou, G., Minis, I. &; Proth, J. M. (1993). Minimization of acquisition and operational costs in horizontal material handling system design. IIE Transactions, 31(7), 679-693.
Hsieh, C. H. Cho, C., Yang, T. &; Chang, T. J. (2012). Simulationstudy for aproposed segmented automated material handling system design for 300-mm semiconductor fabs. Simulation Modelling Practice and Theory, 29, 18-31.
Im, K. Y., Kim, K. S., Park, T. &; Lee, S. J. (2009). Effective vehicle dispatching method minimizing the blocking and delivery times in automatic material handling systems of 300 mm semiconductor fabrication, International Journal of Production Research, 47(14), 3997-4011.
Ioannou, G. &; Kritikos, M. N. (2004). Optimization of material handling in production and warehousing facilities, Operational Research, 4(3), 317-331.
Johnson, M. E. (2001). Modelling empty vehicle traffic in AGVS design. International Journal of Production Research, 39(12), 2615-2633.
Kasilingam, R. G. (1991). Mathematical modelling of the AGVs capacity requirements planning problem, Engineering Costs and Production Economics, 21(2), 171-175.
Koo, P., Jang, J. &; Suh, J. (2004). Estimation of part waiting time and fleet sizing in AGV systems. International Journal of Flexible Manufacturing Systems, 16(3), 211-228.
Kuo, C. H. &; Huang, C. S. (2006). Dispatching of overhead hoist vehicles in a fab intrabay using a multimission-oriented controller. International Journal of Advanced Manufacturing Technology, 27(7-8), 824-832.
Kuo, C. H. (2002). Modelling and performance evaluation of an overhead hoist transport system in a 300 mm fabrication plant. International Journal Advanced Manufacturing Technology, 20(2), 153-161.
Kurosaki, R., Shimnra, T., Komada, H., Kojima, T. &; Watauabe, Y. (2000). Low cost and short lead time AMHS design using interbayhtrabay diverging and converging method for 300mm fab, Proceedings of the 9th IEEE International Symposium on Semiconductor Manufacturing, Tokyo : Japan.
Liao, D. Y. &; Fu, H. S. (2002). Dynamic OHT allocation and dispatching in large-scaled 300mm AMHS management, Proceedings of the 2002 IEEE International Conference on Robotics &; Automation, Washington : DC.
Liao, D. Y. &; Fu, H. S. (2004). Speedy delivery - dynamic OHT allocation and dispatching in large-scale, 300-mm AMHS management, IEEE Robotics &; Automation Magazine, 11(3), 23-32.
Liao, D. Y. &; Wang, C. N. (2004). Neural-network based delivery time estimates for prioritized 300-mm automatic material handling operations. IEEE Transactions on Semiconductor Manufacturing, 17(3), 324-332.
Louw, L. &; Page, D. C. (2004). Queuing network analysis approach for estimating the size of the time buffers in Theory of Constraints-controlled production systems. International Journal of Production Research, 42(6), 1207-1226.
Nazzal, D. &; McGinnis, L. F. (2007). Expected response times for closed-loop multivehicle AMHS, IEEE Transactions on Automation Science and Engineering, 4(4): 533-542
Nazzal, D., Jimenez, J. A., Carlo, H. J., Johnson, A. L., &; Lasrado, V. (2010). An analytical model for conveyor-based material handling system with crossovers in semiconductor wafer fabs, IEEE Transactions on Semiconductor Manufacturing, 23(3), 468-476.
Raman, D., Nagalingam, S. V., Gurd, B. W. &; Lin, G. C. I. (2009). Quantity of material handling equipment-A queuing theory based approach. Robotics and Computer-Integrated Manufacturing, 25(2), 348-357.
Steele, J. (2002). An algorithm for estimating the performance of an automated material handling system for the semiconductor industry. Proceedings of the Conference on Modeling and Analysis of Semiconductor Manufacturing, Tempe, Arizona, USA.
Tai, Y. T., Pearn, W. L. &; Lee, J. H. (2012). Cycle time estimation for semiconductor final testing processes with Weibull-distributed waiting time, International Journal of Production Research, 50(2), 581-592.
Toba, H. (2000). Segment-Based Approach for Real-Time reactive rescheduling for automatic manufacturing control, IEEE Transactions on Semiconductor Manufacturing, 13(3), 264-272.
Toba, H., Izumi, H., Hatada, H. &; Chikushima, T. (2005). Dynamic load balancing among multiple fabrication lines through estimation of minimum inter-operation Time, IEEE Transactions on Semiconductor Manufacturing, 18(1), 202-213.
Tu, Y. M. &; Chen, H. N. (2005). The influence of machine downtime in a queuing system - A simulation study, APIEMS 2005 Conference, MANILA : Philippines.
Tu, Y. M. &; Chen, H. N. (2006). Waiting time approximation with resource failure. Paper presented at the 2006 International Conference of Pacific RIM Management, Honolulu : USA.
Tu, Y. M. &; Chen, H. N. (2009). Capacity planning with sequential time constraints under various control policies in the back-end of wafer fabrications, Journal of the Operational Research Society, 61, 1258-1264
Tu, Y. M. &; Li, R. K. (1998). Constraint time buffer determination model. IEEE International Journal of Production Research, 36(4), 1091-1103.
Tu, Y. M. &; Lu, C. W. (2010). Factors analysis of capacity backup policy for twin fabs, The 2nd International Conference on Engineering and Business Management, Sichuan : China.
Tu, Y. M., &; Chen, C. L. (2006). The influence of arrival smoothing between batch and serial processes on system performance. Paper presented at the 7th Asia Pacific Industrial Engineering and Management Systems Conference 2006, Bangkok, Thailand.
Tu, Y. M., Chao, Y. H., Chang, S. H. &; You, H. C. (2005). Model to determine the backup capacity of a wafer foundry, International Journal of Production Research, 43(2), 339-359.
Tu, Y. M., Lu, C. W. &; Chang, S. H. (2009). Model to determine a general X-factor contribution and apply to cycle time improvement for wafer fabrication, International Journal Services Operations and Informatics, 4(3), 272-291.
Wang, C. N. &; Chen, L. C. (2012) The heuristic preemptive dispatching method of material transportation system in 300 mm semiconductor fabrication, Journal of Intelligent Manufacturing, 23(5), 2047-2056
Wang, F. K. &; Lin, J. T. (2004). Performance evaluation of an automated material handling system for a wafer fab, Robotics and Computer-Integrated Manufacturing, 20(2), 91-100.
Wechan, J. (1998). 300mm Fab/AMHS layout challenge: A cookbook approach, Proceedings of the 7th IEEE International Symposium on Semiconductor Manufacturing, Cardiff : Wales.
Wein, L. M. (1992). On the relationship between yield and cycle time in semiconductor wafer fabrication, IEEE Transactions on Semiconductor Manufacturing, 5(2), 156-158.
Whitt, W. (1993). Approximations for the Gi/G/m queue, Production and Operations Management, 2(2), 114-161.
Wu, L. H., Mok, P. Y. &; Zhang, J. (2011). An adaptive multi-parameter based dispatching strategy for single-loop interbay material handling systems. Computers in Industry, 62(2), 175-186.
Wu, M. C. &; Chang, W. J. (2007). A short-term capacity trading method for semiconductor fabs with partnership, Expert Systems with Applications, 33(2), 476-483.
Zhou, Z. &; Rose, O. (2010). A Pull/Push concept for tool group workload balance in wafer fab. Proceedings of the 2010 Winter Simulation Conference (WSC), Baltimore : Maryland, USA.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE