:::

詳目顯示

回上一頁
題名:中學生電學心智模型建構與眼動模式之研究:圖像或文字方式呈現類比或隱喻的數位學習成效
作者:陳聖昌 引用關係
作者(外文):Chen, Sheng-Chang
校院名稱:國立交通大學
系所名稱:教育研究所
指導教授:佘曉清
學位類別:博士
出版日期:2014
主題關鍵詞:類比隱喻心智模型眼動analogymetaphormental modeleye movements
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:24
  本研究運用不同教學模式(類比、隱喻)整合不同表徵方式(圖像、文字)之電學概念的數位學習內容,探討中學生的電學心智模型建構之成效,亦探討對學生電學概念成就、電學概念相依推理與電學概念類比推理之影響。本論文分為研究一與研究二。研究一對象為苗栗縣某國中九年級的80位學生,所有學生被隨機分配至四組(類比圖像組、類比文字組、隱喻圖像組、隱喻文字組)進行教學,並且用眼動儀搜集四組學生學習的歷程資料。結果顯示接受類比教學的學生,其映射次數顯著多於接受隱喻教學的學生,並且其電學概念成就、建構心智模型的完整性亦顯著優於接受隱喻教學的學生。接受圖像表徵的學生,其分配注意力與概念整合次數顯著多於接受文字表徵的學生,並且其電學概念成就、電學概念相依推理、心智模型表現皆優於接受文字表徵的學生。四種電路串並聯的情況下,教學前四組學生持有科學心智圖像的比例很低,教學後類比圖像組有較多學生持有科學心智圖像,類比文字組與隱喻圖像組次之,最少為隱喻文字組。推理模式的部分,兩顆電池或燈泡串聯的情況下,教學前與教學後四組皆有較多學生採用正確推理模式。兩顆電池或燈泡並聯的情況下,教學前皆只有少數學生採用正確推理模式,教學後四組皆有較多學生採用正確推理模式。研究二對象為苗栗縣某國中九年級的211位學生,並隨機分配至四組進行教學。結果顯示接受圖像表徵的學生,其電學概念成就、電學概念相依推理與電學概念類比推理表現顯著優於接受文字表徵的學生,但學生表現沒有受到教學模式的影響。四種電路串並聯的情況下,教學前四組學生持有科學心智圖像的比例很低,教學後四組皆有較多學生持有科學心智圖像。兩顆電池或燈泡串聯的情況下,教學前與教學後四組皆有較多學生能採用正確推理模式。兩顆電池或燈泡並聯的情況下,教學前四組皆只有少數學生能採用正確推理模式,教學後四組皆有較多學生採用正確推理模式。
This study examined the effect of integrating analogy or metaphor presented in picture or text on-line learning on middle school students’ electricity concept learning, mental models construction, scientific reasoning ability and analogical reasoning ability. This dissertation consisted of two studies. A total of 80 ninth grade students from Miaoli County were recruited to participate in first study. All students were randomly assigned into the four groups (analogy/picture, analogy/text, metaphor/picture, and metaphor/text) and each received one type of online learning, as well as their eye movements being recorded during on-line learning. Results showed that the analogy group outperformed the metaphor group on their electricity concepts and mental models construction. It is line with their eye movement patterns results that students who learned with analogy allocated significantly more mapping processing than the students in the metaphor group. In addition, students who received picture representation performed better on the concepts of electricity test, scientific reasoning test, and constructed more sophisticated mental models than those who received text representation. It is also consistent with their eye movement patterns that students who received picture representation allocated significantly greater amount of attention and more integrated processing than students in text representation group. With respect to students’ mental images, only a few students held scientific mental images in all series/parallel circuits before learning, regardless of any groups. After learning, students in the analogy/picture group tended to held scientific mental images, followed by analogy/text group, metaphor/picture group, and metaphor/text group. With respect to students’ reasoning models involving two batteries or two bulbs in series circuits, students in four groups tended to hold correct reasoning models, regardless of before or after learning. However, only a few students held correct reasoning model regarding two batteries or two bulbs in parallel circuits before learning, regardless of any groups. After learning, students tended to hold correct reasoning models regarding two batteries in parallel circuits, regardless of any groups.
The second study recruited 211 ninth grade students from Miaoli County to participated in this study and were randomly assigned into the four groups. Results showed that students who received picture representation performed better on their electricity concept test, scientific reasoning test, analogical reasoning test, and mental model test than students in the text representation group. However, the effect of analogy/metaphor did not reach significant difference level. With respect to students’ mental images, only a few students held scientific mental images regarding all series/parallel circuits before learning, regardless of any groups. After learning, the majority students of four groups tended to hold scientific mental images. With respect to students’ reasoning models, the majority students in four groups tended to have the correct reasoning models in two batteries or two bulbs in series circuits, regardless of before or after learning. However, only a few students in four groups owned the correct reasoning models involving two batteries or two bulbs in parallel circuits before learning. After learning, the majority students of four groups tended to have the correct reasoning models regarding two batteries in parallel circuits.
中文部分
林靜雯(1999)。由概念改變及心智模型初探多重類比對國小四年級學生電學概念學習之影響。國立臺灣師範大學科學教育研究所博士論文。(未出版)
邱美虹與林靜雯(2002)。以多重類比探究兒童電流心智模型之改變。科學教育學刊,10(2),109-134。

英文部分
Arnold, M., &; Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideas in electricity. International Journal of Science Education, 9, 553–563.
Atkinson, R. C., &; Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K.W. Spence (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 2 (pp. 89–195). New York: Academic Press.
Aubusson, P., Harrison, A., &; Ritchie, S. M. (2004). Metaphor and analogy in science education. Dordrecht, the Netherlands: Kluwer Publishing.
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.
Baddeley, A. D., &; Andrade, J. (2000). Working memory and the vividness of imagery. Journal of Experimental Psychology: General, 129(1), 126-145.
Baddeley, A. D., &; Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), Recent Advances in Learning and Motivation, Vol. 8 (pp. 47–89). New York: Academic Press.
Behrmann, M., Kosslyn, S. M., &; Jeannerod, M. (1996). The neuropsychology of mental imagery. New York: Pergamon.
Borges, A. T., &; Gilbert, J. K. (1999). Mental models of electricity. International Journal of Science Education, 21(1), 95-117.
Bowdle, B. F., &; Gentner, D. (1997). Informativity and asymmetry in comparisons. Cognitive Psychology, 34, 244-286.
Bowdle, B. &; Gentner, D. (1999). Metaphor comprehension: from comparison to categorization. Paper to be presented at the Twenty-First Annual Meeting of the Cognitive Science Society, Vancouver, BC.
Bowdle, B. F., &; Gentner, D. (2005). The career of metaphor. Psychological review, 112(1), 193-216.
Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association, 43(244), 572–574.new window
Brown, D., &; Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18, 237–261.
Brownell, H. H., Simpson, T. L., Bihrle, A. M., Potter, H. H., &; Gardner, H. (1990). Appreciation of metaphoric alternative word meanings by left and right brain-damaged patients. Neuropsychologia, 28, 375–383.
Cameron, L. (2003). Metaphor in educational discourse. London: Continuum.
Cameron, L., Maslen, R., Todd, Z., Maule, J., Stratton, P., &; Stanley, N. (2009). The discourse dynamics approach to metaphor and metaphor-led discourse analysis. Metaphor and Symbol, 24, 63–89.
Carey, S. (1985). Conceptual change in childhood. A Bradford Book.
Carpenter, R. H. S. (1988). Movements of the eyes (2nd ). London: Poin Press.
Chettih, S., Durgin, F. H., &; Grodner, D. J. (2011). Mixing metaphors in the cerebral hemispheres: What happens when careers collide? Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 295–311.
Chen, S. C., She, H. C., Chuang M. H., Wu, J. Y., Tsai, J. L. &; Jung, T. P. (2014). Eye movements predict students' computer-based assessment performance of physics concepts in different presentation modalities. Computers &; Education, 74, 61-72.
Chen, T. C., &; She, H. C. (2012). Research of on-line learning for conceptual change and scientific reasoning. In C.B. Lee &; D. Jonassen, (Eds.). Fostering conceptual change with technology: Asia perspective. Singapore: Cengage Learning Asia Pte Ltd.
Chi, M. T. H., Slotta, J. D., &; de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts [special issue]. Learning and Instruction, 4, 27–43.
Chiu, M. H., &; Lin, J. W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429-464.
Chuang, M. H., &; She, H. C. (2013). Fostering 5th grade student’s understanding of science via salience analogical reasoning in on-line and classroom learning environments. Educational Technology &; Society,16(3), 102-118.
Clark, J. M., &; Paivio, A. (1991). Dual coding theory and education. Educational psychology review, 3(3), 149-210.
Clement, J. (1993). Using bridging analogies and anchoring instruction to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241–1251.
Cook, M., Carter, G., &; Wiebe, E. N. (2008). The interpretation of cellular transport graphics by students with low and high prior knowledge. International Journal of Science Education, 30(2), 239–261.
Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.
De Koning, B., Tabbers, H., Rikers, R., &; Paas, F. (2010). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20(2), 111–122.
Driver, R. (1989). Students’ conceptions and the learning of science. International journal of science education, 11(5), 481-490.
Duit, R. (1991). On the role of analogies and metaphor in learning science. Science Education, 75(6), 649–672.
Dupin, J. J., &; Johsua, S. (1987). Conceptions of French pupils concerning electric circuits: Structure and evolution. Journal of research in science teaching, 24(9), 791-806.
Engbert, R., Nuthmann, A., Richter, E., &; Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112, 777–813.
Falkenhainer, B., Forbus, K. D., &; Gentner, D. (1989). The structure-mapping engine: Algorithm and examples. Artificial intelligence, 41(1), 1-63.
Findlay, J. M., &; Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing. New York: Oxford.
Gelman, S. A., &; Markman, E. M. (1986). Categories and induction in young children. Cognition, 23(3), 183-209.
Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 59, 47–59.
Gentner, D. (1989). The mechanisms of analogical learning, In S. Vosniadou, &; A. Ortony (Eds.), Similarity and analogical reasoning. London: Cambridge University Press.
Gentner, D. (2002). Psychology of mental models. In N. J. Smelser &; P. B. Bates (Eds.), International encyclopedia of the social and behavioral sciences (pp. 9683–9687), Amsterdam: Elsevier Science.
Gentner, D. (2006). Analogical reasoning, psychology of. Encyclopedia of cognitive science.
Gentner, D., &; Colhoun, J. (2010). Analogical processes in human thinking and learning. In B. Glatzeder, V. Goel, &; A. von Müller (Eds.), Towards a Theory of Thinking (pp. 35-48). Berlin: Springer-Verlag.
Gentner, D., &; Gentner, D. R. (1983). Flowing water or teeming crowds: mental models of electricity. In Gentner, D., &; Stevens, A. L. (Eds.), Mental Models. Hillsdale, NJ: Lawrence Erlbaum.
Gentner, D., &; Smith, L. A. (2013). Analogical learning and reasoning. In D. Reisberg (Ed.), The Oxford handbook of Cognitive Psychology (pp. 668-681). New York, NY: Oxford University Press.
Gentner, D., Falkenhainer, B., &; Skorstad, J. (1988). Viewing metaphor as analogy. In D. H. Helman (Ed.), Analogical reasoning: Perspectives of artificial intelligence, cognitive science and philosophy (pp. 171-177). Dordrecht, The Netherlands: Kluwer.
Gentner, D., Bowdle, B., Wolff, P., &; Boronat, C. (2001). Metaphor is like analogy. In D. Centner, K. J. Holyoak, &; B. N. Kokinov (Eds.), The analogical mind: Perspectives from cognitive science (pp. 199–253). Cambridge MA: MIT Press.
Gilbert, S. W. (1989). An evaluation of the use of analogy, simile, and metaphor in science texts. Journal of Research in Science Teaching, 26(4), 315–327.
Gillies, R. M., Nichols, K., Burgh, G., &; Haynes, M. (2014). Primary students’ scientific reasoning and discourse during cooperative inquiry-based science activities. International Journal of Educational Research, 63, 127-140.
Glynn, S. M. (1991). Explaining science concepts: A Teaching-with-Analogies Model. In S. M. Glynn, R. H. Yeany, &; B. K. Britton (Eds.), The psychology of learning science (pp. 219-240). Hillsdale, NJ: Erlbaum.
Glynn, S. M., Duit, R., &; Thiele, R. B. (1995). Teaching science with analogies: A strategy for constructing knowledge. In Glynn, S. M. &; Duit, R. (Eds.). Learning science in the schools: Research reforming practice (pp. 247–273). Mahwah, NJ: Erlbaum.
Glynn, S. M. (1996). Effects of instruction to generate analogies on students' recall of science text. Reading Research Report , 60. ED396259.
Glucksberg, S., &; Keysar, B. (1990). Understanding metaphorical comparisons: Beyond similarity. Psychological Review, 97, 3–18.
Glucksberg, S., McGlone, M. S., &; Manfredi, D. (1997). Property attribution in metaphor comprehension. Journal of Memory and Language, 36, 50–67.
Goldstone, R. L., &; Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. The journal of the Learning Sciences, 14(1), 69–110.
Grant, E. R., &; Spivey, M. J. (2003). Eye movements and problem solving guiding attention guides thought. Psychological Science, 14, 462–466.
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., &; Dunbar,K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 70–76.
Gust, H., Krumnack, U., Kühnberger, K. U., &; Schwering, A. (2008). Analogical reasoning: A core of cognition. Künstliche Intelligenz, 22(1), 8–12.
Hamilton, A. (2000). Metaphor in theory and practice: the influence of metaphors on expectations. Journal of Computer Documentation, 24(4), 237–253.
Harrison, A. G., &; Treagust, D. F. (1993). Teaching with analogy: A case study in grade-10 optics. Journal of Research in Science Teaching, 30(10), 1291–1307.
Hegarty, M., Mayer, R. E., &; Monk, C. (1995). Comprehension of arithmetic word problems: a comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87, 18–32.
Heller, P. M., &; Finley, F. N. (1992). Variable uses of alternative conceptions: A case study in current electricity. Journal of Research in Science Teaching, 29(3), 259–275.
Henderson, J. M. (1992). Visual attention and eye movement control during reading and picture viewing. In K. Rayner (Ed.), Eye movements and visual cognition (pp. 260-283). Springer New York.
Henderson, J. M., Brockmole, J. R., Castelhano, M. S., &; Mack, M. (2007). Visual saliency does not account for eye movements during visual search in real-world scenes. In R. P. G. van Gompel, M. H. Fischer, W. S. Murray, &; R. L. Hill (Eds.), Eye movements: A window on mind and brain (pp. 537–562). Amsterdam, the Netherlands: Elsevie
Hinze, S. R., Williamson, V. M., Shultz, M. J., Williamson, K. C., Deslongchamps, G., &; Rapp, D. N. (2013). When do spatial abilities support student comprehension of STEM visualizations?. Cognitive processing, 14, 129–142.
Hochpöchler, U., Schnotz, W., Rasch, T., Ullrich, M., Horz, H., McElvany, N., &; Baumert, J. (2013). Dynamics of mental model construction from text and graphics. European journal of psychology of education, 28(4), 1105-1126.
Hodgson, T. L., Bajwa, A., Owen, A. M., &; Kennard, C. (2000). The strategic control of gaze direction in the tower of London task. Journal of Cognitive Neuroscience, 12, 894–907.
Hogan, K., &; Fisherkeller, J. (2000). Dialogue as data: Assessing students' scientific reasoning with interactive protocols. In J. J. Mintzes, J. H. Wandersee &; J. D. Novak (Eds.), Assessing science understanding: A human constructivist view. San Diego: Academic.
Hogan, K., Nastasi, B. K., &; Pressley, M. (1999). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and instruction, 17(4), 379-432.
Holyoak, K.J. (2012) Analogy and relational reasoning. In K. J. Holyoak &; R. G. Morrison (Eds.), The Oxford Handbook of Thinking and Reasoning (pp. 234–259). Oxford University Press.
Holyoak, K. J., &; Morrison, R. G. (2005). The Cambridge handbook of thinking and reasoning. Cambridge: Cambridge University Press.
Hyönä, J., &; Lorch, R. F. (2004). Effects of topic headings on text processing: Evidence from adult readers’ eye fixation patterns. Learning and instruction, 14(2), 131-152.
Itkonen, E. (2005). Analogy as structure and process. Philadelphia : John Benjamins Publishing Company.
Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Harvard University Press.
Johnson-Laird, P. N. (1989). Mental models. In M. Posner (Ed.), Foundations of cognitive science (pp. 469-500). Cambridge, MA: MIT Press.
Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the National Academy of Sciences, 107(43), 18243-18250.
Just, M. A., &; Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8, 441–480.
Just, M. A., &; Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological review, 87, 329–354.
Kärrqvist, C. (1985). The development of concepts by means of dialogues centered on experiments. In R. Duit &; W. Jung (Eds.), Proceedings of an international workshop: Aspects of understanding electricity (pp. 215–227). Ludwigsburgh, Germany.
Keil, F. (1989). Concepts, kinds and conceptual development. Cambridge, MA: MIT Press.
Kotovsky, L., &; Gentner, D. (1996). Comparison and categorization in the development of relational similarity. Child Development, 67, 2797-2822.
Kozma, R. B., &; Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34, 949–968.
Lakoff, G., &; Johnson, M. (1980). Metaphors we live by. Chicago: The University of Chicago Press.
Lakoff, G. (1993). The contemporary theory of metaphor. Metaphor and thought, 2, 202-251.
Larkin, J. H., &; Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.
Lawson, A. E. (2003). The nature and development of hypothetico‐predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387-1408.
Lawson, A. E. (2005). What is the role of induction and deduction in reasoning and scientific inquiry?. Journal of Research in Science Teaching, 42(6), 716-740.
Liao, Y. W. &; She, H. C. (2009). Enhancing eight grade students’ scientific conceptual change and scientific reasoning through a web-based learning program. Educational Technology &; Society, 12(4), 228-240.
Lin, H. S., Shiau, B. R., &; Lawrenz, F. (1996). The effectiveness of teaching science with pictorial analogies. Research in Science education, 26(4), 495-511.
Liversedge, S. P., &; Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in Cognitive Sciences, 4, 6–14.
Lohman, D. F., &; Lakin, J. M. (2011). Reasoning and intelligence. In R. J. Sternberg &; S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (2nd ed., pp. 419–441). New York: Cambridge University Press.
Magnusson, S. J., Templin, M., &; Boyle, R. A. (1997). Dynamic science assessment: A new approach for investigating conceptual change. The journal of the Learning Sciences, 6(1), 91-142.
Marcelos, M. F., &; Nagem, R. L. (2010). Comparative structural models of similarities and differences between vehicle and target in order to teach Darwinian evolution. Science &; Education, 19, 599-623.
Mason, L., Tornatora, M. C., &; Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from Eye-Movement Patterns. Computers &; Education, 60, 95–109.
Mayer, R. E. (2003). Cognitive theory of multimedia learning. The Cambridge handbook of multimedia learning. New York: Cambridge University Press.
McClary, L., &; Talanquer, V. (2011). College chemistry students' mental models of acids and acid strength. Journal of Research in Science Teaching, 48(4), 396-413.
Mentioui, A., Brassard, C., Levasseur, F., &; Lavoie, M. (1996) The persistence of students’ unfolded beliefs about electrical circuits: The case of Ohm’s law. International Journal Of Science Education, 18, 193-212.
Merriam-Webster Dictionary. (2013). Retrieved from http://www.merriam-webster.com
Mintzes, J. J., Wandersee, J. H., &; Novak, J. D. (Eds.). (2005). Teaching science for understanding: A human constructivist view. Academic Press.
Moreno, R., &; Mayer, R. E. (1999). Cognitive principles of multimedia learning: the role of modality and contiguity. Journal of Educational Psychology, 91(2), 358–368.
Nersessian, N. J. (2008). Mental modeling in conceptual change. International handbook of research on conceptual change, 391-416.
Norman, D. A. (1983). Some observations on mental models. In D. Gentner &; A. L. Stevens (Eds.), Mental models. New Jersey and London: Lawrence Erlbaum.
Novick, L. R., &; Holyoak, K. J. (1991). Mathematical problem solving by analogy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(3), 398-415.
Nye, M. J. (Ed.). (2003). The Cambridge history of science: The modern physical and mathematical sciences (Vol. 5). Cambridge University Press.
Osborne, R., &; Freyberg, P. (1985). Learning in science: The implications of children's science. Portsmouth, NH: Heinemann.
Oppenheimer, R. (1956). Analogy in science. American Psychologist, 40, 127–135.
Ortony, A. (1979). Beyond literal similarity. Psychological Review, 86, 161–180.
Paivio, A. (1975). Perceptual comparisons through the mind’s eye. Memory and Cognition, 6(3), 635-647.
Paivio, A. (1990). Mental representations: A dual coding approach. New York: Oxford University Press.

Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45, 255–287.
Pardhan, H., &; Bano, Y. (2001). Science teachers' alternate conceptions about direct-currents. International Journal of Science Education, 23(3), 301–318.
Perrig, W., &; Kintsch, W. (1985). Propositional and situational representations of text. Journal of Memory and Language, 24, 503-518.
Pollatsek, A., Reichle, E. D., &; Rayner, K. (2006). Tests of the E-Z Reader model: Exploring the interface between cognition and eye-movement control. Cognitive Psychology, 52, 1–56.
Pramling, N., &; Säljö, R. (2007). Scientific knowledge, popularization, and the use of metaphor: modern genetics in popular science magazine. Scandinavian Journal of Educational Research, 51(3), 275–295.
Rayner, K. (1998). Eye Movements and Information Processing: 20 Years of Research. Psychological Bulletin, 124(3), 372–422.
Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The quarterly journal of experimental psychology, 62(8), 1457-1506.
Rayner, K., Chace, K. H., Slattery, T. J., &; Ashby, J. (2006). Eye movements as reflections of comprehension processes in reading. Scientific Studies of Reading, 10, 241–255.
Radach, R., &; Kennedy, A. (2004). Theoretical perspectives on eye movements in reading: Past controversies, current issues, and an agenda for future research. European Journal of Cognitive Psychology, 16(1/2), 3-26.
Rickheit, G., &; Sichelschmidt, L. (1999). 1 Mental models: Some answers, some questions, some suggestions. Advances in psychology, 128, 9-40.
Rizzolatti, G., Riggio, L., &; Sheliga, B. M. (1994). Space and selective attention. In C. Umilta &; M, Moscovutvh (Eds.), Attention and performance XV (pp. 231-265). Cambridge, MA: MIT Press.
Reichle, E. D., Warren, T., &; McConnell, K. (2009). Using E-Z Reader to model the effects of higher-level language processing on eye movements during reading. Psychonomic Bulletin &; Review, 16, 1–21.
Reverberi, C., Cherubini, P., Frackowiak, R. S., Caltagirone, C., Paulesu, E., &; Macaluso, E. (2010). Conditional and syllogistic deductive tasks dissociate functionally during premise integration. Human brain mapping, 31(9), 1430-1445.
Rosch, E., &; Mervis, C. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573–605.
Rumelhart, D. E., &; Norman, D. A. (1981). Analogical processes in learning. In J. R. Anderson (Ed.), Cognitive Skills and Their Acquisition (pp. 335-359). Hillsdale, NJ: Erlbaum.
Schank, P., &; Kozma, R. (2002). Learning chemistry through the use of a representation-based knowledge building environment. Journal of Computers in Mathematics and Science Teaching, 21(3), 253–279.
Schnotz, W., &; Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156.
Schwartz, D. L. (1995). Reasoning about the referent of a picture versus reasoning about the picture as the referent: An effect of visual realism. Memory &; Cognition, 23(6), 709-722.
She, H. C., &; Chen, Y. Z. (2009). The impact of multimedia effect on science learning: Evidence from eye movements. Computers &; Education, 53, 297–1307.
She, H. C. &; Liao, Y. W. (2010). Bridging scientific reasoning and conceptual change through adaptive web-based learning. Journal of Research in Science Teaching, 47(1), 91-119.
Shipstone, D. M. (1984). A study of children understands of electricity in simple DC circuits. European Journal of Science Education, 6(2), 185–198.
Shinebourne, P. &; Smith, J. A. (2010). The communicative power of metaphor: an analysis and interpretation of metaphors in accounts of the experience of addiction. Psychology and psychotherapy: Theory, Research and Practice, 83, 59–73.
Sibley, D. F. (2009). A cognitive framework for reasoning with scientific models. Journal of Geoscience Education, 57(4), 255-263.
Sima, J. F., Lindner, M., Schultheis, H., &; Barkowsky, T. (2010). Eye movements reflect reasoning with mental images but not with mental models in orientation knowledge tasks. In Spatial Cognition VII (pp. 248-261). Springer Berlin.
Spiro, R. J., Feltovich, P. J., Coulson, R. L., &; Anderson, D. K. (1989). Multiple analogies for complex concepts: Antidotes for analogy induced misconception in advanced knowledge acquisition, In S. Vosniadou &; A. Ortony (Eds.), Similarity and Analogical Reasoning, NY: Cambridge University Press.
Stenning, K., &; Monaghan, P. (2004). Strategies and knowledge representation. In J. P. Leighton &; R. J. Sternberg (Eds.), The nature of reasoning (pp. 129-168). New York, NY: Cambridge University Press.
Sternberg, R. J. (1977). Component process in analogical reasoning. Psychological Review, 84(4), 353–378.
Sternberg, R. J. (2003). Cognitive Psychology (3rd ed.). Belmont, CA:Wadsworth.
Stephen, K. R. (2006). Cognitive architecture for multimedia learning. Educational psychologist, 41(2), 87–98.
Tsai, J.-L., Lee, C.-Y., Tzeng, O.J.-L., Hung, D.-L., &; Yen, N.-S. (2004). Use of phonological codes for Chinese characters: evidence from processing of parafoveal preview when reading sentences. Brain and Language, 91, 235–244.
Tsai, J.-L., Kliegl, R., &; Yan, M. (2012). Parafoveal semantic information extraction in traditional Chinese reading. Acta Psychologica, 141,17–23.
Tulving, E., &; Craik, F. I. M. (2000). Handbook of Memory. Oxford: Oxford University Press.
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.
Ungerleider, L. G., &; Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale &; R. J. Mansfield (Eds.), Analysis of visual behavior. Cambridge, MA: MIT Press.
Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge acquisition: A developmental perspective. In S. Vosniadou &; A. Ortony (Eds.), Similarity and Analogical Reasoning (pp. 413-497). New York: Cambridge University Press.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and instruction, 4(1), 45–69.
Vosniadou, S. (2002). Mental models in conceptual development. In L. Magnani &; N. Nersessian (Eds.), Model-Based Reasoning: Science, Technology, Values. New York: Kluwer Academic Press.
Vosniadou, S., &; Ortony, A. (1989). Similarity and Analogical Reasoning, New York: Cambridge University Press.
Vosnaidou, S., &; Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535–585.
Vosniadou, S., &; Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123–183.
Vosniadou, S., &; Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20(10), 1213–1230.
Watters, J. J., &; English, L. D. (1995). Children's application of simultaneous and successive processing in inductive and deductive reasoning problems: implications for developing scientific reasoning skills. Journal of Research in Science Teaching, 32(7), 699-714.
Zeitoun, H. H. (1984). Teaching scientific analogies: A proposed model. Research in Science and Technological Education, 2, 107–125.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE