:::

詳目顯示

回上一頁
題名:疲勞對動態等長收縮施力變異性的影響
作者:林彥廷 引用關係
作者(外文):Lin, Yen-Ting
校院名稱:臺北市立大學
系所名稱:運動科學研究所
指導教授:郭家驊
黃英修
學位類別:博士
出版日期:2015
主題關鍵詞:肌肉疲勞變異性動作控制施力次活動肌電圖Muscle fatigueVariabilityMotor controlSubmovementElectromyography
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
研究背景與目的:人體的動作軌跡存在不可忽視的變異性,其主要的來源為次活動(submovement)。最近的研究證據顯示:人體次活動的特徵同時受到動作前饋(feedforward)與回饋(feedback)機制的影響,是動作錯誤修正的重要基礎。本論文以次活動為中心概念進行兩個有關疲勞的系列實驗;實驗一主要是發展在動態等長收縮過程中施力次活動的量化方式,並重新探討肌肉疲勞對正常人握力表現及施力控制的影響。實驗二的主旨則是比較,疲勞對於拔河選手(選手組)與相似年齡沒有規律運動習慣的一般大學生(非運動員組)的握力表現與次活動特徵影響的差異。方法:所有受試者以非慣用手用力握拳的方式,完成持續的動態等長收縮測試(目標訊號為0.5 Hz正弦波,施力範圍為50-100%的最大意志收縮),直至動態收縮施力平均值較起始的施力平均值減少40%為止。利用離線分析的方式,動態的力量輸出被以數學的模式解離為具正弦波特徵的理想力量軌跡(ideal force trajectory, IF)與和力量變異有關的次活動訊號(submovement, SUB)。實驗一比較疲勞前後測驗之肌電圖、施力與次活動時頻特徵之差異。實驗二則是利用力量輸出與次活動特徵的時域與頻域參數的標準化差異,比較疲勞對於選手與非選手影響的差異。結果:實驗一結果顯示:施力平均值、肌電圖均方根及肌電圖平均頻率在疲勞後均顯著地減少,疲勞後測驗之理想力量軌跡振幅(RMS_IF)、次活動振幅(RMS_SUB)及理想力量軌跡次活動振幅比(RIF/SUB)皆較疲勞前測驗顯著下降。同樣地,次活動平均頻率(MF_SUB)、近似熵(ApEn)在疲勞後顯著下降,然而次活動頻譜分佈範圍(spectral dispersion of submovement, SD_SUB)則在疲勞後呈現上升的趨勢。在次活動的細部結構方面,脈衝振幅、脈衝波寬、脈衝增益在疲勞後亦顯著下降。實驗二的結果顯示:疲勞後選手組與非選手組的理想力量軌跡振幅、次活動振幅及理想力量軌跡次活動振幅比皆較疲勞前測驗顯著下降。此外與正常受試者相仿的是選手組的次活動平均頻率、近似熵以及次活動細部結構的各項參數亦隨疲勞的發生而顯著下降。然而,次活動頻譜分佈範圍僅有在非選手組有疲勞後增加的現象。進一步比較選手組與非選手組的標準化差異發現:除了理想力量軌跡次活動振幅比、次活動平均頻率、次活動頻譜分佈範圍與脈衝增益不具組間差異之外,選手組其他參數標準化差異因疲勞而改變的情形皆較非選手組不顯著。結論:本研究已成功地發展出適合在正弦動態等長收縮量化施力次活動的方式,並同時發現:肌肉疲勞顯著地減低產生力量正弦變化與修正施力錯誤的能力,而且疲勞對產生理想力量形式能力的負面影響更甚於對修正錯誤能力的影響。此外,疲勞造成施力錯誤修正的頻率減少、單位錯誤修正量降低,且以更單調的方式進行施力錯誤修正。對於經常接受肌力訓練的拔河選手而言,在同等程度的疲勞發生時,拔河選手較無規律運動習慣之同年齡大學生保留較多產生力量變動的能力與豐富的錯誤修正型式。
Background and Purposes: Variability is the nature of human movement, resulting principally from submovements. Recent researches have indicated that the submovements were subject to both of the feedforward and feedback processes, serving to a fundamental basis of movement correction. In the framework of submovement, this dissertation consisted of two experiments regarding muscle fatigue. The aim of the first experiment was to develop a new method to quantify submovement characteristics during dynamic isometric contraction, with which to gain new insight into fatigue effect on gripping force performance and force control for healthy people. Next, the aim of second experiment was to compare differences in fatigue impact upon gripping force and submovement characteristic between the tug-of-war athletes in (athlete group) and the age-matched university students without regular exercise habit (non-athlete group). Methods: With the non-dominant hand to conduct power gripping, all subjects completed sustained dynamic isometric contraction task (target signal = 0.5 Hz sinusoidal wave in range of 50–100% maximal voluntary contraction) until the mean force output decreased by at least 40% of the pre-fatigue force output. In the off-line analysis, dynamic force output was mathematically decomposed into an ideal force trajectory (IF) spectrally identical to the target rate and a submovement trace (SUB) pertaining to force variability. The first experiment compared EMG spectrum, the temporal-spectral characteristic of force output, and submovement characteristics between the pre-fatigue and post-fatigue conditions. The second experiment examined distinct fatigue effects on the athlete and non-athlete groups, by contrasting the normalized parametric differences of force output and submovement features in the temporal and spectral domains. Results: The results of the first experiment showed significant decreases in the mean force output, EMG root mean square, EMG mean frequency, the root mean square of ideal force trajectory (RMS_IF), root mean square of submovement trace (RMS_SUB), and amplitude ratio of RMS_IF to RMS_SUB (RIF/SUB) after the fatiguing contraction. In addition, the mean frequency of submovement (MF_SUB), approximate entropy (ApEn) of submovement was lower in the post-fatigue test. However, the spectral dispersion of submovement (SD_SUB) was conversely increased with fatigue development. The microstructures of submovements, including the force pulse duration, force pulse amplitude, and force pulse gain, were significantly reduced after fatiguing contraction. In the second experiment, RMS_IF, RMS_SUB, and RIF/SUB were consistently decreased with fatiguing effect for the athlete and non-athlete groups. Resembling to those of the non-athlete group, MF_SUB, ApEn, and submovement charateristics (amplitude, duration and gain of force pulse) of the athlete group was reduces significantly in the post-fatigue condition; however, the post-fatigue increase in SD_SUB was evident only in the non-athlete group. Further comparisons of normalized parametric differences after fatigue between the athlete and non-athlete groups revealed that all force parameters were less affected by fatigue effect for the athlete group, except for RIF/SUB, MF_SUB, SD_SUB, and force pulse gain. Conclusion: This study successfully developed a novel approach to quantify submovement characteristics during sinusoidal dynamic isometric contraction. With the submovement characteristics, this study revealed that muscle fatigue produced a more pronounced negative effect on force generation capacity of ideal pattern and on movement correction capacity. Additionally, muscle fatigue led to fewer and smaller error correction of tracking deviation in a simpler fashion during the dynamic isometric task. Compare to the university students without regular exercise, the tug-of-war athletes who received frequent resistance training can better preserve force generation capacity with a richer fashion of error correction, in case of fatigue development at the same level.
Aagaard, P. (2003). Training-induced changes in neural function. Exercise and Sport Sciences Reviews, 31(2), 61-67.
Adkins, D. L., Boychuk, J., Remple, M. S., &; Kleim, J. A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of Applied Physiology, 101(6), 1776-1782.
Allen, D. G., Lamb, G. D., &; Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiological Reviews, 88(1), 287-332.
Barclay, J. K., &; Hansel, M. (1991). Free radicals may contribute to oxidative skeletal muscle fatigue. Canadian Journal of Physiology and Pharmacology, 69(2), 279-284.
Bays, P. M., &; Wolpert, D. M. (2007). Computational principles of sensor- imotor control that minimize uncertainty and variability. The Journal of Physiology, 578(2), 387-396.
Benwell, N. M., Sacco, P., Hammond, G. R., Byrnes, M. L., Mastaglia, F. L., &; Thickbroom, G. W. (2006). Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?. Experimental Brain Research, 170(2), 191-198.
Bedrov, Y. A., Dick, O. E., &; Romanov, S. P. (2007). Role of signal-dependent noise during maintenance of isometric force. Biosystems, 89(1-3), 50-57.
Bilodeau, M. (2006). Central fatigue in continuous and intermittent contractions of triceps brachii. Muscle &; Nerve, 34(2), 205-213.
Cantor, F. (2010). Central and peripheral fatigue: exemplified by multiple sclerosis and myasthenia gravis. The Journal of Injury, Function, and Rehabilitation , 2(5), 399-405. doi: 10.1016/j.pmrj.2010.04.012
Chen, W. T., Wang, Z. Z., &; Ren, X. M. (2006). Characterization of surface EMG signals using improved approximate entropy. Journal of Zhejiang University SCIENCE B, 7(10), 844-848.
Chen, Y. C., Lin, Y. T., Huang, C. T., Shih, C. L., Yang, Z. R., &; Hwang, S. (2013). Trajectory adjustments underlying task-specific intermittent force behaviors and muscular rhythms. PloS one, 8(9), e74273. doi: 10.1371/journal.pone.0074273.
Dideriksen, J. L., Negro, F., Enoka, R. M., &; Farina, D. (2012). Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness. Journal of Neurophysiology, 107(12), 3357-3369.
Del Balso, C., &; Cafarelli, E. (2007). Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training. Journal of Applied Physiology, 103(1), 402-411.

De Luca, C. J., &; Hostage, E. C. (2010). Relationship between firing rate and recruitment threshold of motoneurons in voluntary isometric contractions. Journal of Neurophysiology, 104(2), 1034-1046. doi: 10.1152/jn.01018.2009.
De Luca, C. J., &; Contessa, P. (2012). Hierarchical control of motor units in voluntary contractions. Journal of Neurophysiology, 107(1), 178-195. doi: 10.1152/jn.00961.2010.
De Koning, F. L., Vos, J. A., Binkhorst, R. A., &; Vissers, A. C. A. (1984). Influence of training on the force-velocity relationship of the arm flexors of active sportsmen. International Journal of Sports Medicine, 5(1), 43-46.
Diedrichsen, J., Shadmehr, R., &; Ivry, R. B. (2010). The coordination of movement: optimal feedback control and beyond. Trends in Cognitive Sciences, 14(1), 31-39. doi: 10.1016/j.tics.2009.11.004.
Doeringer, J. A., &; Hogan, N. (1998). Intermittency in preplanned elbow movements persists in the absence of visual feedback. Journal of Neurophysiology, 80(4), 1787-1799.
Duchateau, J., Semmler, J. G., &; Enoka, R. M. (2006). Training adaptations in the behavior of human motor units. Journal of Applied Physiology, 101(6), 1766-1775.
Edwards, R. H. (1981). Human muscle fatigue: physiological mechanisms, Ciba Foundation Symposium,82, 1-18.
Enoka, R. M., &; Duchateau, J. (2008). Muscle fatigue: what, why and how it influences muscle function. The Journal of Physiology, 586(1), 11-23.
Fitts, R. H. (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews,74(1), 49-94.
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725-1789.
Gabriel, D. A., Kamen, G., &; Frost, G. (2006). Neural adaptations to resistive exercise : mechanisms and recommendations for training practices. Sports Medicine, 36(2), 133-149.
Gonz#westeur034#lez-Izal, M., Malanda, A., Gorostiaga, E., &; Izquierdo, M. (2012). Electromyographic models to assess muscle fatigue. Journal of Electromyography and Kinesiology, 22(4), 501-512.
Goonetilleke, A., Modarres-Sadeghi, H., &; Guiloff, R. (1994). Accuracy, reproducibility, and variability of hand-held dynamometry in motor neuron disease.Journal of Neurology, Neurosurgery and Psychiatry, 57(3), 326-332.
Harris, C. M., &; Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780-784.
Hargreaves, M. (2005). Metabolic factors in fatigue. Sports Science Exchange, 18(3), 1-7.
Harbourne, R. T., &; Stergiou, N. (2009). Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. Physical therapy, 89(3), 267-282. doi: 10.2522/ptj.20080130.
Harrington, M. (2012). Neurobiological studies of fatigue. Progress in Neurobiology. 99(2), 93-105.
Hassanlouei, H., Arendt-Nielsen, L., Kersting, U. G., &; Falla, D. (2012). Effect of exercise-induced fatigue on postural control of the knee. Journal of Electromyography and Kinesiology, 22(3), 342-347.
Hermsd#westeur055#rfer, J., Hagl, E., &; Nowak, D. A. (2004). Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Human movement science, 23(5), 643-662.
Huang, C. T., Hwang, I. S., Huang, C. C., &; Young, M. S. (2006). Exertion dependent alternations in force fluctuation and limb acceleration during sustained fatiguing contraction. European Journal of Applied Physiology, 97(3), 362-371.
Hickok, G. (2012). Computational neuroanatomy of speech production. Nature Review. Neuroscience, 13(2), 135-145.
Huang, C. T., Huang, C. C., Young, M. S., &; Hwang, S. (2007). Age effect on fatigue-induced limb acceleration as a consequence of high-level sustained submaximal contraction. European Journal of Applied Physiology, 100(6), 675-683.
Hortob#westeur034#gyi, T., Tunnel, D., Moody, J., Beam, S., &; DeVita, P. (2001). Low-or high-intensity strength training partially restores impaired quadriceps force accuracy and steadiness in aged adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(1), B38-B47.
Jeannerod, M. (1991). The interaction of visual and proprioceptive cues in controlling reaching movements. In D. R. Humphrey, &; H. J. Freund(Eds.), Motor control: Concepts and issues (pp. 277–291). New York, NY: Wiley.
Jones, L. A. (1995,). The senses of effort and force during fatiguing contractions. Advances in Experimental Medicine and Biology, 384, 305-313.
Jones, K. E., de C. Hamilton, A. F., &; Wolpert, a. D. M. (2002). sources of signal-dependent noise during isometric force production. Journal of Neurophysiology, 88, 1533-1544.
Jordan, K., &; Newell, K. M. (2004). Task goal and grip force dynamics. Experimental Brain Research, 156(4), 451-457.
Kallenberg, L. A., Schulte, E., Disselhorst-Klug, C., &; Hermens, H. J. (2007). Myoelectric manifestations of fatigue at low contraction levels in subjects with and without chronic pain. Journal of Electromyography and Kinesiology, 17(3), 264-274.
Kenney, W. L., Wilmore, J. H., &; Costill, D. L. (2012). Physiology of sport and exercise. Champaign, IL: Human Kinetics.
Kent-Braun, J. A. (1999). Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. European Journal of Applied Physiology and Occupational Physiology, 80(1), 57-63.
Keogh, J. W., Morrison, S., &; Barrett, R. (2007). Strength training improves the tri-digit finger-pinch force control of older adults. Archives of Physical Medicine and Rehabilitation, 88(8), 1055-1063.
Komi, P. V., &; Tesch, P. (1979). EMG frequency spectrum, muscle structure, and fatigue during dynamic contractions in man. European Journal of Applied Physiology and Occupational Physiology, 42(1), 41-50.
Kornatz, K. W., Christou, E. A., &; Enoka, R. M. (2005). Practice reduces motor unit discharge variability in a hand muscle and improves manual dexterity in old adults. Journal of Applied Physiology, 98(6), 2072-2080.
Kuznetsov, N. A., &; Riley, M. A. (2010). Spatial resolution of visual feedback affects variability and structure of isometric force. Neuroscience Letters, 470(2), 121-125.
Lephart, S. M., Pincivero, D. M., Giraido, J. L., &; Fu, F. H. (1997). The role of proprioception in the management and rehabilitation of athletic injuries. The American Journal of Sports Medicine, 25(1), 130-137.
Linnamo, V., Bottas, R., &; Komi, P. V. (2000). Force and EMG power spectrum during and after eccentric and concentric fatigue. Journal of Electromyography and Kinesiology, 10(5), 293-300.
Li, K., Marquardt, T. L., &; Li, Z. M. (2013). Removal of visual feedback lowers structural variability of inter-digit force coordination during sustained precision pinch. Neuroscience letters, 545, 1-5.
doi: 10.1016/j.neulet.2013.04.0 11.
Lin, Y. T., Kuo, C. H., &; Hwang, S. (2014). Fatigue Effect on low- frequency force fluctuations and muscular oscillations during rhythmic isometric contraction. PloS one, 9(1), e85578. doi: 10.1371/journal.pone.0085578.
Lowery, M. M., &; O'Malley, M. J. (2003). Analysis and simulation of changes in EMG amplitude during high-level fatiguing contraction., IEEE Transactions on Bio-medical Engineering, 50(9), 1052-1062.
Lorentzon, R., Johansson, C., Sj#westeur055#str#westeur055#m, M., Fagerlund, M., &; Fugl‐Meyer, A. R. (1988). Fatigue during dynamic muscle contractions in male sprinters and marathon runners: relationships between performance, electromyographic activity, muscle cross‐sectional area and morphology. Acta Physiologica Scandinavica, 132(4), 531-536.
Masuda, K., Masuda, T., Sadoyama, T., Inaki, M., &; Katsuta, S. (1999). Changes in surface EMG parameters during static and dynamic fatiguing contraction. Journal of Electromyography and Kinesiology, 9(1), 39-46.
Missenard, O., Mottet, D., &; Perrey, S. (2008). Muscular fatigue increases signal-dependent noise during isometric force production. Neuroscience Letters, 437(2), 154-157.
Miall, R. C., Weir, D. J., &; Stein, J. F. (1988). Planning of movement parameters in a visuo-motor tracking task. Behavioural Brain Research, 27(1), 1-8.
Milanovic, S., Blesic, S., &; Jaric, S. (2000). Changes in movement variables associated with transient overshoot of the final position. Journal of Motor Behavior, 32(2), 115-120.
Moritz, C. T., Barry, B. K., Pascoe, M. A., &; Enoka, R. M. (2005). Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. Journal of Neurophysiology, 93(5), 2449-2459.
Moritani, T., Muro, M., &; Nagata, A. (1986). Intramuscular and surface electromyogram changes during muscle fatigue. Journal of Applied Physiology, 60(4), 1179-1185.
Newell, K. M., &; Corcos, D. M. (1993). Variability and motor control. Champaign, IL: Human kinetics.
Noble, M., Fitts, P. M., &; Warren, C. E. (1955). The frequency response of skilled subjects in a pursuit tracking task. Journal of Experimental Psychology, 49(4), 249-256.
Nowak, D. A., Glasauer, S., &; Hermsd#westeur055#rfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback?. Brain, 127(1), 182-192.
Ofori, E., Samson, J. M., &; Sosnoff, J. J. (2010). Age-related differences in force variability and visual display. Experimental Brain Research, 203(2), 299-306. doi: 10.1007/s00221-010-2229-z.
Olafsdottir, H. B., Zatsiorsky, V. M., &; Latash, M. L. (2008). The effects of strength training on finger strength and hand dexterity in healthy elderly individuals. Journal of Applied Physiology, 105(4), 1166- 1178. doi: 10.1152/japplphysiol.00054.2008.
Osu, R., Kamimura, N., Iwasaki, H., Nakano, E., Harris, C. M., Wada, Y., &; Kawato, M. (2004). Optimal impedance control for task achievement in the presence of signal-dependent noise. Journal of Neurophysiology, 92(2), 1199-1215.
Park, W. H., Leonard, C. T., &; Li, S. (2007). Perception of finger forces within the hand after index finger fatiguing exercise. Experimental Brain Research, 182(2), 169-177.
Pasalar, S., Roitman, A. V., &; Ebner, T. J. (2005). Effects of speeds and force fields on submovements during circular manual tracking in humans. Experimental Brain Research, 163(2), 214-225.
Patten, C., &; Kamen, G. (2000). Adaptations in motor unit discharge activity with force control training in young and older human adults. European Journal of Applied Physiology, 83(2-3), 128-143.
Pew R.W. (1974). Human perceptual-motor performance. In B.H. Kantowitz (Eds.), Human information processing: tutorials in performance and cognition. Hillsdale, NJ: Lawrence Erlbaum Associates;. p. 1–39.
Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of American, 88(6), 2297-2301.
Pincus, S. M., Gladstone, I. M., &; Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345.
Pincus, S. M., &; Viscarello, R. R. (1992). Approximate entropy: a regularity measure for fetal heart rate analysis. Obstetrics and Gynecology, 79(2), 249-255.
Proske, U., Wise, A. K., &; Gregory, J. E. (2000). The role of muscle receptors in the detection of movements. Progress in Neurobiology, 60(1), 85-96.
Reid, M. B. (2008). Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radical Biology and Medicine, 44(2), 169-179.
Richards, J. (2008). Biomechanics in clinic and research: in clinic and research. Philadelphia, PA: Churchill Livingstone.
Richman, J. S., &; Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology. Heart and Circulatory Physiology, 278(6), H2039-H2049.
Roots, H., Ball, G., Talbot-Ponsonby, J., King, M., McBeath, K., &; Ranatunga, K. W. (2009). Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers. Journal of Applied Physiology, 106(2), 378-384.
Rogers, D. R., &; MacIsaac, D. T. (2013). A comparison of EMG-based muscle fatigue assessments during dynamic contractions. Journal of Electromyography and Kinesiology, 23(5), 1004-1011.
Roitman, A. V., Massaquoi, S. G., Takahashi, K., &; Ebner, T. J. (2004). Kinematic analysis of manual tracking in monkeys: characterization of movement intermittencies during a circular tracking task. Journal of Neurophysiology, 91(2), 901-911.
Rudroff, T., Justice, J. N., Matthews, S., Zuo, R., &; Enoka, R. M. (2010). Muscle activity differs with load compliance during fatiguing contractions with the knee extensor muscles. Experimental Brain Research, 203(2), 307-316.
Rudroff, T., Justice, J. N., Holmes, M. R., Matthews, S. D., &; Enoka, R. M. (2011). Muscle activity and time to task failure differ with load compliance and target force for elbow flexor muscles. Journal of Applied Physiology, 110(1), 125-136.
Ryan, S. M., Goldberger, A. L., Pincus, S. M., Mietus, J., &; Lipsitz, L. A. (1994). Gender-and age-related differences in heart rate dynamics: are women more complex than men?. Journal of the American College of Cardiology, 24(7), 1700-1707.
Sahlin, K. (1992). Metabolic factors in fatigue. Sports Medicine, 13(2), 99-107.
Sale, D. G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20(5 Suppl), S135-S145.
Schmidt, R. A., &; Wrisberg, C. A. (2008). Motor learning and performance: A situation-based learing approach. Champaign, IL: Human Kinetics.
Seidler-Dobrin, R. D., &; Stelmach, G. E. (1998). Persistence in visual feedback control by the elderly. Experimental Brain Research, 119(4), 467-474.
Experimental Brain Research, 119(4), 467-474.
Selen, L. P., Beek, P. J., &; van Die#westeur044#n, J. H. (2007). Fatigue-induced changes of impedance and performance in target tracking. Experimental Brain Research, 181(1), 99-108.
Semmler J.G., &; Enoka R. M. (2008). Neural contributions to changes in muscle strength. In V. M. Zatsiorsky (Eds.), Biomechanics in Sport: Performance Enhancement and Injury Prevention (pp. 2-20). Oxford, UK: Blackwell Science, doi: 10.1002/9780470693797.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379-423, 623-656.
Sieck, G. C., &; Prakash, Y. S. (1994). Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms. Advances in Experimental Medicine and Biology, 384, 83-100.
Slifkin, A. B., &; Newell, K. M. (1999). Noise, information transmission, and force variability. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 837-851.
Slifkin, A. B., &; Newell, K. M. (2000). Variability and noise in continuous force production. Journal of Motor Behavior, 32(2), 141-150.
Slifkin, A. B., Vaillancourt, D. E., &; Newell, K. M. (2000). Intermittency in the control of continuous force production. Journal of Neurophysiology, 84(4), 1708-1718.
Solomonow, M., Baten, C., Smit, J., Baratta, R., Hermens, H., D'Ambrosia, R., &; Shoji, H. (1990). Electromyogram power spectra frequencies associated with motor unit recruitment strategies. Journal of Applied Physiology, 68(3), 1177-1185.
Sosnoff, J. J., &; Newell, K. M. (2005). Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Perception &; Psychophysics, 67(2), 335-344.
Sosnoff, J. J., &; Newell, K. M. (2005). Intermittency of visual information and the frequency of rhythmical force production. Journal of Motor Behavior, 37(4), 325-336.
Sosnoff, J. J., &; Newell, K. M. (2006). Are age-related increases in force variability due to decrements in strength?. Experimental Brain Research, 174(1), 86-94.
Staron, R. S., Karapondo, D. L., Kraemer, W. J., Fry, A. C., Gordon, S. E., Falkel, J. E., ... &; Hikida, R. S. (1994). Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. Journal of Applied Physiology, 76(3), 1247-1255.
Strojnik, V., &; Komi, P. V. (1998). Neuromuscular fatigue after maximal stretch-shortening cycle exercise. Journal of Applied Physiology, 84(1), 344-350.
Tracy, B. L., Byrnes, W. C., &; Enoka, R. M. (2004). Strength training reduces force fluctuations during anisometric contractions of the quadriceps femoris muscles in old adults. Journal of Applied Physiology, 96(4), 1530-1540.
Vaillancourt, D. E., &; Newell, K. M. (2003). Aging and the time and frequency structure of force output variability. Journal of Applied Physiology, 94(3), 903-912.
Vaillancourt, D. E., Larsson, L., &; Newell, K. M. (2003). Effects of aging on force variability, single motor unit discharge patterns, and the structure of 10, 20, and 40 Hz EMG activity. Neurobiology of Aging, 24(1), 25-35.
Walker, S., Davis, L., Avela, J., &; H#westeur037#kkinen, K. (2012). Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. Journal of Electromyography and Kinesiology, 22(3), 356-362. doi: 10.1016/j.jelekin.2011.12.009.
Westerblad, H., Allen, D. G., &; L#westeur037#nnergren, J. (2002). Muscle fatigue: lactic acid or inorganic phosphate the major cause?. New in Physiological sciences, 17, 17-21.
Westad, C., Westgaard, R. H., &; De Luca, C. J. (2003). Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle. The Journal of physiology, 552(2), 645-656.
Xie, H. B., Guo, J. Y., &; Zheng, Y. P. (2010). Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals. Annals of Biomedical Engineering, 38(4), 1483-1496.
Yang, Q., Fang, Y., Sun, C. K., Siemionow, V., Ranganathan, V. K., Khoshknabi, D., ... &; Yue, G. H. (2009). Weakening of functional corticomuscular coupling during muscle fatigue. Brain Research, 1250. 101-112. doi: 10.1016/j.brainres.2008.10.074.
Zhou, S., Carey, M. F., Snow, R. J., Lawson, D. L., &; Morrison, W. E. (1998). Effects of muscle fatigue and temperature on electromechanical delay. Electromyography and Clinical Neurophysiology, 38(2), 67-73.
涂瑞洪 (1997)。拔河之源由及基本力學概念。臺灣省學校體育,7(2),51-56頁。
李再立 (2000)。2000年世界室內拔河錦標賽作戰時間統計表。拔河運動簡訊,創刊號,6。
黃勝裕 (2000)。肌肉週邊疲勞之肌電圖判定。中華體育季刊,14(1), 109-115。
徐吉德、徐瑞洪、劉俊概 (2005)。牽張-收縮機制應用於拔河肌力訓練之可行性探討。中華體育季刊,19(4),78-83。
邱定璿、楊明達、詹貴惠 (2012)。不同阻力訓練對國中室內拔河選手肌力與拉力表現的影響。運動教練科學,26,29-39。
許太彥、解德春、陳金輝 (2011)。拔河增強式肌力訓練對起步拉力值的影響。嶺東體育暨休閒學刊,9,37-47。
周俊三、黃義雄 (2009)。基本運動能力對拔河運動起動步之生物力學影響。運動知識學報,6,1-10。
劉家呈、陳家祥、涂瑞洪、羅志勇 (2009)。八人制拔河團隊隊形起始階段之運動學分析-以2008全國拔河錦標賽高中職男生組決賽為研究範圍。屏東教大體育,12,254-265。
陳重霖、陳泰羽、莊永隆 (2008)。六週下肢肌力訓練與室外競技拔河不同類型後拉力之探討。大專體育學術專刊,97年度專刊, 619-624。
黃琮祐、林瑞興 (2006)。十二週拔河訓練對國小男童體型肌力、瞬發力與血壓之影響。體育學報,39(4),1-10。
莊永隆、陳重霖 (2006)。下肢肌力與上肢肌耐力訓練在拔河運動後拉力之應用研究。大專體育學術專刊,95年度專刊,448-453。
龔純玉、張嘉澤 (2006)。室內八人制拔河力量耐力診斷與訓練。大專體育,82, 19-23。
高明峰、金良遠 (2004)。不同拔河姿勢與拉力之關係。大專體育學術專刊,93年度專刊,322-329。
陳榮章、李建勳、涂瑞洪 (2003)。拔河團隊隊形之運動學分析。大專體育學術專刊,92年度專刊,369-378。
謝和龍 (2001)。室內拔河運動肌力訓練的方法。大專體育,54,30-35。
黎俊彥與林威秀 (2000)。拔河運動的訓練方法。大專體育,49,125-131。
林貴福、徐臺閣、吳慧君(譯) (2002)。運動生理學 (原作者: S. K. Powers, &; E. T. Howley)。臺北市:藝軒。(原著出版年2001)。
林正常 (2005)。運動生理學。臺北市:師大書苑。
黃奕銘 (2012)。以神經肌肉觀點探討肌肉疲勞的機制。中華體育季刊,26(4),427-430。
吳慧君 (1993)。運動性肌肉疲勞之肌電圖研究。中華體育季刊, 7(2),77-85。
胡明霞 (2009)。動作控制與動作學習。臺北縣:金名圖書。

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE