:::

詳目顯示

回上一頁
題名:影響功能性舟狀骨下降因素之探討暨介入不同硬度足部輔具對下肢生物力學傷害風險之分析
作者:陳宗榮 引用關係
作者(外文):CHEN, ZONG-RONG
校院名稱:中國文化大學
系所名稱:體育學系運動教練碩博士班
指導教授:彭賢德
學位類別:博士
出版日期:2017
主題關鍵詞:內側縱弓足部輔具生物力學medial longitudinal archfoot orthosesbiomechanical
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
本研究目的為 (1) 以身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡分析出影響靜態功能性舟狀骨下降程度的因素。(2) 比較分析扁平足和正常足受試者在未穿著足弓支撐鞋墊情況下,執行走路/跑步/垂直跳著地時的下肢生物力學參數。(3) 比較分析扁平足和正常足受試者在介入扁平足/正常足專用軟式/硬式足弓支撐鞋墊和未穿鞋墊情況下,執行走路/跑步/垂直跳著地時的下肢生物力學參數。第一階段研究:徵召50名男性扁平足受試者,以尺規量測靜態功能性舟狀骨下降程度、去指足長、股四頭肌角度,以體重和身高計量測身高、體重、身體質量指數,以身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡預測靜態功能性舟狀骨下降程度,找出最大影響因素限制研究對象篩選扁平足和正常足受試者,並比較扁平足和正常足受試者的身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡沒有達到顯著差異以標準化兩組受試者;第二階段研究:以股四頭肌角度(6-10度) 限制研究對象篩選15名直腿扁平足受試者和15名直腿正常足受試者,隨後男性扁平足受試者介入扁平足專用軟式/硬式足弓支撐鞋墊和未穿鞋墊執行走路/跑步/垂直跳著地,男性正常足受試者介入正常足專用軟式/硬式足弓支撐鞋墊和未穿鞋墊執行走路/跑步/垂直跳著地。第一階段研究:以逐步多元迴歸找出影響靜態功能性舟狀骨下降程度最大的因素,以獨立樣本t檢定考驗正常足和扁平足受試者在身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡沒有達到顯著差異以標準化受試者;第二階段研究:以皮爾森積差相關檢測扁平足/正常足身高、體重、身體質量指數、股四頭肌角度、去指足長、年齡與扁平足/正常足/走路/跑步動態功能性舟狀骨下降程度;以獨立樣本t檢定考驗經過篩選正常足和扁平足受試者執行走路/跑步/垂直跳著地動作,下肢生物力學傷害風險參數的差異;以相依樣本單因子變異數分析,考驗經過篩選扁平足受試者穿著扁平足專用軟/硬式鞋墊和未穿鞋墊 (3種情況) 執行走路/跑步/垂直跳著地下肢生物力學傷害風險參數的差異和考驗經過篩選正常足受試者穿著正常足專用軟/硬式鞋墊和未穿鞋墊 (3種情況) 執行走路/跑步/垂直跳著地動作,下肢生物力學傷害風險參數的差異。本研究結果從第一階段研究發現股四頭肌角度與靜態功能性舟狀骨下降程度達到顯著正相關 (r = 0.356;p <.05),且股四頭肌角度能夠顯著的預測靜態功能性舟狀骨下降程度 (p <.05);本研究從第二階段研究發現在未穿鞋墊狀況之下,扁平足受試者在走路時,後足內外翻總角度顯著大於正常足受試者 (p <.05),前足內外翻總角度雖在統計上未達到顯著差異 (p >.05),但屬於中效果量 (d = 0.67),扁平足受試者在跑步時,後足外翻角速度峰值顯著大於正常足受試者 (p <.05),雖然扁平足在後足內外翻總角度和前足內外翻總角度未達顯著大於正常足 (p >.05),但效果量為中效果量 (d = 0.75) (d = 0.67),扁平足受試者在垂直跳時,著地瞬間踝關節內翻/外翻角度顯著大於正常足受試者 (p <.05),扁平足在著地瞬間呈現踝關節內翻動作,而正常足呈現外翻動作,雖然,扁平足在著地瞬間髖關節外展角度沒有顯著大於正常足 (p >.05),但屬於中效果量 (d = 0.66),正常足著地後負荷率顯著大於扁平足 (p <.05),正常足在至垂直跳著地後地面反作用力峰值時間顯著小於扁平足 (p <.05);扁平足受試者在穿鞋墊狀況之下,走路時,穿著專用硬式足弓支撐鞋墊比未穿鞋墊顯著減少後足內外翻總角度 (p <.05),扁平足受試者在跑步時,穿著專用軟式足弓支撐鞋墊中比未穿著顯著增加垂直地面反作用力第二峰值 (p <.05),正常足受試者在穿鞋墊狀況之下,正常足受試者在走路時,穿著專用軟式和硬式足弓支撐鞋墊顯著比未穿著顯著的減少前足外翻角速度峰值 (p <.05),正常足受試者在跑步時,穿著專用軟式足弓支撐鞋墊和硬式足弓支撐鞋墊皆比未穿著顯著增加垂直地面反作用力第二峰值 (p <.05),正常足受試者在跑步時,穿著硬式足弓支撐鞋墊比未穿著顯著的增加垂直地面反作用力第一峰值 (p <.05)。本研究結論發現股四頭肌角度會影響到靜態功能性舟狀骨下降程度,意即未來研究可以考慮加上股四頭肌角度來篩選扁平足和正常足受試者,能夠排除腿型的影響,而真正確認"足部型態"對足底腱膜炎、內側脛骨壓力症侯群、足部壓力性骨折等傷害風險的影響;本研究第二階段研究進一步控制影響靜態功能性舟狀骨下降程度的因素和腿型去篩選出直腿扁平足受試者和直腿正常足受試者,發現"足部型態" (扁平足) 確實會增加足底腱膜炎、內側脛骨壓力症侯群、足部壓力性骨折等傷害風險,扁平足受試者方面,扁平足受試者穿著專用硬式足弓支撐鞋墊在走路時,有效減少後足內外翻總角度,進而減少足底腱膜炎、內側脛骨壓力症侯群、足部壓力性骨折等傷害的風險,然而,穿著專用軟式足弓支撐鞋墊無法達到類似的效果,除此之外,扁平足穿著專用軟式足弓支撐鞋墊可以增加跑步時的推蹬力量,正常足受試者方面,正常足無論穿著專用軟式或硬式足弓支撐鞋墊皆可以減少在走路時的足底腱膜炎、內側脛骨壓力症侯群、足部壓力性骨折等傷害的風險,此外,正常足穿著專用軟式足弓支撐鞋墊和硬式足弓支撐鞋墊皆可以增加跑步時的推蹬力量,但是,必須注意正常足在跑步時穿著專用硬式足弓支撐鞋墊會增加地面的衝擊力。
Purpose: There were three sections in the study. The purpose of the first section of this study was to investigate the relationships of the body weight, body height, body mass index, truncated foot length, age and quadriceps angle with the static functional navicular drop of flat-foot population and to find the most crucial factor influencing the static functional navicular drop. The purpose of the second section of this study was to compare the effect of flat-foot and normal-foot on the risk of lower limb injury during walking, running and vetical jumping. The purpose of the third section of this study was to compare the effect of the soft/ rigid arch-support insole on the risk of lower limb injury during walking, running and vetical jumping in flat-foot and normal foot. The subjects with flat-foot and normal foot were slected based on the most crucial factor influencing the static fuctional navicualr drop. Methods: First, fifty health males were measured for the static functional navicualr drop, body height, body weight, body mass index, truncated foot length and quadriceps angle using height-weight scale and rulers. Pearson correlation coefficients were used to examine the relationships of the body height, body weight, body mass index, truncated foot length, age and quadriceps angle with the static functional navicular drop. A stepwise regression model was employed to determine which parameters were related to the static fuctional navicular drop. Second, fifteen subjects with flat-foot and fifteen subjects normal-foot were selected and they were classified as straight leg based on quadriceps angle of 6-10 degrees. The flat-foot were fitted with their specific soft/ rigid arch-support insole and non-arch support insole while walking, running and vertical jumping. The normal-foot were also fitted with their specific soft/ rigid arch-support insole and non-arch support insole while walking, running and vertical jumping. Pearson correlation coefficients were used to examine which parameters (body weight, body height, body mass index, truncated foot length, age and quadriceps angle) were related to the dynamic fuctional navicular drop. All parameters were analyzed using the independent t-test to evaluate whether the means of the variables differed significantly between the flat-foot and normal-foot. An independent t-test was used to compare the biomechanical data of the flat-foot and normal-foot with the non-arch support insole while walking, running, vertical jumping. The one-way repeated measures ANOVA was performed to compare the changes of biomechanical parameters depending on the different conditions (soft/ rigid arch-support insole and non-arch support insole) within flat-foot and normal-foot groups. Results: The correlation between the Q angle and static functional navicular drop was medium positive (r = 0.356;p = <.05). The Q angle can significantly predict the static functional navicular drop (p <.05). Subjects with flat-foot demonstrated greater total rearfoot frontal plane angle (p <.05) compared to those with normal-foot while walking. Analyses of total forefoot frontal plane angles showed no statistically significant difference between groups (p >.05), but a medium effect size (d = 0.67) was reported for higher total forefoot frontal plane angles in the flat-foot group while walking. Subjects with flat-foot demonstrated greater peak rear-foot eversion velocity (p <.05) compared to those with normal-foot while running. Although the total forefoot and rearfoot frontal plane angles showed no statistically significant difference between groups (p >.05), but a medium effect size (d = 0.75) (d = 0.67) was reported for higher total forefoot and rearfoot frontal plane angle in the flat-foot group while running. Subjects with flat-foot demonstrated the greater ankle inversion angle at initial contact (p <.05) compared to those with normal-foot while vertical jumping. Analyses of hip abduction angle at initial contact showed no statistically significant difference between groups (p >.05), but a medium effect size (d = 0.66) was reported for higher hip abduction angle at initial contact in the flat-foot group. Subjects with normal-foot demonstrated the greater loading rate (p <.05) and smaller time to peak force compared to those with flat-foot while vertical jumping. The frontal plane angle of rearfoot of the flat-foot was less in the rigid arch-support insole than in the non-arch-support insole while walking (p <.05). Peak fore-foot eversion velocity of the normal-foot was less in the soft and rigid arch-support insole than in the non-arch support insole while walking (p <.05). Peak impact force of the normal-foot was greater in the rigid arch-support insole than in the non-arch support insole while running (p <.05). Peak proplusive force of the flat-foot was greater in soft arch support insole than in the non-arch support insole while runing. Peak proplusive force of the normal-foot was greater in soft/ rigid arch support insole than in the non-arch support insole while runing. Conclusion: The Q angle can influence the static functional navicular drop. This would mean that researchers can considere using Q angle to screen the flat-feet and normal-foot, excluding the influence of leg type, and truly confirm the influence of foot type on plantar fasciitis, medial tibial stress syndrome, and foot pressure fractures. This study further used the factors influencing the functional navicular drop and leg type to screen the subject with flat-foot and normal-foot, and found that the flat-foot did increase the risk of the plantar fasciitis, medial tibial stress syndrome, and foot pressure fractures. This study found that the rigid arch-support insole can decrease total rearfoot frontal plane angles inducing the risk of plantar fasciitis, medial tibial stress syndrome, and foot pressure fractures while walking in flat-foot, however, the soft arch-support insole can not achieve the benifit. In addition, the soft arch-support insole can increase the proplusive force while running in flat-foot. This study found that the normal-foot wearing soft and rigid arch-support insoles while walking can reduce the risk of plantar fasciitis, medial tibial stress syndrome, and foot pressure fractures. Moreover, the normal-foot wearing the soft and rigid arch-support insole can increase the proplusive force while running. But the normal-foot wearing the rigid arch-support insole can increase the impact force.
張佑如、林志哲 (2011) 。 不同鞋墊硬度及 Eva 材質特性對著地動作之力學探討。國北教大體育,(5),51-58。new window
邱宏達、相子元 (1996) 。運動方式與鞋墊厚度對避震效果之影響。體育學報, (21),207-217。new window
吳明隆 (2007) 。SPSS 操作與應用: 變異數分析實務。台北市:五南圖書出版股份有限公司。
Akiyama, K., Noh, B., Fukano, M., Miyakawa, S., Hirose, N., & Fukubayashi, T. (2015). Analysis of the talocrural and subtalar joint motions in patients with medial tibial stress syndrome. Journal of Foot and Ankle Research, 8, 25-015-0084-7. eCollection 2015.
Allen, M. K., & Glasoe, W. M. (2000). Metrecom measurement of navicular drop in subjects with anterior cruciate ligament injury. Journal of Athletic Training, 35(4), 403-406.
Atkinson-Smith, C., & Betts, R. (1992). The relationships between footprints, foot pressure distributions, rearfoot motion and foot function in runners. The Foot, 2(3), 148-154.
Balsdon, M. E., Bushey, K. M., Dombroski, C. E., LeBel, M. E., & Jenkyn, T. R. (2016). Medial longitudinal arch angle presents significant differences between foot types: A biplane fluoroscopy study. Journal of Biomechanical Engineering, 138(10), 10.1115/1.4034463.
Bandholm, T., Boysen, L., Haugaard, S., Zebis, M. K., & Bencke, J. (2008). Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. The Journal of Foot and Ankle Surgery : Official Publication of the American College of Foot and Ankle Surgeons, 47(2), 89-95.
Barnes, A., Wheat, J., & Milner, C. E. (2011). Fore- and rearfoot kinematics in high- and low-arched individuals during running. Foot & Ankle International, 32(7), 710-716.
Beckett, M. E., Massie, D. L., Bowers, K. D., & Stoll, D. A. (1992). Incidence of hyperpronation in the ACL injured knee: a clinical perspective. Journal of athletic training, 27(1), 58.
Barrios, J. A., Heitkamp, C. A., Smith, B. P., Sturgeon, M. M., Suckow, D. W., & Sutton, C. R. (2016). Three-dimensional hip and knee kinematics during walking, running, and single-limb drop landing in females with and without genu valgum. Clinical Biomechanics, 31, 7-11.
Barton, C. J., Levinger, P., Crossley, K. M., Webster, K. E., & Menz, H. B. (2011). Relationships between the foot posture index and foot kinematics during gait in individuals with and without patellofemoral pain syndrome. Journal of Foot and Ankle Research, 4(1), 1.
Beling, J., Wolfe, G. A., Allen, K. A., & Boyle, J. M. (1998). Lower extremity preference during gross and fine motor skills performed in sitting and standing postures. Journal of Orthopaedic & Sports Physical Therapy, 28(6), 400-404.
Bennett, J. E., Reinking, M. F., Pluemer, B., Pentel, A., Seaton, M., & Killian, C. (2001). Factors contributing to the development of medial tibial stress syndrome in high school runners. Journal of Orthopaedic & Sports Physical Therapy, 31(9), 504-510.
Buchanan, K. R., & Davis, I. (2005). The relationship between forefoot, midfoot, and rearfoot static alignment in pain-free individuals. Journal of Orthopaedic & Sports Physical Therapy, 35(9), 559-566.
Butterworth, P. A., Landorf, K., Gilleard, W., Urquhart, D., & Menz, H. (2014). The association between body composition and foot structure and function: A systematic review. Obesity Reviews, 15(4), 348-357.
Cohn, J. (1988). Statistics power analysis for behavioral sciences. (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associate.
Caravaggi, P., Pataky, T., Günther, M., Savage, R., & Crompton, R. (2010). Dynamics of longitudinal arch support in relation to walking speed: Contribution of the plantar aponeurosis. Journal of Anatomy, 217(3), 254-261.
Chang, J. S., Kwon, Y. H., Kim, C. S., Ahn, S., & Park, S. H. (2012). Differences of ground reaction forces and kinematics of lower extremity according to landing height between flat and normal feet. Journal of Back and Musculoskeletal Rehabilitation, 25(1), 21-26.
Chang, R., Rodrigues, P. A., Van Emmerik, R. E., & Hamill, J. (2014). Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis. Journal of Biomechanics, 47(11), 2571-2577.
Christopher, R. C., Drouin, J. M., & Houglum, P. A. (2006). The influence of a foot orthotic on lower extremity transverse plane kinematics in collegiate female athletes with pes planus. Journal of Sports Science and Medicine, 5, 646-655.
Chuter, V. H., & de Jonge, Xanne AK Janse. (2012). Proximal and distal contributions to lower extremity injury: A review of the literature. Gait & Posture, 36(1), 7-15.
Cobb, S. C., Tis, L. L., Johnson, J. T., Geil, M. D., & McCarty, F. A. (2009). The effect of low-mobile foot posture on multi-segment medial foot model gait kinematics. Gait & Posture, 30(3), 334-339.
Daneshmandi, H., Saki, F., Shahheidari, S., & Khoori, A. (2011). Lower extremity malalignment and its linear relation with Q angle in female athletes. Procedia-Social and Behavioral Sciences, 15, 3349-3354.
Davis, I. S. (2004). How do we accurately measure foot motion? Journal of Orthopaedic & Sports Physical Therapy, 34(9), 502-503.
Dicharry, J. M., Franz, J. R., Croce, U. D., Wilder, R. P., Riley, P. O., & Kerrigan, D. C. (2009). Differences in static and dynamic measures in evaluation of talonavicular mobility in gait. Journal of Orthopaedic & Sports Physical Therapy, 39(8), 628-634.
Dixon, S. J. (2007). Influence of a commercially available orthotic device on rearfoot eversion and vertical ground reaction force when running in military footwear. Military Medicine, 172(4), 446-450.
Erden, A., Altug, F., & Cavlak, U. (2013). Impact of body mass index and gender on medial longitudinal arch drop in young healthy population. Medicina Sportiva: Journal of Romanian Sports Medicine Society, 9(2), 2076.
Eslami, M., Begon, M., Hinse, S., Sadeghi, H., Popov, P., & Allard, P. (2009). Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running. Journal of Science and Medicine in Sport, 12(6), 679-684.
Eslami, M., Damavandi, M., & Ferber, R. (2014). Association of navicular drop and selected lower-limb biomechanical measures during the stance phase of running. Journal of Applied Biomechanics, 30(2)
Faria, A., Gabriel, R., Abrantes, J., Brás, R., & Moreira, H. (2010). The relationship of body mass index, age and triceps-surae musculotendinous stiffness with the foot arch structure of postmenopausal women. Clinical Biomechanics, 25(6), 588-593.
Farr, S., Kranzl, A., Pablik, E., Kaipel, M., & Ganger, R. (2014). Functional and radiographic consideration of lower limb malalignment in children and adolescents with idiopathic genu valgum. Journal of Orthopaedic Research, 32(10), 1362-1370.
Ferber, R., & Hettinga, B. A. (2015). A comparison of different over-the-counter foot orthotic devices on multi-segment foot biomechanics. Prosthetics and Orthotics International,
Ganesan, B., Fong, K., Luximon, A., & Al-Jumaily, A. (2016). Kinetic and kinematic analysis of gait pattern of 13 year old children with unilateral genu valgum. European Review for Medical and Pharmacological Sciences, 20(15), 3168-3171.
Han, Y., Duan, D., Zhao, K., Wang, X., Ouyang, L., & Liu, G. (2017). Investigation of the relationship between flatfoot and patellar subluxation in adolescents. The Journal of Foot and Ankle Surgery, 56(1), 15-18.
Hargrave, M. D., Carcia, C. R., Gansneder, B. M., & Shultz, S. J. (2003). Subtalar pronation does not influence impact forces or rate of loading during a single-leg landing. Journal of Athletic Training, 38(1), 18.
Hertel, J., Dorfman, J. H., & Braham, R. A. (2004). Lower extremity malalignments and anterior cruciate ligament injury history. J Sports Sci Med, 3(4), 220-225.
Hoffman, S. E., Peltz, C. D., Haladik, J. A., Divine, G., Nurse, M. A., & Bey, M. J. (2015). Dynamic in-vivo assessment of navicular drop while running in barefoot, minimalist, and motion control footwear conditions. Gait & Posture, 41(3), 825-829.
Hsu, W., Lewis, C. L., Monaghan, G. M., Saltzman, E., Hamill, J., & Holt, K. G. (2014). Orthoses posted in both the forefoot and rearfoot reduce moments and angular impulses on lower extremity joints during walking. Journal of Biomechanics, 47(11), 2618-2625.
Huang, Y., Wang, L., Wang, H., Chang, K., & Leong, C. (2004). The relationship between the flexible flatfoot and plantar fasciitis: Ultrasonographic evaluation. Chang Gung Medical Journal, 27(6), 443-448.
Hunt, A. E., & Smith, R. M. (2004). Mechanics and control of the flat versus normal foot during the stance phase of walking. Clinical Biomechanics, 19(4), 391-397.
Jenkins, W. L., Killian, C. B., Williams Iii, D., Loudon, J., & Raedeke, S. G. (2007). Anterior cruciate ligament injury in female and male athletes: The relationship between foot structure and injury. Journal of the American Podiatric Medical Association, 97(5), 371-376.
Jenkins, W. L., Williams, D., Bevil, B., Stanley, S., Blemker, M., Taylor, D., et al. (2011). Gender and foot orthotic device effect on frontal plane hip motion during landing from a vertical jump. J Appl Biomech, 27(2), 130-136.
Joseph, M., Tiberio, D., Baird, J. L., Trojian, T. H., Anderson, J. M., Kraemer, W. J., et al. (2008). Knee valgus during drop jumps in national collegiate athletic association division I female athletes: The effect of a medial post. The American Journal of Sports Medicine, 36(2), 285-289.
Kernozek, T. W., & Greer, N. L. (1993). Quadriceps angle and rearfoot motion: Relationships in walking. Archives of Physical Medicine and Rehabilitation, 74(4), 407-410.
Knutzen, K. M., & Price, A. (1994). Lower extremity static and dynamic relationships with rearfoot motion in gait. Journal of the American Podiatric Medical Association, 84(4), 171-180.
Lane, T. J., Landorf, K. B., Bonanno, D. R., Raspovic, A., & Menz, H. B. (2014). Effects of shoe sole hardness on plantar pressure and comfort in older people with forefoot pain. Gait & Posture, 39(1), 247-251.
Langley, B., Cramp, M., & Morrison, S. C. (2015). Selected static foot assessments do not predict medial longitudinal arch motion during running. Journal of Foot and Ankle Research, 8(1), 1.
Leardini, A., Benedetti, M., Berti, L., Bettinelli, D., Nativo, R., & Giannini, S. (2007). Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait & Posture, 25(3), 453-462.
Lees, A., Lake, M., & Klenerman, L. (2005). Shock absorption during forefoot running and its relationship to medial longitudinal arch height. Foot & Ankle International, 26(12), 1081-1088.
Levinger, P., Murley, G. S., Barton, C. J., Cotchett, M. P., McSweeney, S. R., & Menz, H. B. (2010). A comparison of foot kinematics in people with normal-and flat-arched feet using the oxford foot model. Gait & Posture, 32(4), 519-523.
Loudon, J. K., Jenkins, W., & Loudon, K. L. (1996). The relationship between static posture and ACL injury in female athletes. Journal of Orthopaedic & Sports Physical Therapy, 24(2), 91-97.
Mahaffey, R., Morrison, S. C., Bassett, P., Drechsler, W. I., & Cramp, M. C. (2016). The impact of body fat on three dimensional motion of the paediatric foot during walking. Gait & Posture, 44, 155-160.
McClay, I., & Manal, K. (1998). A comparison of three-dimensional lower extremity kinematics during running between excessive pronators and normals. Clinical Biomechanics, 13(3), 195-203.
McPoil, T. G., & Cornwall, M. W. (1996). The relationship between static lower extremity measurements and rearfoot motion during walking. Journal of Orthopaedic & Sports Physical Therapy, 24(5), 309-314.
Medina McKeon, J. M., & Hertel, J. (2009). Sex differences and representative values for 6 lower extremity alignment measures. Journal of Athletic Training, 44(3), 249-255.
Menz, H. B. (1998). Alternative techniques for the clinical assessment of foot pronation. Journal of the American Podiatric Medical Association, 88(3), 119-129.
Mills, K., Blanch, P., & Vicenzino, B. (2012). Comfort and midfoot mobility rather than orthosis hardness or contouring influence their immediate effects on lower limb function in patients with anterior knee pain. Clinical Biomechanics, 27(2), 202-208.
Mootanah, R., Song, J., Lenhoff, M. W., Hafer, J. F., Backus, S. I., Gagnon, D., et al. (2013). Foot type biomechanics part 2: Are structure and anthropometrics related to function? Gait & Posture, 37(3), 452-456.
Mündermann, A., Nigg, B. M., Humble, R. N., & Stefanyshyn, D. J. (2003). Foot orthotics affect lower extremity kinematics and kinetics during running. Clinical Biomechanics, 18(3), 254-262.
Nachbauer, W., & Nigg, B. M. (1992). Effects of arch height of the foot on ground reaction forces in running. Medicine and Science in Sports and Exercise, 24(11), 1264-1269.
Newman, P., Witchalls, J., Waddington, G., & Adams, R. (2013). Risk factors associated with medial tibial stress syndrome in runners: A systematic review and meta-analysis. Open Access J Sports Med, 4, 229-241.
Nguyen, A., & Shultz, S. J. (2009). Identifying relationships among lower extremity alignment characteristics. Journal of Athletic Training, 44(5), 511-518.
Nguyen, A., Shultz, S. J., & Schmitz, R. J. (2015). Landing biomechanics in participants with different static lower extremity alignment profiles. Journal of Athletic Training, 50(5), 498-507.
Nielsen, R. G., Rathleff, M. S., Simonsen, O. H., & Langberg, H. (2009). Determination of normal values for navicular drop during walking: A new model correcting for foot length and gender. Journal of Foot and Ankle Research, 2(1), 1.
Park, K., & Seo, K. (2015). Effects of a functional foot orthosis on the knee angle in the sagittal plane of college students in their 20s with flatfoot. Journal of Physical Therapy Science, 27(4), 1211-1213.
Plisky, M. S., Rauh, M. J., Heiderscheit, B., Underwood, F. B., & Tank, R. T. (2007). Medial tibial stress syndrome in high school cross-country runners: Incidence and risk factors. Journal of Orthopaedic & Sports Physical Therapy, 37(2), 40-47.
Pohl, M. B., Hamill, J., & Davis, I. S. (2009). Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners. Clinical Journal of Sport Medicine : Official Journal of the Canadian Academy of Sport Medicine, 19(5), 372-376.
Powell, D. W., Long, B., Milner, C. E., & Zhang, S. (2011). Frontal plane multi-segment foot kinematics in high-and low-arched females during dynamic loading tasks. Human Movement Science, 30(1), 105-114.
Prachgosin, T., Chong, D. Y., Leelasamran, W., Smithmaitrie, P., & Chatpun, S. (2015). Medial longitudinal arch biomechanics evaluation during gait in subjects with flexible flatfoot. Acta of Bioengineering and Biomechanics, 17(4)
Rathleff, M. S., Nielsen, R. G., & Kersting, U. G. (2012). Navicula drop test ad modum brody: Does it show how the foot moves under dynamic conditions? Journal of the American Podiatric Medical Association, 102(1), 34-38.new window
Ribeiro, A. P., Trombini-Souza, F., Tessutti, V., Rodrigues Lima, F., Sacco, Isabel de Camargo Neves, & João, S. M. A. (2011). Rearfoot alignment and medial longitudinal arch configurations of runners with symptoms and histories of plantar fasciitis. Clinics, 66(6), 1027-1033.
Seegmiller, J. G., & McCaw, S. T. (2003). Ground reaction forces among gymnasts and recreational athletes in drop landings. Journal of Athletic Training, 38(4), 311.
Sharma, J., Golby, J., Greeves, J., & Spears, I. R. (2011). Biomechanical and lifestyle risk factors for medial tibia stress syndrome in army recruits: A prospective study. Gait & Posture, 33(3), 361-365.
Sheykhi-Dolagh, R., Saeedi, H., Farahmand, B., Kamyab, M., Kamali, M., Gholizadeh, H., et al. (2015). The influence of foot orthoses on foot mobility magnitude and arch height index in adults with flexible flat feet. Prosthetics and Orthotics International, 39(3), 190-196.
Smith, J., Szczerba, J. E., Arnold, B. L., Perrin, D. H., & Martin, D. E. (1997). Role of hyperpronation as a possible risk factor for anterior cruciate ligament injuries. Journal of Athletic Training, 32(1), 25-28.
Smith, L. S., Clarke, T. E., Hamill, C. L., & Santopietro, F. (1986). The effects of soft and semi-rigid orthoses upon rearfoot movement in running. Journal of the American Podiatric Medical Association, 76(4), 227-233.
Stief, F., Böhm, H., Dussa, C. U., Multerer, C., Schwirtz, A., Imhoff, A. B., et al. (2014). Effect of lower limb malalignment in the frontal plane on transverse plane mechanics during gait in young individuals with varus knee alignment. The Knee, 21(3), 688-693.
Tang, S. F., Chen, C., Wu, C., Hong, W., Chen, K., & Chen, C. (2015). The effects of total contact insole with forefoot medial posting on rearfoot movement and foot pressure distributions in patients with flexible flatfoot. Clinical Neurology and Neurosurgery, 129, S8-S11.
Tillman, M. D., Chiumento, A. B., Trimble, M. H., Bauer, J. A., Cauraugh, J. H., Kaminski, T. W., et al. (2003). Tibiofemoral rotation in landing: The influence of medially and laterally posted orthotics. Physical Therapy in Sport, 4(1), 34-39.
Van Gheluwe, B., Kirby, K. A., & Hagman, F. (2005). Effects of simulated genu valgum and genu varum on ground reaction forces and subtalar joint function during gait. Journal of the American Podiatric Medical Association, 95(6), 531-541.
Wang, L., Gu, C., Chen, W., & Chang, M. (2010). Potential for non-contact ACL injury between step-close-jump and hop-jump tasks. Journal of Sports Science and Medicine, 9, 134-139.
Weiss, L., DeForest, B., Hammond, K., Schilling, B., & Ferreira, L. (2013). Reliability of goniometry-based Q-angle. Pm&r, 5(9), 763-768.
Williams Iii, D. S., McClay, I. S., & Hamill, J. (2001). Arch structure and injury patterns in runners. Clinical Biomechanics, 16(4), 341-347.
Williams, D. S.,3rd, McClay Davis, I., & Baitch, S. P. (2003). Effect of inverted orthoses on lower-extremity mechanics in runners. Medicine and Science in Sports and Exercise, 35(12), 2060-2068.
Williams, D. S., & McClay, I. S. (2000). Measurements used to characterize the foot and the medial longitudinal arch: Reliability and validity. Physical Therapy, 80(9), 864-871.
Wu, G., & Cavanagh, P. R. (1995). ISB recommendations for standardization in the reporting of kinematic data. Journal of Biomechanics, 28(10), 1257-1261.
Yates, B., & White, S. (2004). The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. The American Journal of Sports Medicine, 32(3), 772-780.
Yüksel, O., Ozgürbüz, C., Ergün, M., Işlegen, C., Taskiran, E., Denerel, N., et al. (2011). Inversion/Eversion strength dysbalance in patients with medial tibial stress syndrome. J Sports Sci Med, 10(4), 737-742.
Zhang, S., Clowers, K., Kohstall, C., & Yu, Y. (2005). Effects of various midsole densities of basketball shoes on impact attenuation during landing activities. Journal of Applied Biomechanics, 21(1), 3-17.
Zifchock, R. A., & Davis, I. (2008). A comparison of semi-custom and custom foot orthotic devices in high-and low-arched individuals during walking. Clinical Biomechanics, 23(10), 1287-1293.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top