:::

詳目顯示

回上一頁
題名:肥胖、心肺適能與任務轉換之關係:事件關聯電位研究
作者:宋岱芬
作者(外文):SONG, TAI-FEN
校院名稱:國立體育大學
系所名稱:競技與教練科學研究所
指導教授:張育愷
學位類別:博士
出版日期:2018
主題關鍵詞:肥胖體適能執行功能工作記憶事件關聯電位obesityfitnessexecutive functionworking memoryevent-related potential
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
本研究旨在探討肥胖與正常體重年輕族群與任務轉換相關執行功能的行為表現與電生理活動情形之差異。本研究招募140位符合身體質量指數與預測最大攝氧量標準的18-25歲年輕男性。參與者分為以下四組:35位肥胖高心肺適能組 、35位肥胖低心肺適能組、35位正常體重高心肺適能組,以及35位正常體重低心肺適能組。各組在執行任務轉換作業時,同時進行認知行為表現與事件關聯電位的資料收集 (事件關聯電位包含記錄N1與P3成分波)。該作業的指標包含全面性轉換 (即,同質與異質回合) 與局部性轉換 (即,轉換與非轉換試驗)。本研究結果顯示,在行為部分,相較於肥胖高心肺適能、正常體重低心肺適能與肥胖低心肺適能三組,正常體重高心肺適能組無論在全面性轉換或局部性轉換皆一致有較快的反應時間。而肥胖高心肺適能組在局部性轉換反應時間亦顯著快於肥胖低心肺適能組。同樣地,針對ERP不同成分進一步分析,結果顯示,與其他三組相比,正常體重高心肺適能組能誘發較大的P3振幅。另外,則是觀察到正常體重高心肺適能組,相較於肥胖高心肺適能組有較大的N1振幅。本研究結論指出,具有正常體重且高心肺適能者能有較好的認知功能與注意力資源的分配。不僅如此,根據局部性轉換的發現,亦意謂著在肥胖個體中,心肺適能可以獲得相似地提升執行功能的效益。
This study aims to investigate the difference of executive functions between a young population suffering from obesity and a normal population, in relation to task-switching, regarding both behavioral performances and electrophysiological activation. 140 young adults aged 18-25 years that met the criteria for body mass index (BMI) and predictability of the maximal oxygen uptake (VO2max) were recruited. Participants were categorized into four groups: 35 obese with high cardiorespiratory fitness (OH), 35 obese with low cardiorespiratory fitness (OL), 35 normal-weight with high cardiorespiratory fitness (NH), and 35 weight-weight with low cardiorespiratory fitness (NL). The N1 and P3 event-related potential (ERP) components were recorded while the groups were performing the task-switching task. The indices of the task-switching task included the global switch (i.e., heterogeneous and homogeneous block) and the local switch (i.e., switch and non-switch trials). Behavioral results revealed that NH group had superior performance on the global switch compared to the OH, NL and OL groups. Regarding to the local switch, NH group had superior performance compared to the OH, NL and OL groups. Finally, OH group had superior local switch performance than the OL group did. Analyses of ERP components further revealed that NH had larger mean P3 amplitudes during both the global and local switch, compared to the other three groups. Finally, larger N1 amplitude was observed in the NH group during the local switch compared to the OH group. These data suggested that individuals with normal-weight and high cardiorespiratory fitness demonstrated better cognitive functioning, and attentional resource allocation. Furthermore, among those obese individuals, cardiorespiratory fitness might selectively benefit the executive function, as represented by the superior performance in the local switch observed in the OH than in the OL.
Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 17-42. doi:10.1007/s11065-006-9002-x
Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, 3, CD005381. doi:10.1002/14651858.CD005381.pub3
Astle, D. E., Jackson, G. M., & Swainson, R. (2008). Fractionating the cognitive control required to bring about a change in task: A dense-sensor event-related potential study. Journal of Cognitive Neuroscience, 20(2), 255-267. doi:10.1162/jocn.2008.20015
Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2009). Acute aerobic exercise and information processing: Modulation of executive control in a Random Number Generation task. Acta Psychologica, 132(1), 85-95. doi:10.1016/j.actpsy.2009.06.008
Babiloni, C., Del Percio, C., Valenzano, A., Marzano, N., De Rosas, M., Petito, A., . . . Cibelli, G. (2009). Frontal attentional responses to food size are abnormal in obese subjects: An electroencephalographic study. Clinical Neurophysiology, 120(8), 1441-1448. doi:10.1016/j.clinph.2009.06.012
Berchicci, M., Pontifex, M. B., Drollette, E. S., Pesce, C., Hillman, C. H., & Di Russo, F. (2015). From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health. Neuroscience, 298, 211-219. doi:10.1016/j.neuroscience.2015.04.028
Best, J. R. (2010). Effects of physical activity on children's executive function: Contributions of experimental research on aerobic exercise. Developmental Review, 30(4), 331-351.
Boeka, A. G., & Lokken, K. L. (2008). Neuropsychological performance of a clinical sample of extremely obese individuals. Archives of Clinical Neuropsychology, 23(4), 467-474. doi:10.1016/j.acn.2008.03.003
Bove, R. M., Gerweck, A. V., Mancuso, S. M., Bredella, M. A., Sherman, J. C., & Miller, K. K. (2016). Association between adiposity and cognitive function in young men: Hormonal mechanisms. Obesity (Silver Spring), 24(4), 954-961. doi:10.1002/oby.21415
Buck, S. M., Hillman, C. H., & Castelli, D. M. (2008). The relation of aerobic fitness to stroop task performance in preadolescent children. Medicine and Science in Sports and Exercise, 40(1), 166-172. doi:10.1249/mss.0b013e318159b035
Calvo, D., Galioto, R., Gunstad, J., & Spitznagel, M. B. (2014). Uncontrolled eating is associated with reduced executive functioning. Clinical Obesity, 4(3), 172-179. doi:10.1111/cob.12058
Caterson, I. D., & Gill, T. P. (2002). Obesity: Epidemiology and possible prevention. Best Practice & Research. Clinical Endocrinology & Metabolism, 16(4), 595-610.
Chaddock-Heyman, L., Hillman, C. H., Cohen, N. J., & Kramer, A. F. (2014). III. The importance of physical activity and aerobic fitness for cognitive control and memory in children. Monographs of the Society for Research in Child Development, 79(4), 25-50. doi:10.1111/mono.12129
Chaddock, L., Hillman, C. H., Pontifex, M. B., Johnson, C. R., Raine, L. B., & Kramer, A. F. (2012). Childhood aerobic fitness predicts cognitive performance one year later. Journal of Sports Sciences, 30(5), 421-430. doi:10.1080/02640414.2011.647706
Chang, Y. K., Huang, C. J., Chen, K. F., & Hung, T. M. (2013). Physical activity and working memory in healthy older adults: An ERP study. Psychophysiology, 50(11), 1174-1182. doi:10.1111/psyp.12089
Chang, Y. K., Hung, C. L., Huang, C. J., Hatfield, B. D., & Hung, T, M. (2014). Effects of an aquatic exercise program on inhibitory control in children with ADHD: A preliminary study. Archives of Clinical Neuropsychology, 29(3), 217-223.
Chen, S. R., Tseng, C. L., Kuo, S. Y., & Chang, Y. K. (2016). Effects of a physical activity intervention on autonomic and executive functions in obese young adolescents: A randomized controlled trial. Health Psychology, 35(10), 1120-1125. doi:10.1037/hea0000390
Cohen, J. I., Yates, K. F., Duong, M., & Convit, A. (2011). Obesity, orbitofrontal structure and function are associated with food choice: A cross-sectional study. BMJ Open, 1(2), e000175. doi:10.1136/bmjopen-2011-000175
Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125-130.
Coombs, N. A., & Stamatakis, E. (2015). Associations between objectively assessed and questionnaire-based sedentary behaviour with BMI-defined obesity among general population children and adolescents living in England. BMJ Open, 5(6), e007172. doi:10.1136/bmjopen-2014-007172
Coppin, G., Nolan-Poupart, S., Jones-Gotman, M., & Small, D. M. (2014). Working memory and reward association learning impairments in obesity. Neuropsychologia, 65, 146-155. doi:10.1016/j.neuropsychologia.2014.10.004
Dai, C. T., Chang, Y. K., Huang, C. J., & Hung, T. M. (2013). Exercise mode and executive function in older adults: An ERP study of task-switching. Brain and Cognition, 83(2), 153-162. doi:10.1016/j.bandc.2013.07.007
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. doi:10.1146/annurev-psych-113011-143750
Do, K., Brown, R. E., Wharton, S., Ardern, C. I., & Kuk, J. L. (2018). Association between cardiorespiratory fitness and metabolic risk factors in a population with mild to severe obesity. BMC Obesity, 5, 5. doi:10.1186/s40608-018-0183-7
Duchesne, M., Mattos, P., Appolinario, J. C., de Freitas, S. R., Coutinho, G., Santos, C., & Coutinho, W. (2010). Assessment of executive functions in obese individuals with binge eating disorder. Revista Brasileira de Psiquiatria, 32(4), 381-388.
Dupuy, O., Gauthier, C. J., Fraser, S. A., Desjardins-Crepeau, L., Desjardins, M., Mekary, S., . . . Bherer, L. (2015). Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Frontiers in Human Neuroscience, 9, 66. doi:10.3389/fnhum.2015.00066
Edmunds, L., Waters, E., & Elliott, E. J. (2001). Evidence based paediatrics: Evidence based management of childhood obesity. British Medical Journal, 323(7318), 916-919.
Etnier, J. L., & Chang, Y. K. (2009). The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. Journal of Sport and Exercise Psychology, 31(4), 469-483.
Fabiani, M., Gratton, G., & Federmeier, K. D. (2009). Event-related brain potentials: Methods, theory, and applications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 85-119). New York: Cambridge University Press.
Fagundo, A. B., de la Torre, R., Jimenez-Murcia, S., Aguera, Z., Granero, R., Tarrega, S., . . . Fernandez-Aranda, F. (2012). Executive functions profile in extreme eating/weight conditions: From anorexia nervosa to obesity. PLoS One, 7(8), e43382. doi:10.1371/journal.pone.0043382
Flegal, K.M., Carroll, M.D., Kit, B.K., & Ogden, C.L. (2012). Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA: the journal of the American Medical Association, 307(5), 491-497.
Gajewski, P. D., & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: Effects of cognitive, physical, and relaxation training. Frontiers in Human Neuroscience, 6, 130. doi:10.3389/fnhum.2012.00130
Goffaux, P., Phillips, N. A., Sinai, M., & Pushkar, D. (2006). Behavioural and electrophysiological measures of task switching during single and mixed-task conditions. Biological Psychology, 72(3), 278-290. doi:10.1016/j.biopsycho.2005.11.009
Grosshans, M., Vollmert, C., Vollstadt-Klein, S., Tost, H., Leber, S., Bach, P., . . . Kiefer, F. (2012). Association of leptin with food cue-induced activation in human reward pathways. Archives of General Psychiatry, 69(5), 529-537. doi:10.1001/archgenpsychiatry.2011.1586
Guiney, H., & Machado, L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic Bulletin & Review, 20(1), 73-86. doi:10.3758/s13423-012-0345-4
Gunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F., Spitznagel, M. B., & Gordon, E. (2007). Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Comprehensive Psychiatry, 48(1), 57-61.
Gunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F., Spitznagel, M. B., Grieve, S., & Gordon, E. (2008). Relationship between body mass index and brain volume in healthy adults. International Journal of Neuroscience, 118(11), 1582-1593.
Hendrikse, J. J., Cachia, R. L., Kothe, E. J., McPhie, S., Skouteris, H., & Hayden, M. J. (2015). Attentional biases for food cues in overweight and individuals with obesity: A systematic review of the literature. Obesity Reviews, 16(5), 424-432. doi:10.1111/obr.12265
Higgs, S. (2016). Cognitive processing of food rewards. Appetite, 104, 10-17. doi:10.1016/j.appet.2015.10.003
Hillman, C. H., Belopolsky, A. V., Snook, E. M., Kramer, A. F., & McAuley, E. (2004). Physical activity and executive control: Implications for increased cognitive health during older adulthood. Research Quarterly for Exercise and Sport, 75(2), 176-185. doi:10.1080/02701367.2004.10609149
Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45(1), 114-129. doi:10.1037/a0014437
Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine and Science in Sports and Exercise, 37(11), 1967-1974.
Hillman, C. H., Kamijo, K., & Scudder, M. (2011). A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Preventive Medicine, 52, S21-S28. doi:10.1016/j.ypmed.2011.01.024
Hillman, C. H., Kramer, A. F., Belopolsky, A. V., & Smith, D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59(1), 30-39. doi:10.1016/j.ijpsycho.2005.04.009
Huang, T., Tarp, J., Domazet, S. L., Thorsen, A. K., Froberg, K., Andersen, L. B., & Bugge, A. (2015). Associations of adiposity and aerobic fitness with executive function and math performance in danish adolescents. The Journal of Pediatrics, 167(4), 810-815. doi:10.1016/j.jpeds.2015.07.009
Hume, D. J., Howells, F. M., Karpul, D., Rauch, H. G., Kroff, J., & Lambert, E. V. (2015). Cognitive control over visual food cue saliency is greater in reduced-overweight/obese but not in weight relapsed women: An EEG study. Eating Behaviors, 19, 76-80. doi:10.1016/j.eatbeh.2015.06.013
Hume, D. J., Howells, F. M., Rauch, H. G., Kroff, J., & Lambert, E. V. (2015). Electrophysiological indices of visual food cue-reactivity. Differences in obese, overweight and normal weight women. Appetite, 85, 126-137. doi:10.1016/j.appet.2014.11.012
Jost, K., Mayr, U., & Rosler, F. (2008). Is task switching nothing but cue priming? Evidence from ERPs. Cognitive, Affective & Behavioral Neuroscience, 8(1), 74-84.
Kaaks, R., & Kuhn, T. (2014). Epidemiology: Obesity and cancer--the evidence is fattening up. Nature Reviews. Endocrinology, 10(11), 644-645. doi:10.1038/nrendo.2014.168
Kamijo, K. (2015). Association between childhood obesity and ERP measures of executive control. The Journal of Physical Fitness and Sports Medicine, 4(1), 103-106. doi:10.7600/jpfsm.4.103
Kamijo, K., Pontifex, M. B., Khan, N. A., Raine, L. B., Scudder, M. R., Drollette, E. S., . . . Hillman, C. H. (2012). The association of childhood obesity to neuroelectric indices of inhibition. Psychophysiology, 49(10), 1361-1371. doi:10.1111/j.1469-8986.2012.01459.x
Kamijo, K., Pontifex, M. B., Khan, N. A., Raine, L. B., Scudder, M. R., Drollette, E. S., . . . Hillman, C. H. (2014). The negative association of childhood obesity to cognitive control of action monitoring. Cereb Cortex, 24(3), 654-662. doi:10.1093/cercor/bhs349
Kamijo, K., & Takeda, Y. (2010). Regular physical activity improves executive function during task switching in young adults. International Journal of Psychophysiology, 75(3), 304-311. doi:10.1016/j.ijpsycho.2010.01.002
Kelly, T., Yang, W., Chen, C. S., Reynolds, K., & He, J. (2008). Global burden of obesity in 2005 and projections to 2030. International journal of obesity, 32(9), 1431-1437. doi:10.1038/ijo.2008.102
Key, A. P., & Dykens, E. M. (2008). 'Hungry Eyes': visual processing of food images in adults with Prader-Willi syndrome. Journal of Intellectual Disability Research, 52(Pt 6), 536-546. doi:10.1111/j.1365-2788.2008.01062.x
Khan, N. A., Raine, L. B., Donovan, S. M., & Hillman, C. H. (2014). IV. The cognitive implications of obesity and nutrition in childhood. Monographs of the Society for Research in Child Development, 79(4), 51-71. doi:10.1111/mono.12130
Khan, N. A., Raine, L. B., Drollette, E. S., Scudder, M. R., & Hillman, C. H. (2015). The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility. Appetite, 93, 51-56. doi:10.1016/j.appet.2015.04.012
Khan, N. A., Raine, L. B., Drollette, E. S., Scudder, M. R., Kramer, A. F., & Hillman, C. H. (2015). Dietary fiber is positively associated with cognitive control among prepubertal children. Journal of Nutrition, 145(1), 143-149. doi:10.3945/jn.114.198457
Kramer, A. F., Erickson, K. I., & Colcombe, S. J. (2006). Exercise, cognition, and the aging brain. Journal of Applied Physiology, 101(4), 1237-1242. doi:10.1152/japplphysiol.00500.2006
Kray, J., Gaspard, H., Karbach, J., & Blaye, A. (2013). Developmental changes in using verbal self-cueing in task-switching situations: The impact of task practice and task-sequencing demands. Frontiers in Psychology, 4, 940. doi:10.3389/fpsyg.2013.00940
Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and Aging, 15(1), 126-147.
Liang, J., Matheson, B. E., Kaye, W. H., & Boutelle, K. N. (2014). Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. International Journal of Obesity, 38(4), 494-506. doi:10.1038/ijo.2013.142
Loeber, S., Grosshans, M., Korucuoglu, O., Vollmert, C., Vollstadt-Klein, S., Schneider, S., . . . Kiefer, F. (2012). Impairment of inhibitory control in response to food-associated cues and attentional bias of obese participants and normal-weight controls. International Journal of Obesity, 36(10), 1334-1339. doi:10.1038/ijo.2011.184
Luque-Casado, A., Perakakis, P., Hillman, C. H., Kao, S. C., Llorens, F., Guerra, P., & Sanabria, D. (2016). Differences in sustained attention capacity as a function of aerobic fitness. Medicine and Science in Sports and Exercise, 48(5), 887-895. doi:10.1249/mss.0000000000000857
Marks, BL, Katz, LM, Styner, M., & Smith, JK. (2011). Aerobic fitness and obesity: Relationship to cerebral white matter integrity in the brain of active and sedentary older adults. British Journal of Sports Medicine, 45(15), 1208-1215.
Martin, A., Saunders, D. H., Shenkin, S. D., & Sproule, J. (2014). Lifestyle intervention for improving school achievement in overweight or obese children and adolescents. The Cochrane Database of Systematic Reviews, 3, Cd009728. doi:10.1002/14651858.CD009728.pub2
McAuley, E., Kramer, A. F., & Colcombe, S. J. (2004). Cardiovascular fitness and neurocognitive function in older adults: A brief review. Brain, Behavior, and Immunity, 18(3), 214-220. doi:10.1016/j.bbi.2003.12.007
Miyake, Akira, Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100. doi:10.1006/cogp.1999.0734
Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134-140.
Monsell, S., Sumner, P., & Waters, H. (2003). Task-set reconfiguration with predictable and unpredictable task switches. Memory & Cognition, 31(3), 327-342.
Moore, R. D., Drollette, E. S., Scudder, M. R., Bharij, A., & Hillman, C. H. (2014). The influence of cardiorespiratory fitness on strategic, behavioral, and electrophysiological indices of arithmetic cognition in preadolescent children. Frontiers in Human Neuroscience, 8, 258. doi:10.3389/fnhum.2014.00258
Nijs, I. M., Franken, I. H., & Muris, P. (2008). Food cue-elicited brain potentials in obese and healthy-weight individuals. Eating Behaviors, 9(4), 462-470. doi:10.1016/j.eatbeh.2008.07.009
Nijs, I. M., Franken, I. H., & Muris, P. (2010). Food-related Stroop interference in obese and normal-weight individuals: Behavioral and electrophysiological indices. Eating Behaviors, 11(4), 258-265. doi:10.1016/j.eatbeh.2010.07.002
Nijs, I. M., Muris, P., Euser, A. S., & Franken, I. H. (2010). Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety. Appetite, 54(2), 243-254. doi:10.1016/j.appet.2009.11.004
Ogden, C.L., Carroll, M.D., Kit, B.K., & Flegal, K.M. (2012). Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA: the Journal of the American Medical Association, 307(5), 483-490.
Perianez, J. A., & Barcelo, F. (2009). Updating sensory versus task representations during task-switching: Insights from cognitive brain potentials in humans. Neuropsychologia, 47(4), 1160-1172.
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. doi:10.1016/j.clinph.2007.04.019
Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J., . . . Hillman, C. H. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of Cognitive Neuroscience, 23(6), 1332-1345. doi:10.1162/jocn.2010.21528
Preiss, K., Brennan, L., & Clarke, D. (2013). A systematic review of variables associated with the relationship between obesity and depression. Obesity Reviews, 14(11), 906-918. doi:10.1111/obr.12052
Prickett, C., Brennan, L., & Stolwyk, R. (2015). Examining the relationship between obesity and cognitive function: A systematic literature review. Obesity Research & Clinical Practice, 9(2), 93-113. doi:10.1016/j.orcp.2014.05.001
Raji, C. A., Ho, A. J., Parikshak, N. N., Becker, J. T., Lopez, O. L., Kuller, L. H., . . . Thompson, P. M. (2010). Brain structure and obesity. Human Brain Mapping, 31(3), 353-364.
Reinert, K. R., Po'e, E. K., & Barkin, S. L. (2013). The relationship between executive function and obesity in children and adolescents: A systematic literature review. Journal of Obesity, 2013, 820956. doi:10.1155/2013/820956
Reis, J. P., Loria, C. M., Launer, L. J., Sidney, S., Liu, K., Jacobs, D. R., Jr., . . . Yaffe, K. (2013). Cardiovascular health through young adulthood and cognitive functioning in midlife. Annals of neurology, 73(2), 170-179. doi:10.1002/ana.23836
Reyes, S., Peirano, P., Peigneux, P., Lozoff, B., & Algarin, C. (2015). Inhibitory control in otherwise healthy overweight 10-year-old children. International Journal of obesity, 39(8), 1230-1235. doi:10.1038/ijo.2015.49
Rothemund, Y., Preuschhof, C., Bohner, G., Bauknecht, H. C., Klingebiel, R., Flor, H., & Klapp, B. F. (2007). Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage, 37(2), 410-421. doi:10.1016/j.neuroimage.2007.05.008
Rutters, F., Kumar, S., Higgs, S., & Humphreys, G. W. (2015). Electrophysiological evidence for enhanced representation of food stimuli in working memory. Experimental Brain Research, 233(2), 519-528. doi:10.1007/s00221-014-4132-5
Scharmuller, W., Ubel, S., Ebner, F., & Schienle, A. (2012). Appetite regulation during food cue exposure: A comparison of normal-weight and obese women. Neuroscience Letters, 518(2), 106-110. doi:10.1016/j.neulet.2012.04.063
Scherder, E., Scherder, R., Verburgh, L., Königs, M., Blom, M., Kramer, A. F., & Eggermont, L. (2014). Executive functions of sedentary elderly may benefit from walking: A systematic review and meta-analysis. The American Journal of Geriatric Psychiatry, 22(8), 782-791.
Shab-Bidar, S., Hosseini-Esfahani, F., Mirmiran, P., Hosseinpour-Niazi, S., & Azizi, F. (2014). Metabolic syndrome profiles, obesity measures and intake of dietary fatty acids in adults: Tehran Lipid and Glucose Study. Journal of Human Nutrition and Dietetics, 27 Suppl 2, 98-108. doi:10.1111/jhn.12117
Sibley, B. A., & Etnier, J. L. (2003). The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exercise Science, 15, 243-256.
Siervo, M., Arnold, R., Wells, J. C., Tagliabue, A., Colantuoni, A., Albanese, E., . . . Stephan, B. C. (2011). Intentional weight loss in overweight and obese individuals and cognitive function: A systematic review and meta-analysis. Obesity Reviews, 12(11), 968-983. doi:10.1111/j.1467-789X.2011.00903.x
Smiley-Oyen, A. L., Lowry, K. A., Francois, S. J., Kohut, M. L., & Ekkekakis, P. (2008). Exercise, fitness, and neurocognitive function in older adults: The "selective improvement" and "cardiovascular fitness" hypotheses. Annals of Behavioral Medicine, 36(3), 280-291. doi:10.1007/s12160-008-9064-5
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., . . . Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239-252. doi:10.1097/PSY.0b013e3181d14633
Song, T. F., Chi, L., Chu, C. H., Chen, F. T., Zhou, C., & Chang, Y. K. (2016). Obesity, cardiovascular fitness, and inhibition function: An electrophysiological study. Frontiers in Psychology, 7, 1124. doi:10.3389/fpsyg.2016.01124
Stoeckel, L. E., Weller, R. E., Cook, E. W., 3rd, Twieg, D. B., Knowlton, R. C., & Cox, J. E. (2008). Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage, 41(2), 636-647. doi:10.1016/j.neuroimage.2008.02.031
Tarantino, V., Vindigni, V., Bassetto, F., Pavan, C., & Vallesi, A. (2017). Behavioral and electrophysiological correlates of cognitive control in ex-obese adults. Biological Psychology, 127, 198-208. doi:10.1016/j.biopsycho.2017.05.012
Tascilar, M. E., Turkkahraman, D., Oz, O., Yucel, M., Taskesen, M., Eker, I., . . . Ulas, U. H. (2011). P300 auditory event-related potentials in children with obesity: Is childhood obesity related to impairment in cognitive functions? Pediatric Diabetes, 12(7), 589-595. doi:10.1111/j.1399-5448.2010.00748.x
Taylor, V. H., Forhan, M., Vigod, S. N., McIntyre, R. S., & Morrison, K. M. (2013). The impact of obesity on quality of life. Best Practice & Research. Clinical Endocrinology & Metabolism, 27(2), 139-146. doi:10.1016/j.beem.2013.04.004
Themanson, J. R., Hillman, C. H., & Curtin, J. J. (2006). Age and physical activity influences on action monitoring during task switching. Neurobiology of Aging, 27(9), 1335-1345. doi:10.1016/j.neurobiolaging.2005.07.002
Tsai, C. L., Chen, F. C., Pan, C. Y., & Tseng, Y. T. (2016). The neurocognitive performance of visuospatial attention in children with obesity. Frontiers in Psychology, 7, 1033. doi:10.3389/fpsyg.2016.01033
Tuulari, J. J., Karlsson, H. K., Hirvonen, J., Salminen, P., Nuutila, P., & Nummenmaa, L. (2015). Neural circuits for cognitive appetite control in healthy and obese individuals: An fMRI study. PLoS One, 10(2), e0116640. doi:10.1371/journal.pone.0116640
Vaughan, L., Erickson, K. I., Espeland, M. A., Smith, J. C., Tindle, H. A., & Rapp, S. R. (2014). Concurrent and longitudinal relationships between cognitive activity, cognitive performance, and brain volume in older adult women. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 69(6), 826-836. doi:10.1093/geronb/gbu109
Verstynen, T. D., Lynch, B., Miller, D. L., Voss, M. W., Prakash, R. S., Chaddock, L., . . . Erickson, K. I. (2012). Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults. Journal of Aging Research, 2012, 939285. doi:10.1155/2012/939285
Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190-203.
Voss, M. W., Chaddock, L., Kim, J. S., Vanpatter, M., Pontifex, M. B., Raine, L. B., . . . Kramer, A. F. (2011). Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience, 199, 166-176. doi:10.1016/j.neuroscience.2011.10.009
Wang, Y., Beydoun, M. A., Liang, L., Caballero, B., & Kumanyika, S. K. (2008). Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring), 16(10), 2323-2330. doi:10.1038/oby.2008.351
Ward, M. A., Carlsson, C. M., Trivedi, M. A., Sager, M. A., & Johnson, S. C. (2005). The effect of body mass index on global brain volume in middle-aged adults: A cross sectional study. BMC Neurology, 5, 23. doi:10.1186/1471-2377-5-23
Wilson, G. T. (2010). Eating disorders, obesity and addiction. European Eating Disorders Review, 18(5), 341-351. doi:10.1002/erv.1048
Wu, X., Nussbaum, M. A., & Madigan, M. L. (2016). Executive function and measures of fall risk among people with obesity. Perceptual and Motor Skills, 122(3), 825-839. doi:10.1177/0031512516646158
Zhang, B., Tian, D., Yu, C., Zhang, J., Tian, X., von Deneen, K. M., . . . Liu, Y. (2015). Altered baseline brain activities before food intake in obese men: A resting state fMRI study. Neuroscience Letters, 584, 156-161. doi:10.1016/j.neulet.2014.10.020



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE