:::

詳目顯示

回上一頁
題名:運用田口方法、倒傳遞類神經網路、基因演算法及混合粒子群演算法與基因演算法於塑膠射出成形最佳化系統之研究
作者:丹尼Denni Kurniawan
作者(外文):Denni Kurniawan
校院名稱:中華大學
系所名稱:科技管理博士學位學程
指導教授:陳文欽
學位類別:博士
出版日期:2014
主題關鍵詞:塑膠射出成型田口方法變異數分析倒傳遞類神經網路基因演算法混合粒子群演算法與基因演算法plastic injection moldingTaguchi methodANOVABPNNGAPSO-GA
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:21
  近年來,高分子材料應用於射出成形(PIM)之技術成長迅速。此外,因生產循環時間短、產品重量輕、高表面品質等優點,更讓塑膠射出成形成為產業競爭中的生存之道。除此之外,射出成形的製程甚為複雜,不適當之材質挑選、製程參數及模具設計,都會影響塑膠製品之品質。因此,如何提升產品品質仍是重要的議題。良好的製程參數設定是避免或減少塑膠製品缺陷的其中一種方法。過去射出成形的製程參數設定,全仰賴工程師的經驗與試誤法。然而,此法對於複雜的製程既無效也不合適。本論文提出兩階段最佳化系統,為找出射出成形多重品質特性之最佳製程參數組合。本研究使用田口方法、倒傳遞類神經網路(BPNN)、基因演算法(GA)及混合粒子群演算法與基因演算法(PSO-GA)以找出最佳參數設定。在本研究中將熔膠溫度、射出速度、保壓壓力、保壓時間及冷卻時間為製程控制參數,長度與翹曲為品質特性。首先,透過田口直交表進行L2556實驗。根據田口實驗法得來的結果計算信號雜訊比,依據產品品質找出製程參數組合。其次,使用變異數分析法(ANOVA)找出多品質特性之製程參數組合。第一階段S/N比最佳化,運用倒傳遞神經網路(BPNN)建構S/N比預測器,結合S/N比預測器與基因演算法(GA)進行全域搜尋,使各品質特性之S/N比值都最大化,此階段將使製程變異降至最低;第二階段品質最佳化,利用倒傳遞神經網路建構品質預測器,結合S/N比預測器、品質預測器與混合粒子群演算法與基因演算法(hybrid PSO-GA)進行區域局部搜尋,將品質逼近目標規格,找出最符合品質規格且製程最為穩定之最佳製程參數組合。最後進行驗證實驗以評估此系統之效能。驗證實驗結果顯示,本研究之最佳化系統不僅提升塑膠零件之品質,亦可有效降低製程變異。
  Applications of polymer material in injection molding application are growing very fast in last decades. Moreover, several advantages, such as short cycle time production, light weight of products, and high surface quality, make plastic injection molding (PIM) work as a solution for industries to survive in competitive world. Besides these advantages, PIM is a more complex process than it is previously thought. Inappropriate material selection, process parameters, part and mold designs can affect the quality of plastic products. Therefore, investigation to improve product quality still becomes an important issue to be conducted. A well-controlled parameter setting is one of the solutions to avoid or reduce defect in plastic products. Previously, process parameters in PIM relied on the technician's experience using trial-and-error approach. However, this approach is not effective and unsuitable for complex manufacturing processes. This study presents a two- stage optimization system to find optimal process parameters of multiple quality characteristics in the PIM process. The Taguchi method, back-propagation neural network (BPNN), genetic algorithms (GA), and combination of particle swarm optimization and genetic algorithms (PSO-GA) are used to find optimum parameter settings. Melt temperature, injection velocity, packing pressure, packing time, and cooling time are selected as initial process parameters. Length and warpage are employed as the product quality. The experimental work is conducted using the Taguchi orthogonal array. According to the result from the Taguchi experiment, S/N ratio is calculated to find the best combination settings for product quality. Then, analysis of variance (ANOVA) is used to determine significant factors of the control parameters. Moreover, the S/N ratio predictor and quality predictor are constructed using BPNN. In the first stage optimization, S/N ratio predictor and GA are used to reduce variance of quality characteristic. In the second stage optimization, the S/N ratio predictor and quality predictor with hybrid PSO-GA are used to find optimal parameter settings for quality characteristic and stability of the process. Finally, three confirmation experiments are conducted to assess the effectiveness of the proposed system. Experimental results show that the proposed system not only improves the quality of plastic parts, but also reduces variability of process effectively.
Altan, M. (2010). Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Materials and Design, 31(1), 599–604.
Annicchiarico, D., Attia, U. M., &; Alcock, J. R. (2013). A methodology for shrinkage measurement in micro-injection moulding. Polymer Testing, 32, 769-777.
Attia, U. M., &; Alcock, J. R. (2011). Evaluating and controlling process variability in micro-injection moulding. The International Journal of Advanced Manufacturing Technology, 52(1-4), 183–194.
Banerjee, A. G. (2006). Computer Aided Design of Side Actions for Injection Molding of Complex Parts. Unpublished master thesis, University of Maryland, United States.
Barker, T. B. (2005). Quality by experimental design. New York: Chapman &; Hall.
Berti, G., &; Monti, M. (2013). A virtual prototyping environment for a robust design of an injection moulding process, Computers and Chemical Engineering, 54, 159-169.
Bociaga, E., &; Jaruga, T. (2006). Visualization of melt flow lines in injection moulding. Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 331-334.
Bociaga, E., Jaruga, T., Lubczynska, K., &; Gnatowski, A. (2010). Warpage of injection moulded parts as the result of mould temperature difference. Archives of Materials Science and Engineering, 44(1), 28-34.
Bollin, S. C. W. (2010). The effective of injection molding conditions on the near-surface rubber morphology, surface chemistry, and adhesion performance of semi-crystalline and amorphous polymers. Unpublished doctoral dissertation, University of Michigan, United States.
Chauhan, N. S., &; Ahmad, S. (2012). Optimizing cycle time of DVD-R injection moulding machine. International Journal of Engineering Science and Technology, 4(5), 1982-1990.
Che, Z. H. (2010). PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding. Computers and Industrial Engineering, 58(4), 625-637.
Chen, C. P., Chuang, M. T., Hsiao, Y. H., Yang, Y. K., &; Tsai, C. H. (2009). Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. Expert Systems with Applications, 36, 10752-10759.
Chen, W. C., Fu, G. L., Tai, P. H., &; Deng, W. J. (2009). Process parameter optimization for MIMO plastic injection molding via soft computing. Expert Systems with Applications, 36(2), 1114–1122.
Chen, W. C., &; Lin, S. B. (2013). Process parameters optimization of multiple quality characteristics in plastic injection molding using BPNN and GA. International Journal of Applied Physics and Mathematics, 3(6), 373-375.
Chen, C. C., Su, P. L., &; Lin, Y. C. (2009). Analysis and modeling of effective parameters for dimension shrinkage variation of injection molded part with thin shell feature using response surface methodology. The International Journal of Advanced Manufacturing Technology, 45(11-12), 1087–1095.
Chen, W. C., Wang, M. W., Chen, C. T., &; Fu, G. L. (2008). An integrated parameter optimization system for MISO plastic injection molding. The International Journal of Advanced Manufacturing Technology, 44(5-6), 501–511.
Chen, W. C., Fu, G. L., &; Kurniawan, D. (2012a). A two-stage optimization system for the plastic injection molding with multiple performance characteristics. Advanced Materials Research, 468-471, 386–390.
Chen, W. C., Kurniawan, D., &; Fu, G. L. (2012b). Optimization of process parameters using DOE, RSM, and GA in plastic injection molding. Advanced Materials Research, 472-475, 1220–1223.
Chiang, Y. C., Cheng, H.C., Huang, C. F., Lee, J. L., Lin, Y., &; Shen, Y. K. (2011). Warpage phenomenon of thin-wall injection molding. International Journal Advanced Manufacturing Technology, 55, 517-526.
Dang, X. P., &; Park, H. S. (2011). Design of U-shape milled groove conformal cooling channels for plastic injection mold, International Journal of Precision Engineering and Manufacturing, 12(1), 73-84.
Deng, Y. M., Zhang, Y., &; Lam, Y. C. (2010). A hybrid of mode-pursuing sampling method and genetic algorithm for minimizing of injection molding warpage. Materials and Design, 31(4), 2118–2123.
Dreo, J., Petrowski, A., Siarry, P., Taillard, E. (2006). Metaheuristic for hard optimization. Paris, France: Eyrolles.
Elhaddad, Y. R. (2012). Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems, World Academy of Science, Engineering and Technology, 68, 1508-1510.
Fei, N. C., Kamaruddin, S., Siddiquee, A. N., &; Khan, Z. A. (2011). Experimental investigation of the recycled HDPE and optimization of injection moulding process parameters via Taguchi method. International Journal of Mechanical and Materials Engineering, 6(1), 81-91.
Gao, Y., &; Wang, X. (2009). Surrogate-based process optimization for reducing warpage in injection molding. Journal of Materials Processing Technology, 209(3), 1302–1309.
Hao, Y. (2010). Research of quality control for plastic injection gear based on CAE technology, International Conference on Mechanic Automation and Control Engineering, 3742–3747.
Hassan, H., Regnier, N., Bot, C. L., &; Defaye, G. (2010). 3D study of cooling system effect on the heat transfer during polymer injection molding. International Journal of Thermal Sciences, 49(1), 161–169.
Haupt, R.L., &; Haupt, S.E. (2004). Practical genetic algorithms. New Jersey: John Wiley &; Sons, Inc.
Haykin, S. (1999). Neural networks: A comprehensive foundation. New York, USA: Prentice Hall International, Inc.
Hsu, C. M. (2004). An integrated approach to enhance the optical performance of couplers based on neural networks, desirability functions and tabu search. International Journal of Production Economics, 92(3), 241-254.
Idoumghar, L., Melkemi, M., Schott, R., &; Aouad, M. I. (2011). Hybrid PSO-SA type algorithms for multimodal function optimization and reducing energy consumption in embedded systems, Applied Computational Intelligence and Soft Computing, 1-12.
Kamaruddin, S., Khan, Z. A., &; Foong, S. H. (2010). Application of Taguchi method in the optimization of injection moulding parameters for manufacturing products from plastic blend. International Journal of Engineering and Technology, 2(6), 574-580.
Kaveh, A., &; Rad, S. M. (2010). Hybrid genetic algorithm and particle swarm optimization for the force method-based simultaneous analysis and design. Iranian Journal of Science &; Technology, 34(B1), 15-34.
Kurtaran, H., &; Erzurumlu, T. (2006). Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 27(5/6), 468–472.
Kurtaran, H., Ozcelik, B., &; Erzurumlu, T. (2005). Warpage optimization of a bus ceiling lamp base using neural network model and genetic algorithm. Journal of Materials Processing Technology, 169(2), 314–319.
Kusic, D., Kek, T., Slabe, J. M., Svecko, R., &; Grum, J. (2013). The impact of process parameters on test specimen deviations and their correlation with AE signals captured during the injection moulding cycle. Polymer Testing, 32(3), 583–593.new window
Mathivanan, D., &; Parthasarathy, N. S. (2009). Prediction of sink depths using nonlinear modeling of injection molding variables, International Journal of Advanced Manufacturing Technology, 43, 654–663.
Mhamdi, B., Grayaa, K., &; Aguili, T. (2011). Hybrid of particle swarm optimization, simulated annealing and tabu search for the reconstruction of two-dimensional targets from laboratory-controlled data. Progress in Electromagnetic Research, 28, 1-18.
Mohammad, M. A., Ehsan, M., &; Mostafa, J. J. (2011). A hybrid response surface methodology and simulated annealing algorithm, International Conference on Computer Communication and Management, 570-576.
Mostafa, J. J., Mohammad, M. A., &; Ehsan, M. (2011). A hybrid response surface methodology and simulated annealing algorithm: A case study on the optimization of shrinkage and warpage of a fuel filter, World Applied Science Journal, 13(10), 2156–2163.
Nakano, S., Ishigame, A., &; Yasuda, K. (2010). Consideration of particle swarm optimization combined with tabu search. Electrical Engineering in Japan, 172(4), 31-37.
Negnevitsky, M. (2005). Artificial intelligence: A guide to intelligent systems. Edinburgh: Pearsoned Education Limited.
Oktem, H. (2012). Optimum process conditions on shrinkage of an injected-molded part of DVD-ROM cover using Taguchi robust method. International Journal of Advanced Manufacturing Technology, 61(5-8), 519–528.
Oktem, H., Erzurumlu, T., &; Uzman, I. (2007). Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials and Design, 28(4), 1271–1278.
Ozcelik, B., &; Erzurumlu, T. (2006). Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of Materials Processing Technology, 171(3), 437–445.
Ozcelik, B., &; Erzurumlu, T. (2005). Determination of effecting dimensional parameters on warpage of thin shell plastic parts using integrated response surface method and genetic algorithm. International Communications in Heat and Mass Transfer, 32(8), 1085-1094.
Ozcelik, B., Kuram, E., &; Topal, M. M. (2012). Investigation the effects of obstacle geometries and injection molding parameters on weld line strength using experimental and finite element methods in plastic injection molding. International Communications in Heat and Mass Transfer, 39(2), 275–281.
Ozcelik, B., Ozbay, A., &; Demirbas, E. (2010). Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. International Communications in Heat and Mass Transfer, 37(9), 1359–1365.
Ozcelik, B., &; Sonat, I. (2009). Warpage and structural analysis of thin shell plastic in the plastic injection molding. Materials and Design, 30(2), 367–375.
Park, K., &; Ahn, J. H. (2004). Design of experiment considering two-way interactions and its application to injection molding processes with numerical analysis. Journal of Materials Processing Technology, 146, 221-227.
Park, H. S &; Dang, X. P. (2010). Optimization of conformal cooling channels with array of baffles for plastic injection mold. International Journal of Precision Engineering and Manufacturing, 11(6), 879–890.
Peace, G. S. (1993). Taguchi Methods: A Hands-On Approach. Massachusetts: Addison-Wesley.
Postawa, P., Kwiatkowski, D., &; Bociaga, E. (2008). Influence of the mold of heating/cooling moulds on the properties of injection moulding parts. Archives of Materials Science and Engineering, 31(2), 121-124.
Potsch, G. &; Michaeli, W. (1995). Injection molding: An introduction. Munich: Hanser Publisher.
Prashantha, K., Soulestin, J., Lacrampe, M.F., Lafranche E., Krawczak, P., Dupin, G., &; Claes, M. (2009). Taguchi analysis of shrinkage and warpage of injection-moulded polypropylene/multiwall carbon nanotubes nanocomposites. Express Polymer Letters, 3(10), 630-638.
Premalatha, K., &; Natarajan, A. M. (2009). Hybrid PSO and GA for global maximization. International Journal Open Problems Computational Math, 2(4), 597-608.
Resendiz, E. and Rull-Flores, C. A. (2013). Mahalanobis-Taguchi system applied to variable selection in automotive pedals components using Gompertz binary particle swarm optimization. Expert Systems with Application, 40, 2361-2365.
Roy, R.K. (2001). Design of experiments using the Taguchi approach. United States of America: John Wiley &; Sons, Inc.
Shi, H., Gao, Y., &; Wang, X. (2009). Optimization of injection molding process parameters using integrated artificial neural network model and expected improvement function method. The International Journal of Advanced Manufacturing Technology, 48(9-12), 955–962.
Shi, H., Xie, S., &; Wang, X. (2012). A warpage optimization method for injection molding using artificial neural network with parametric sampling evaluation strategy. International Journal of Advanced Manufacturing Technology. 65, 343-353.
Song, X., Cao, Y., &; Chang, C. (2008). A hybrid algorithm of PSO and SA for solving JSP. International Conference on Fuzzy Systems and Knowledge Discovery, 111-115.
Su, C. T., &; Chang, H. H. (2000). Optimization of parameter design: An intelligent approach using neural network and simulated annealing. International Journal of Systems Science, 31(12), 1543–1549.
Sun, C. H., Chen, J. H. and Sheu, L. J. (2010). Quality control of the injection molding process using an EWMA predictor and minimum–variance controller. International Journal of Advanced Manufacturing Technology, 48, 63–70.
Sun, B., Wu, Z., Gu, B., &; Huang, X. (2010). Optimization of injection molding process parameters based on response surface methodology and genetic algorithm. International Conference on Computer Engineering and Technology (ICCET), 5, V5–397–V5–400.
Taguchi, G. (1990). Introduction to quality engineering. New York: McGraw-Hill.
Taguchi, G., Chowdhury, S., &; Wu, Y. (2005). Taguchi’s quality engineering handbook. New Jersey: John Wiley &; Sons.
Tang, K. S., Chan, T. M., Yin, R. J., &; Man, K. F. (2012). Multiobjective optimization methodology: A jumping gene approach. Boca Raton, USA: CRC Press.
Tharmizhmanii, S., Saparudin, S., &; Hasan, S. (2006). Analysis of surface roughness by turning process using Taguchi method. Journal of Achievements in Material and Manufacturing Engineering, 20(1-2), 503-506.
Tzeng, C. J., Yang, Y. K., Lin, Y. H., &; Tsai, C. H. (2012). A study of optimization of injection molding process parameters for SGF and PTFE reinforced PC composites using neural network and response surface methodology. International Journal of Advanced Manufacturing Technology, 63(5-8), 691–704.
Wang, H. S., Wang, Y. N., &; Wang, W. C. (2013). Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Systems with Applications, 40, 418-428.
Wang, X., Zhao, G., &; Wang, G. (2013). Research on the reduction of sink mark and warpage of the molded part in rapid heat cycle molding process. Materials and Design, 47, 779-792.
Xu, G., Deng, F., &; Xu, Y. (2011). Adaptive particle swarm optimization-based neural network in quality prediction for plastic injection molding. Journal of Computational Information Systems, 7(2), 462–470.
Xu, G., Yang, Z. T., &; Long, G. D. (2012). Multi-objective optimization of MIMO plastic injection molding process conditions based on particle swarm optimization. International Journal Advance Manufacturing Technology, 58, 521-531.
Yang, Y., &; Gao, F. (2006). Injection molding product weight: online prediction and control based on a nonlinear principal component regression model. Polymer Engineering and Science, 46(4), 540–548.
Yin, F., Mao, H., &; Hua, L. (2011a). A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters. Journal of Materials and Design, 32(6), 3457–3464.
Yin, F., Mao, H., Hua, L., Guo, W., &; Shu, M. (2011b). Back-propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Journal of Materials and Design, 32(4), 1844–1850.
Zhang, Y., &; Wu, L. (2012). A robust hybrid restarted simulated annealing particle swarm optimization technique. Advances in Computer Science and its Applications, 1(1), 5-8.
Zhao, C., &; Gao, F. (1999). Melt temperature profile prediction for thermoplastic injection molding. Polymer Engineering and Science, 39(9), 1787–1801.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關書籍
 
無相關著作
 
QR Code
QRCODE