:::

詳目顯示

回上一頁
題名:電力系統即時調度與分析技術之研究
作者:巫俊慶
作者(外文):Wu,Chun-Ching
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
指導教授:黃維澤
姚凱超
學位類別:博士
出版日期:2017
主題關鍵詞:分散式能源微電網經濟調度多區域直接搜尋法線性規劃分散式電源最佳調度母線電壓靈敏因子牛頓-拉法森法動態規劃最佳路徑即時應用Distributed Energy ResourcesMicrogridEconomic DispatchMulti-AreaDirect Search MethodLinear ProgrammingDistributed GenerationOptimal DispatchBus VoltageSensitivity FactorsNewton–Raphson MethodDynamic ProgrammingOptimal PathReal-Time Application
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
摘 要
在包含微電網的電力系統中,尤其是配電變電所等級的微電網,因饋入與逆送大量的電力潮流對於電力系統影響甚鉅。因此電力調度變得更為複雜,而且要找到一個最佳的解決方案是困難的。本論文提出分為三階段的最佳電力調度模型,來解決此一調度的問題。所提出的模型,將整個電力系統分為兩個部分,亦即為主要電網與微電網,根據多區域調度的基本概念來解決最佳電力調度的問題。在第一階段中,使用靈敏因子方法來解決主電力系統經濟調度的問題;.在第二階段中,藉由改良式直接搜尋法求解微電網最佳電力調度問題;在第三階段中,整個電力系統的調度則根據前兩階段的解決方案,來建立線性遞增模型,求解最佳整體電力系統最佳調度問題。本論文所提方法使用Matlab撰寫方程式,並以IEEE 14-bus和30-bus的測試系統來證實其可行性和準確性。模擬結果證明提出的方法,可適用於求解此一電力系統經濟調度問題。
此外,本論文亦提出一簡單且有效率的方法,適合求解中壓微電網含不同類型的分散式電源之最佳電力調度問題,這些不同類型的分散式電源之燃料成本係由二次函數與線性函數所組成,故不適用傳統拉格朗日乘數法做電力系統經濟調度,因而提出直接搜尋法求解微電網在併網運轉與自主運轉情況下之最佳經濟調度,模擬結果證明所提出的直接搜尋法為一簡單且適用於中壓微電網之最佳電力調度。
最後,本論文提出一基於靈敏因子的母線電壓大小和相位角快速求解方法,透過動態規劃下得到最佳路徑解進而求解母線電壓,所提的方法,首先以賈可比分佈因子法計算線路電力潮流的實功率和虛功率,計算非擺動母線的的電壓大小和相位角,並透過動態規劃得到的最佳路徑解,模擬結果證明提出的方法,展現出計算快速和高準確度。
Absrtract
The inclusion of many microgrids (MGs) in power systems, especially distribution-substation-level MGs, significantly affects power systems because of large amounts of import and export power flows. Consequently, power dispatch has become complicated, and finding an optimal solution is difficult. In this study, a three-stage optimal power dispatch model is proposed to solve such dispatch problems. In the proposed model, the entire power system is divided into two parts, namely, main power grid and MGs. The optimal power dispatch problem is resolved on the basis of multi-area concepts. In stage I, the main power system economic dispatch (ED) problem is solved by sensitive factors. In stage II, the optimal power dispatches of the local MGs are addressed via an improved direct search method. In stage III, the incremental linear models for the entire power system can be established on the basis of the solutions of the previous two stages and can be subjected to linear programming to determine the optimal reschedules from the original dispatch solutions. The proposed method is coded by using Matlab and tested by utilizing IEEE 14-bus and 30-bus test systems to verify its feasibility and accuracy. The simulation results demonstrated that the proposed approach can be used for the ED of power systems with MGs as virtual power plants.
Furthermore, this dissertation proposes a simple and efficient approach for the optimal dispatch in a medium-voltage microgrid with various of DGs. The fuel costs generated by these DGs are determined using quadratic and linear functions dependent on the types of DGs. Instead of using the traditional Lagrange multiplier method for power system economic dispatch, the proposed direct search method (DSM) approach is able to handle several inequality constraints without introducing any multipliers, and furthermore it can solve the non-derivative problems or the fuel cost functions being much more complicated. Accordingly, the DSM can determine the optimal dispatch of MGs with various types of DGs and can minimize generation costs under grid-tied and autonomous operations. The simulation results demonstrate that the proposed DSM is a highly suitable and simple approach for the determination of the optimal dispatch in medium-voltage MGs with various types of DGs.
Finally, the calculation of bus voltage magnitudes and phase angles is a challenging task in real-time applications for power systems. The voltage profile, which denotes the present conditions of a power system, is determined by executing the traditional AC power flow program or by searching the supervisory control and data acquisition system. The AC power flow program is not suitable for several real-time applications, such as contingency analysis and security control calculations, because of complexity and convergence problems. Fast computation is the major concern in such applications. In this dissertation, a new method based on sensitivity factors, referred to as Jacobian-based distribution factors (JBDFs), is proposed for calculating bus voltage magnitudes and phase angles. This method requires setting up JBDFs and deriving optimal solution paths of bus voltage for non-swing buses through dynamic programming under base-case loading conditions. Under real-time conditions, the proposed method initially calculates real and reactive power line flows via JBDFs, and then computes the voltage magnitudes and phase angles of non-swing buses through the derived optimal solution paths. The excellence of the proposed hybrid calculation method is evaluated through IEEE test systems. Simulation results demonstrate that the proposed method exhibits fast computation and high accuracy.
Reference
[1] Milestones: Pearl Street Station, http://www.ieeeghn.org/wiki/index.php/Milestones:Pearl_Street_Station (accessed on 12 August 2016).new window
[2] Lasseter, R.H. MicroGrids, IEEE Power and Energy Magazine, 5, 2007, 78-94.
[3] Lasseter, R.H. Smart Distribution: Coupled Microgrids, IEEE Power and Energy Magazine, 99, 2011, 1074-1082.
[4] Smart Grids European Technology Platform, http://www.smartgrids.eu/ (accessed on 12 August 2016).
[5] Tinney, W. F.; Hart, C. E. Power Flow Solution by Newton’s Method, IEEE Trans. On Power App. & Syst., PAS-86, 1967, 1449-1460.
[6] Stott, B. Review of Load Flow Calculation Methods, Proceedings of the IEEE, 62, 7, 1974, 916-929.
[7] Chang, Y. C.; Yang, W. T.; Liu, C. C. A New Method for Loss Coefficients, IEEE Transactions on Power Systems, 9, 3, 1994, 1665-1671.
[8] Nguyen, H. Le. Newton-Raphson Method in Complex form Power Flow Analysis, 1996 IEEE Proceedings of Transmission and Distribution Conference, 1996, 591-595.
[9] Wood, A. J.; Wollenberg, B. F. Power Generation, Operation and Control, Wiley, New York, 1984.
[10] Ng, W. Y. Generalized generation distribution factors for power system security evaluations, IEEE Transactions on PAS., PAS-100, 1981, 1001-1005.
[11] Lin, C. E.; Chen, S. T.; Huang, C. L. A two-step sensitivity approach for real-time line flow calculation, Electric Power Systems Research, 21, 1, 1991, 63-69.new window
[12] Huang, W. T.; Yao, K. C. New Network Sensitivity-Based Approach for Real-Time Complex Power Flow Calculation, IET Generation Transmission & Distribution, 6, 2, 2012, 109-120.
[13] El-abiad, Ahmed H.; Jaimes, Fernando J. A Method for Optimum Scheduling of Power and Voltage Magnitude, IEEE Transactions on Power Apparatus and Systems, PAS-88, 4, 1969, 413-422.
[14] Guo, Y.; Wu, W.; Zhang, B.; Sun, H. A Fast Solution for the Lagrange Multiplier-Based Electric Power Network Parameter Error Identification Model, Energies 2014, 7, 1288-1299.
[15] Chamba, Marlon; Ano, Osvaldo. Economic Dispatch of Energy and Reserve in Competitive Markets Using Meta-heuristic Algorithms, IEEE Latin America Transactions, 11, 1, 2013, 473-478.new window
[16] Soroudi, A.; Rabiee, A. Optimal multi-area generation schedule considering renewable resources mix: a real-time approach, IET Generation, Transmission & Distribution, 7, 9, 2013, 1011-1026.
[17] Niu, Q.; Zhou, Z.; Zhang, H.-Y.; Deng, J. An Improved Quantum-Behaved Particle Swarm Optimization Method for Economic Dispatch Problems with Multiple Fuel Options and Valve-Points Effects, Energies 2012, 5, 3655-3673.
[18] Sun, J.; Xu, W.B.; Feng, B. A Global Search Strategy of Quantum-Behaved Particle Swarm Optimization, In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004, 111-116.
[19] Liu, Y.; Huang, G.; Cai, Y.; Dong, C. An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China, Energies 2011, 4, 1657-1686.
[20] Bai, H.; Miao, S.; Ran, X.; Ye, C. Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market, Energies 2015, 8, 2268-2289.
[21] Chen, A.C.M. Automated Power Distribution, IEEE Spectr,1982, 55-60.
[22] Lasseter, R.H. Smart Distribution: Coupled Microgrids, IEEE Power Energy Mag,2011, 99, 1074-1082.
[23] Lasseter, R.H. MicroGrids, IEEE Power Energy Mag. 2007, 5, 78-94.
[24] Yu, W.; Liu, D.; Huang, Y. Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network, Energies,2013, 6, 6423-6438.
[25] Kim, H.-M.; Lim, Y.; Kinoshita, T. An intelligent multiagent system for autonomous microgrid operation, Energies 2011, 4, 1657-1686.
[26] Liu, Y.; Huang, G.; Cai, Y.; Dong, C. An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China, Energies 2013, 6, 6045-6059.
[27] Jin, H.; Xu, G.; Han, W.; Gao, L.; Li, Z. Sustainable development of energy systems for western China, Energies 2010, 35, 4313-4318.
[28] Chen, C.; Duan, S.; Cai, T.; Liu, B.; Hu, G. Smart energy management system for optimal microgrid economic operation, IET Renew. Power Gener,2011, 5, 258-267.
[29] Mohamed, F.A.; Koivo, H.N. System modeling and online optimal management of MicroGrid using Mesh Adaptive Direct Search, Int. J. Electr. Power Energy Syst,2010, 32, 398-407.
[30] Chung, I.Y.; Liu, W.; Cartes, D.A.; Moon, S. Control parameter optimization for multiple distributed generators in a microgrid using particle swarm optimization, Eur. Trans. Electr. Power,2011, 21, 1200-1216.
[31] Kuo, M.T.; Lu, S.D. Design and implementation of real-time intelligent control and structure based on multi-agent systems in microgrids, Energies 2013, 6, 6045-6059.
[32] Hooke R.; Jeeves TA. Direct search solution of numerical and statistical problems, J. Assoc. Comput. Mach, 1961, 8, 212-229.
[33] B. Scott: “Review of load-flow calculation methods”, Proceedings of the IEEE, Vol. 62, No. 7, pp. 916-929 (1974).
[34] W. F. Tinney and C. E. Hart: “Power Flow Solution by Newton’s Method”, IEEE Transactions on PAS, Vol. PAS-86, PP. 1449-1456 (1967).
[35] B. Stott and O. Alsac: “Fast decoupled load flow”, IEEE Transactions on PAS, Vol. PAS-93, Issue 3, pp. 859-869(1974).
[36] S. Kamel and F. Jurado: “Fast decoupled load flow analysis with SSSC power injection model”, IEEJ Transactions on Electrical and Electronic Engineering, Vol.9, No.4, pp.370-374(2014)
[37] S. Kamel, M. Abdel-Akher, and F. Jurado: “Improved NR current injection load flow using power mismatch representation of PV bus”, Int J Electr Power Energy Syst, Vol.53, No.1, pp.64-68(2013).new window
[38] X. Y. Yang, X. X. Zhou, Y. C. Ma, and Z. C. Du: “Asymptotic numerical method for continuation power flow”, Int J Electr Power Energy Syst, Vol.43, No. 1, pp.670-679(2012).new window
[39] A. P. de Moura and A. A. F. de Moura: “Newton–Raphson power flow with constant matrices: a comparison with decoupled power flow methods”, Int J Electr Power Energy Syst, Vo.46, No.1, pp.108-114(2013).new window
[40] A. J. Wood and B. F. Wollenberg: “Power Generation, Operation and Control”, New York: John Wiley & Sons, Ltd(1996)
[41] W. Y. Ng: “Generalized generation distribution factors for power system security evaluations”, IEEE Transactions on PAS, Vol.100, No.1, pp.1101-1105(1981).new window
[42] C. E. Lin, S. T. Chen, and C. L. Huang: “A two-step sensitivity approach for real-time line flow calculation”, Electric Power Systems Research, Vol.21, No. 1, pp.63-69(1991).new window
[43] Y. C. Chang, W. T. Yang, and C. C. Liu: “A new method for calculating loss coefficients”, IEEE Transaction on Power Systems, Vol.9, No.3, pp.1665-1671(1994).
[44] Y. C. Chang, W. T. Yang, and C. C. Liu: “Improvements on the line outage distribution factor for power system security analysis”, Electric Power Systems Research, Vol.26, No.1, pp.231-236(1993).new window
[45] C. E. Lin, S. T. Chen, and C. L. Huang: “A direct newton-raphson economic dispatch”, IEEE Transaction on Power Systems, Vol.7, No.3, pp.1149-1154(1992).
[46] P. A. Ruiz and P. W. Sauer: “Voltage and reactive power estimation for contingency analysis using sensitivites”, IEEE Transaction on Power Systems, Vol.22, No.2, pp.639-647(2007).
[47] W. T. Huang and K. C.Yao: “New network sensitivity-based approach for real-time complex power flow calculation”, IET Generation Transmission & Distribution, Vol.6, No.2, pp.109-120(2012).
[48] Huang, W.-T.; Yao, K.-C.; Wu, C.-C. Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid, Energies 2014, 7, 8355-8373.
[49] Power Systems Test Case Archive. http://www.ee.washington.edu/research/pstca/ (accessed on 12 August 2016).
[50] Chedid, R.; Akiki, H.; Rahman, S. A decision support technique for the design of hybrid solar- wind power systems, IEEE Trans. Energy Convers. 1998, 13, 76-83.
[51] Marwali, M.K.C.; Ma H.; Shahidehpour, S.M.; Abdul-Rahman K.H. Short-term generation scheduling in photovoltaic-utility grid with battery storage, IEEE Trans. Power Syst. 1998, 13, 1057-1062.
[52] Henry Misas. Wind Energy Potential at Yale’s West Campus using Modern Large-Scale Turbines, Yale Wind Energy Report, September 2009.
[53] Gavanidou, E.S.; Bakirtzis, A.G. Design of a standalone system with renewable energy sources using trade off methods, IEEE Trans. Energy Convers. 1992, 7, 42-48.
[54] Lasnier F, Ang TG. Photovoltaic Engineering Handbook; Publishing Ltd: New York, NY, USA, 1990.
[55] Wood, A.J.; Wollenberg, B.F. Power Generation Operation and Control, John Wiley & Sons, Inc.: New York, NY, USA, 1996.
[56] Mohamed, F.A. Microgrid Modeling and Online Management, Ph.D. Dissertation, Helsinki University of Technology, Espoo, Finland, 17 January 2008.
[57] Ahn, S.J.; Nam S.R.; Choi, J.H.; Moon, S.I. Power Scheduling of Distributed Generators for Economic and Stable Operation of a Microgrid, IEEE Trans. Smart Grid 2013, 4, 398-405.
[58] Chen, T.H.; Chen, M.-S.; Hwang, K.-J.; Kotas, P.; Chebli, E.A. Distribution system power flow analysis—A rigid approach, IEEE Trans. Power Del. 1991, 6, 1146-1152.
[59] R. M. Burns and C. A. Gibson: “Optimization of priority lists for a unit commitment program”, IEEE Power Engineering Society Summer Meeting, Paper A-75-453-1(1975).
[60] W. Liu: “A heuristic dynamic programming based power system stabilizer for a turbo generator in a single machine power system”, the 38th IAS Annual Meeting Industry Applications Conference 2003, Vol.1, No.1, pp.270-276(2003).new window
[61] M. Lew: “Dynamic programming”, Springer: Studies in Computational Intelligence: Vol. 3, 2007.
[62] Power Systems Test Case Archive, http://www.ee.washington.edu/research/pstca/
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE