:::

詳目顯示

回上一頁
題名:漢語使用者的聲調聽覺研究: 行為及大腦功能性磁振造影的證據
作者:洪鐘儒
作者(外文):Andrew C.-J.Hung
校院名稱:國立成功大學
系所名稱:外國語文學系
指導教授:鍾榮富
羅勤正
學位類別:博士
出版日期:2017
主題關鍵詞:聽覺聲調功能性磁振造影顳上回額下回perceptiontonesfMRIsuperior temporal gyrusinferior frontal gyrus
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
本論文提出關於母語為漢語者之漢語聲調的聽覺研究之行為和大腦功能性磁振造影之證據。其中,行為實驗測量受試者的行為反應時間和正確性,而腦影像研究則以功能性磁振造影的方法,探索大腦和漢語聲調的聽覺之關聯性。
行為研究採用2x2x2的因子實驗設計來探索語音、熟悉性、及作業類型對漢語聲調之聽覺的影響。受試者分辨從右耳輸入的兩兩配對的聲調是否可歸為同類型或者完全一樣的不同作業。本實驗使用兩種聲音刺激:正弦聲調(無母音)與語音聲調(有母音)。配對的聲音刺激由兩熟悉的基頻軌跡 (F0 contours)組成,或由熟悉與不熟悉的基頻軌跡混和組成。研究結果顯示作業型態和聲調的熟悉性對漢語聲調的基頻軌跡的聽覺有顯著的影響。而語音的影響則視作業型態與漢語聲調的基頻軌跡的熟悉性之交互作用而定。此交互作用顯示:在兩個條件下,受試者對正弦聲調的辨別優於語音聲調:(1)辨別熟悉的基頻軌跡之類型,(2)辨別不熟悉的基頻軌跡之聲音是否一樣;在其他狀況下,正弦聲調與語音聲調的聽覺沒顯著差異。本研究顯示漢語聲調的感覺是作業類型、熟悉性及語音的交互作用之結果。
此大腦功能性磁振造影的研究探索漢語聲調的基頻軌跡(F0 contours)的聽覺與大腦顳上回(superior temporal gyrus)和額下回(inferior frontal gyrus)之關聯性,並比較自右耳輸入的正弦聲調(無母音)與語音聲調(有母音)對於這兩大腦區域的反應之異同。腦部功能性磁振造影發現:和正弦聲調所激活的腦區相比,語言聲調會引起左腦的額下回的額外反應,而且在右腦的額下回的活化比較顯著。這種差異可能和聲調中母音特性之有無有關聯。但對於聲調的聽覺而言,正弦聲調與語音聲調都刺激了左腦的顳上回與右腦的額下回,顯示有無母音在聲調的感覺中沒扮演重要角色。此外,左腦的顳上回的活化支持漢語聲調的音素特性。本研究顯示僅靠左腦的顳上回不足以處理漢語的聲調之感覺,右腦的額下回的角色不容忽視。
The dissertation presents two studies on the perception of fundamental frequency (F0) contours of Mandarin tones by native speakers of Mandarin Chinese. One study measures the subjects’ behavioral responses, including latency and accuracy, and the other uses functional magnetic resonance imaging (fMRI) methodology to investigate the association of specific brain regions with the perception of Mandarin tones.
The behavioral study adopted a 2x2x2 factorial design to investigate the effects of linguistic context (sinewave pitches vs. lexical tones), and F0 contour contrasts (familiar vs. unfamiliar) on the performance of discrimination tasks (auditory vs. category) in a same/different paradigm. The present study observed that F0 contours of Mandarin tones are not perceived the same by the native listeners of Mandarin in the speech (i.e., lexical tone) vs. non-speech context (i.e., sinewave pitches) when the effects of task types and familiarity with F0 contour contrasts are taken into account. The subjects performed better in sinewave pitches than in lexical tones in two conditions: (1) in the category discrimination of familiar contour contrasts, and (2) in the auditory (non-categorical) discrimination of unfamiliar contour contrasts, while in the other conditions, the perception of sinewave pitches and lexical tones did not show significant difference. These results imply that the perception of F0 contours of Mandarin tones is a function of task, familiarity, and speech context.
The brain fMRI experiment investigated the association of Mandarin fundamental frequency (F0) contour perception with the superior temporal gyrus (STG) and the inferior frontal gyrus (IFG) when tones were input from the right ear. Adopted in this study are two types of auditory stimuli: sinewave pitches (SW) and lexical tones (LX). LX refers to tones with, and SW, tones without, vocalic information. The brain fMRI experiment observed that LX perception, compared with SW perception, had additional activations at the left IFG and more noticeable activations at the right IFG. The additional activations at the left IFG imply association with the perception of vocalic information of LX. Despite the differences, SW and LX perception shared common activations at the left STG and the right IFG, suggesting that vocalic information plays no key role in tonal perception. The involvement of the left STG supports the phonemic feature of Mandarin tones. The present investigation reveals that solely the left STG of the brain cannot achieve the processing of Mandarin tones, and the role of the right IFG cannot be ignored.
References
Bandettini, P. A., Jesmanowicz, A., Van Kylen, J., Birn R. M., & Hyde, J. S. (1998). Functional MRI of brain activation induced by scanner acoustic noise. Magnetic Resonance in Medicine, 39, 410-6.
Belin, P., Zilbovicius, M., Crozier, S., Thivard, L., Fontaine, A. A., Masure, M. C., & Samson, Y. (1998). Lateralization of speech and auditory temporal processing. Journal of Cognitive Neuroscience, 10 (4), 536-540.
Benson, R. R., Richardson, M., Whalen, D. H., Lai, S. (2006). Phonetic processing areas revealed by sinewave speech and acoustically similar non-speech. Neuroimage, 31 (1), 342-353.
Best, C. T., & Avery, R. A. (1999). Left-hemisphere advantage for click consonants is determined by linguistic significance and experience. Psychological Science, 10, 65-70.
Bigler, E. D., Mortensen, S., Neeley, E. S., Ozonoff, S., Krasny, L., Johnson, M., Lu, J., Provencal, S. L., McMahon, W., & Lainhart, J. E. (2007). Superior Temporal Gyrus, Language Function, and Autism. Developmental Neuropsychology, 31 (2), 217-238.
Binder, J. R. (2010). fMRI of language systems: methods and applications. In S.H. Faro & F. B. Mohamed (Eds.), BOLD fMRI: A Guide to Functional Imaging for Neurosciences (pp. 183-214). New York: Springer.
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10 (5), 512-528.
Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17, 353–362.
Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A., & Ward, B. D. (2004). Neural correlates of sensory and decision processes in auditory object identification. Nature Neuroscience, 7, 295--301.
Boersma, P., & Weenink, D. (2013). Praat: Doing phonetics by computer [Computer program]. Version 5.3.51. Retrieved from http://www.praat.org/
Britton, B., Blumstein, S. E., Myers, E. B., & Grindrod, C. (2009). The role of spectral and durational properties on hemispheric asymmetries in vowel perception. Neuropsychologia, 47 (4), 1096-1106.
Broca, P. (1865). Sur le siege de la faculte du langage articule. Bulletin de la Societe d’anthropologie, 6, 337-393.
Buchsbaum, B., Hickok, G., & Humphries, C. (2001). Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science, 25, 663-678.
Burnham, D., & Jones, C. (2002). Categorical perception of lexical tone by tonal and non-tonal language speakers. In C. Bow (Ed.), Proceedings of the 9th Australian International Conference on Speech Science & Technology, Melbourne (pp. 515-520). Canberra: Australian Speech Science and Technology Association (ASSTA).
Caplan, D., & Moo, L. (2004). Cognitive conjunction and cognitive functions. Neuroimage, 21, 751-756.
Celsis, P., Boulanouar, K., Doyon, B., Ranjeva, J. P., Berry, I., Nespoulous, J. L., & Chollet, F. (1999). Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. NeuroImage, 9, 135–144.
Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13, 1428–1432.
Chao, L. L., & Knight, R. T. (1996). Prefrontal and posterior cortical activation during auditory working memory. Cognitive Brain Research, 4, 27–37.
Chao, Y. R. (1968). A Grammar of Spoken Chinese. University of California Press, Berkeley and Los Angeles.
Cowell, P. E. (2010). Auditory laterality--Recent findings in speech asymmetry. In K. Hugdahl & R. Westerhausen (Eds.), The Two Halves of the Brain: Information Processing in the Cerebral Hemispheres (pp.349-377). Cambridge, MA: MIT Press.
Darwin, C. (1971). Ear differences in the recall of fricatives and vowels. Quarterly Journal of Experimental Psychology, 23, 46-72.
Dehaene-Lambertz, G., Pallier, C., Serniclaes, W., Sprenger-Charolles, L., Jobert, A., & Dehaene, S. (2005). Neural correlates of switching from auditory to speech perception. Neuroimage, 24 (1), 21-33.
Desai, R., Liebenthal, E., Waldron, E., & Binder, J. R. (2008). Left posterior temporal regions are sensitive to auditory categorization. Journal of Cognitive Neuroscience, 20 (7), 1174-1188.
Eickhoff, S., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25 (4), 1325-1335.
Fon, J., Chiang, W-Y., & Cheung, H. (2004). Production and perception of the two dipping tones (Tone 2 and Tone 3) in Taiwan Mandarin. Journal of Chinese Linguistics, 32 (2), 249-277.
Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116–124.
Francis, A. L., Ciocca, V. C., & Ng, B. K. C. (2003). On the (non)categorical perception of lexical tones. Perception & Psychophysics, 65, 1029–1044.
Gandour, J. (1984). Tone dissimilarity judgments by Chinese listeners. Journal of Chinese Linguistics, 12 (2), 235–261.
Gandour, J., Dzemidzic, M., Wong, D., Lowe, M., Tong, Y., Hsieh, L., Satthamnuwong, N., & Lurito, J. (2003). Temporal integration of speech prosody is shaped by language experience: An fMRI study. Brain and Language, 84, 318-336.
Gandour, J., Wong, D., Lowe, M, Dzemidzic, M., Satthamnuwong, N., Tong, Y., & Li, X. (2002). A cross-linguistic fMRI study of spectral and temporal cues underlying phonological processing. Journal of Cognitive Neuroscience, 14 (7), 1076-1087.
Ge, J., Peng, G., Lyu, B., Wang, Y., Zhuo, Y., Niu, Z., Tang, L. H., Leff, A. P., & Gao, J. H. (2015). Cross-language differences in the brain network subserving intelligible speech. Proceedings of the National Academy of Sciences of the United States of America, 112 (10), 2972–2977.
Griffiths, T. D., Johnsrude, I., Dean, J. L., & Green, G. G. R. (1999). A common neural substrate for the analysis of pitch and duration pattern in segmented sound. Neuroreport, 10, 3825–3830.
Guenther, F. H., Husain, F. T., Cohen, M. A., & Shinn-Cunninghama, B. G. (1999). Effects of categorization and discrimination training on auditory perceptual space Journal of the Acoustical Society of America, 106, 2900-2912.
Hall, D. A, Summerfield, A. Q., Gonçalves, M. S., Foster, J. R., Palmer, A. R., & Bowtell, R. W. (2000). Time-course of the auditory BOLD response to scanner noise. Magnetic Resonance in Medicine, 43, 601-606.
Hallé, P. A., Chang, Y. C., & Best, C. T. (2004). Identification and discrimination of Mandarin Chinese tones by Mandarin Chinese vs. French listeners. Journal of Phonetics, 32, 395–421.
Hampshire, A., Chamberlain, S. R., Monti, M. M., Duncan, J., & Owen, A. M. (2010). The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage, 50 (3-3), 1313–1319.
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67–99.
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Review Neuroscience, 8, 393-402.
Howie, J. M. (1976). On the domain of tone in Mandarin. Phonetica, 30, 129-148.
Hsieh, L., Gandour, J., Wong, D., & Hutchins, G. D. (2001). Functional heterogeneity of inferior frontal gyrus is shaped by linguistic experience. Brain and Language, 76, 227-252.
Hsu, C. H., Tsai, J. L., Lee, C. Y., & Tzeng, O. J. L. (2009). Orthographic combinability and phonological consistency effects in reading Chinese Phonograms: An event-related potential study. Brain and Language, 108, 55-56.
Huang, H. W., Lee, C. Y., Tsai, J. L., & Tzeng, O. J. L. (2011). The sublexical semantic ambiguity effects for reading Chinese disyllabic compounds. Brain and Language, 17 (2), 77-87.
Huang, T., & Johnson, K. (2010). Language specificity in speech perception: Perception of Mandarin tones by native and nonnative listeners. Phonetica, 67, 243-267.
Hugdahl, K. (2003). Dichotic listening in the study of auditory laterality. In K. Hugdahl & R. J. Davidson (Eds.), The Asymmetrical Brain (pp. 441-475). Cambridge, MA: MIT Press.
Hugdahl, K., Bronnick, K., Kyllingsbaek, S., Law, I., Gade, A., & Paulson, O. B. (1999). Brain activation during dichotic presentations of consonant–vowel and musical instrument stimuli: A 15O-PET study. Neuropsychologia, 37, 431–440.
Hugdahl, K., Løberg, E. M., & Nygård, M. (2009). Left temporal lobe structural and functional abnormality underlying auditory hallucinations in schizophrenia. Frontiers in Neuroscience. Retrieved from http://dx.doi.org/10.3389/neuro.01.001.2009
Husain, F. T., Fromm, S. J., Pursley, R. H., Hosey, L. A., Braun, A. R., & Horwitz, B. (2006). Neural bases of categorization of simple speech and non-speech sounds. Human Brain Mapping, 27, 636-65.
Hyde, K. L., Peretz, I., & Zatorre, R. J. (2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46 (2), 632–639.
Joanisse, M. F., & Gati, J. S. (2003). Overlapping neural regions for processing rapid temporal cues in speech and nonspeech signals. Neuroimage, 19, 64 –79.
Kenstowics, M. (1994). Phonology in Generative grammar. Cambridge, MA: Blackwell.
Klein, D., Zatorre, R. J., Milner, B., & Zhao, V. (2001). A cross-linguistic PET study of tone perception in Mandarin and English speakers. NeuroImage, 13, 646-653.
Krishnan, A., Gandour J. T., & Suresh, C. (2014). Cortical pitch response components show differential sensitivity to native and nonnative pitch contours. Brain & Language, 138, 51-60.
Kwok, Veronica P. Y., Wang, T., Chen, S., Yakpo, K., Zhu, L., Fox, P. T., & Tan, L. H. (2015). Neural signatures of lexical tone reading. Human Brain Mapping, 36 (1), 304-312.
Lee, C. Y., Huang, H. W., Kuo, W. J., Tsai, J. L., & Tzeng, O. J. L. (2010). Cognitive and neural basis of the consistency and lexicality effects in reading Chinese. Journal of Neurolinguistics, 23, 10-27.
Liberman, A. M. (1982). On finding that speech is special. American Psychology, 37, 148-167.
Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 1-36.
Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54, 358-368.
Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T., & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15, 1621–1631.
Liebenthal, E., Desai, R., Ellingson, M. M., Ramachandran, B., Desai, A., & Binder, J. R. (2010). Specialization along the left superior temporal sulcus for auditory categorization. Cerebral Cortex, 20, 2958-2970.
Luo, H., Husain, F. T., Horwitz, B., & Poeppel, D. (2005). Discrimination and categorization of speech and non-speech sounds in an MEG delayed-match-to- sample study. Neuroimage, 28 (1), 59-71.
Mattock, K., Molnar, M., Polka, L., & Burnham, D. (2008). The developmental course of real tone perception in the first year of life. Cognition, 106 (3), 1367-1381.
Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343 (6174), 1006–1010.
Möttönen, R., Calvert, G. A., Jääskeläinen, I. P., Matthews, P. M., Thesen, T., Tuomainen, J., & Sams, M. (2006). Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus. Neuroimage, 30 (2), 563-569.
Möttönen, R., & Watkins, K. E. (2009). Motor representations of articulators contribute to categorical perception of speech sounds. Journal of Neuroscience, 29 (31), 9819-9825.
Myers, E. B. (2007). Dissociable effects of phonetic competition and category typicality in a phonetic categorization task: an fMRI investigation. Neuropsychologia, 45, 1463-1473.
Myers, E. B., Blumstein, S. E., Walsh, E., & Eliassen, J. (2009). Inferior frontal regions underlie the perception of phonetic category invariance. Psychological Science, 20 (7), 895-903.
Nakamura, K., Kuoe, W.-J. , Pegado, F., Cohen, L., Tzeng, O. J. L., & Dehaenea, S. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of National Academy of Sciences, 109 (50), 20762-20767.
Peng, G., Zheng, H. Y., Gong, T., Yang, R.X., Kong, J.P., & Wang, W. S. Y. (2010). The influence of language experience on categorical perception of pitch contours. Journal of Phonetics, 38, 616-624.
Perry, D. W., Zatorre, R. J., Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1999). Localization of cerebral activity during simple singing. Neuroreport, 10, 3979-3984.
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197, 335-359.
Price, C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences. 62-88.
Pulvermüller, F., Huss, M., Kheri, F., Moscoso, P. M. F., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences, 103, 7865-7870.
Remez, R. E., Rubin, P. E., Nygaard, L. C., & Howell, W. A. (1987). Perceptual normalization of vowels produced by sinusoidal voices. Journal of Experimental Psychology: Human Perception and Performance, 13, 40-61.
Remez, R. E., Rubin, P. E., Pisoni, D. B., & Carrell, T. D. (1981). Speech perception without traditional speech cues. Science, 212, 947-949.
Rueckl, J. G., Paz-Alonso P. M., Molfese, P. J., Kuod , W. J., Bicke, A., Frost, S. J., Hancock, R., Wu, D. H., Menel, W. E., Duñabeitia, J. A., Lee J. R., Oliver, M., Zevin, J. D., Hoeft, F., Carreiras, M., Tzeng, O. J. L., Pugh , K. R., & Frost, R. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of National Academy of Sciences, 112 (50), 15510-15515.
Schulze, K., Mueller, K., & Koelsch, S. (2013). Auditory stroop and absolute pitch: An fMRI study. Human Brain Mapping, 34 (7), 1579-1590.
Schwartz, J., & Tallal, P. (1980). Rate of acoustic change may underlie hemispheric specialization for speech perception. Science, 207, 1380-1381.
Scott, S. K., & Wise, R. J. (2004). The functional neuroanatomy of prelexical processing in speech perception. Cognition, 92, 13-45.
Selkirk, E. (1984). On the major class features and syllable theory. In M. Aronoff & R. T. Oehrle (Eds.), Language Sound Structure: Studies in Phonology (pp.107-136). Cambridge: MIT Press.
Shen, X. S., Lin, M., & Yan, J. (1993). F0 turning point as an F0 cue to contour contrast: A case study of Mandarin tones 2 and 3. The Journal of the Acoustical Society of America, 93 (4), 2241-43.
SPSS Inc. Released 2009. PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.
Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Reviews, 43, 231-246.
Tervaniemi, M., Medvedev, S. V., Alho, K., Pakhomov, S. V., Roudas, M. S., Van Zuijen, T. L., & Näätänen, R. (2000). Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Human Brain Mapping, 10 (2), 74-79.
Thomsen, T., Rimol, L.M., Ersland, L., & Hugdahl, K. (2004). Dichotic listening reveals functional specificity in prefrontal cortex: an fMRI study. Neuroimage, 21, 211-218.
Tseng, C. Y. (2006). An Acoustic Phonetic Study on Tones in Mandarin Chinese. Institute of Linguistics, Academia Sinica, Taipei, Taiwan. (2nd edition. CD-ROM).
Turkeltaub, P. E., & Coslett, H. B. (2010). Localization of sublexical speech perception components. Brain and Language, 114 (1), 1-15.
Vouloumanos, A., Kiehl, K. A., Werker, J. F., & Liddle, P. F. (2001). Detection of sounds in the auditory stream: Event-related fMRI evidence for differential activation to speech and nonspeech. Journal of Cognitive Neuroscience, 13 (7), 994–1005.
Wang, W. S.-Y. (1976). Language change. In S. R. Harnad, H. D. Steklis, & J. Lancaster (Eds.). Origins and Evolution of Language and Speech: Annals of the New York Academy of Science. Vol.280 (pp. 61-72). New York: New York Academy of Science.
Wang, Y., Behne, D. M. Jongman, A., & Sereno, J. A. (2004). The role of linguistic experience in the hemisphere processing of lexical tone. Applied Psycholinguistics, 25, 449-466.
Wang, Y., Jongman, A., & Sereno, J. A. (2001). Dichotic perception of Mandarin tones by Chinese and American listeners. Brain and Language, 78, 332-348.
Wernicke, C. (1875). The aphasia symptom-complex: A psychological study on an anatomical basis. In P. Eling (Ed., 1994), Reader in the History of Aphasia, Classics in Psycholinguistics 4 (pp. 69-89). Amsterdam: John Benjamin.
Whalen, D., & Liberman, A. (1987). Speech perception takes precedence over nonspeech perception. Science, 237, 169-171.
Wilson, S, M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2007). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7, 701-702.
Wong, P., Schwartz, R. G., & Jenkins, J. J. (2005). Perception and production of real tones by 3-year-old, Mandarin-speaking children. Journal of Speech, Language, and Hearing Research, 48 (5), 1065-1079.
Xi, J., Zhang, L., Shu, H., Zhang, Y., & Li, P. (2010). Categorical perception of lexical tones in Chinese revealed by mismatch negativity. Neuroscience, 170, 223-231.
Xu, Y., Gandour, J. T, & Francis, A. L. (2006). Effects of language experience and stimulus complexity on the categorical perception of pitch direction. Journal of the Acoustical Society of America, 120 (2), 1063–1074.
Yip, M. (2003). Tone. Cambridge, UK: Cambridge Univ. Press.
Zaehle, T., Geiser, E., Alter, K., Jancke, L., & Meyer, M. (2008). Segmental processing in the human auditory dorsal stream. Brain Research, 1220, 179-190.
Zatorre, R. (2003). Hemispheric asymmetries in the processing of tonal stimuli. In K. Hugdahl & R. J. Davision (Eds.), The Asymmetrical Brain (pp. 411-440). Cambridge, MA: MIT Press.
Zatorre, R., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11, 946-953.
Zatorre, R., Evan, A. C., & Meyer, E. (1994). Neural mechanisms underlying melodic perception and memory for pitch. Journal of Neuroscience, 14, 1908–1919.
Zatorre, R., & Gandour, J. (2008). Neural specializations for speech and pitch: moving beyond the dichotomies, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 1087-1044.
Zatorre, R., Evan, A. C., Meyer, E., & Gjedde, A. (1992). Lateralization of phonetic and pitch discrimination in speech processing. Science, 256, 846-849.
Zhang, C., Xia, Q., & Peng, G. (2015). Mandarin third tone sandhi requires more effortful phonological encoding in speech production: Evidence from an ERP study. Journal of Neurolinguistics, 33, 149-162.
Zheng, H. Y., Minett, J. W., Peng, G., & Wang, W. S.-Y. (2012). The impact of tone systems on the categorical perception of lexical tones: An event-related potentials study. Language and Cognitive Processes, 27 (2), 184-209.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE