:::

詳目顯示

回上一頁
題名:淫羊藿萃取物對C2C12肌肉細胞肥大調控機制之探討
作者:林益安
作者(外文):LIN, YI-AN
校院名稱:國立體育大學
系所名稱:競技與教練科學研究所
指導教授:許美智
學位類別:博士
出版日期:2020
主題關鍵詞:淫羊藿肌小管肥大肌肉損傷運動表現類胰島素生長因子1Epimediummyotube hypertrophymuscle damageexercise performanceIGF-1
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
淫羊藿 (Epimedium) 在傳統的中醫藥學裡被廣泛地作為壯陽藥以及抗骨質疏鬆用藥,黃酮類化合物為淫羊藿萃取物 (Epimedium extract) 的主要生物活性成分,其中又以淫羊藿苷 (icariin) 的研究層面最為廣泛。在諸多的離體 (in vitro) 與活體實驗 (in vivo) 中已證實淫羊藿萃取物具有調節新陳代謝、促進細胞修復、抗氧化、抗發炎等效用。根據過去研究證實淫羊藿萃取物與淫羊藿苷可調控phosphatidylinositol 3-kinase (PI3K)/Akt (Ak strain transforming) 訊息路徑,並透過PI3K/AKT訊息路徑的調節促進成骨細胞、神經細胞及心肌細胞等多種細胞之生長,然其對骨骼肌細胞的功能與生長之影響仍有待探究。因此,本論文目的為探討淫羊藿萃取物對肌小管肥大作用與其相關調節機制、運動表現、肌肉損傷指標之影響。研究一:淫羊藿萃取物與淫羊藿苷對C2C12肌細胞之肌小管肥大作用及其相關機制之影響。此結果顯示淫羊藿萃取物及其主要活性成分淫羊藿苷透過活化類胰島素生長因子1 (insulin-like growth factors 1, IGF-1) 的訊息傳遞路徑,其中包含IGF-1受體 (IGF-1R)、AKT、mammalian target of rapamycin (mTOR)、ribosomal S6 kinase p70 (P70S6K) 與mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) 磷酸化表現的刺激活化,以增加亞型肌球蛋白重鍊 (myosin heavy chain, MyHC) 的蛋白質含量,進而達到促進肌小管肥大的效果。在基因表現方面,淫羊藿萃取物可抑制myogenic regulatory factor 4 (MRF4) 與肌抑素 (myostatin) 的mRNA表現。研究二:淫羊藿萃取物對小鼠運動表現與單次運動挑戰後肌肉損傷指標之影響。經2週增補淫羊藿萃取物後,結果顯示淫羊藿萃取物可增進小鼠的前肢抓力表現及游泳持續時間,並減少單次運動挑戰後血液乳酸值及肌酸激酶活性的上升。此外,淫羊藿萃取物可降低空腹血糖、肌酸激酶、血尿素氮、三酸甘油酯、麩胺酸丙酮酸轉氨基酶等血液生化值。綜合以上研究結果顯示,淫羊藿萃取物透過活化IGF-R/AKT/mTOR/P70S6K與MAPK/ERK的訊息路徑可促成肌小管肥大,並可增進小鼠之運動表現與降低肌肉損傷程度。
Epimedium is commonly used as aphrodisiac and anti-osteoporosis therapeutics in traditional Chinese medicine. Icariin (ICA) is a major bioactive flavonoid derived from Epimedium extract and has been studied extensively. Numerous in vitro and in vivo studies have proved that Epimedium extract and ICA possess metabolic regulation, cellular repair, antioxidative, and anti-inflammatory effects. Previous studies have demonstrated that Epimedium extract and ICA play the regulatory role in mediating the phosphatidylinositol 3-kinase (PI3K)/Akt (Ak strain transforming) signaling pathway for promoting cellular growth or generation of osteoblast, nerve cell, and cardiomyocyte. However, the effects of Epimedium extract and ICA on skeletal muscle function and myogenesis are still unclear and need to be further investigated. Thus, the goal of this dissertation was to investigate the effects of Epimedium extract and ICA on myotube hypertrophy and its regulatory mechanisms, exercise performance, and biomarkers of muscle damage. The aim of study one was to exam the effects of Epimedium extract and ICA on myotube hypertrophy and underlying regulatory mechanisms in C2C12 cells. The results showed Epimedium extract and its major bioactive component ICA facilitated C2C12 myotube hypertrophy and increased in protein content of myosin heavy chain (MyHC) isoforms by activating the insulin-like growth factors (IGF-1) signaling pathway including phosphorylation of IGF-1 receptor (IGF-1R), AKT, mammalian target of rapamycin (mTOR), ribosomal S6 kinase p70 (P70S6K), and mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK). In real-time quantitative polymerase chain reaction (qPCR) analysis, Epimedium extract reduced in mRNA levels of myogenic regulatory factor 4 (MRF4) and myostatin (MSTN). The aim of study two was to evaluate the effects of Epimedium extract on exercise performance and biomarkers of muscle damage after acute exercise challenge in mice. After 2-week Epimedium extract supplementation, the results revealed Epimedium extract supplementation promoted grip strength and exhaustive swimming time and declined the increase in the level of blood lactate and the activity of serum creatine kinase (CK) induced by acute exercise challenge. Moreover, Epimedium extract also reduced the levels of fasting blood sugar, CK, blood urea nitrogen (BUN), triglyceride (TG), and alanine aminotransferase (ALT) after a 2-week supplementation. In conclusion, these studies suggest Epimedium extract and/or ICA may promote myotube hypertrophy via activation of IGF-R/AKT/mTOR/P70S6K and MAPK/ERK signaling pathways in vitro and improve exercise performance and attenuate muscle damage in vivo.
REFERENCES

Adams, G. R. (2002). Invited Review: Autocrine/paracrine IGF-I and skeletal muscle adaptation. Journal of Applied Physiology, 93(3), 1159–1167. https://doi.org/10.1152/japplphysiol.01264.2001
Adams, G. R., & Haddad, F. (1996). The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. Journal of Applied Physiology. https://doi.org/10.1152/jappl.1996.81.6.2509
Aguiar, A., Vechetti-Júnior, I., Alves de Souza, R., Castan, E., Milanezi-Aguiar, R., Padovani, C., Carvalho, R., & Silva, M. (2012). Myogenin, MyoD and IGF-I Regulate Muscle Mass but not Fiber-type Conversion during Resistance Training in Rats. International Journal of Sports Medicine, 34(04), 293–301. https://doi.org/10.1055/s-0032-1321895
Al-Khalili, L., Krämer, D., Wretenberg, P., & Krook, A. (2004). Human skeletal muscle cell differentiation is associated with changes in myogenic markers and enhanced insulin-mediated MAPK and PKB phosphorylation. Acta Physiologica Scandinavica, 180(4), 395–403. https://doi.org/10.1111/j.1365-201X.2004.01259.x
Axell, A. M., MacLean, H. E., Plant, D. R., Harcourt, L. J., Davis, J. A., Jimenez, M., Handelsman, D. J., Lynch, G. S., & Zajac, J. D. (2006). Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. American Journal of Physiology-Endocrinology and Metabolism, 291(3), E506–E516. https://doi.org/10.1152/ajpendo.00058.2006
Basualto-Alarcón, C., Jorquera, G., Altamirano, F., Jaimovich, E., &Estrada, M. (2013). Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Medicine and Science in Sports and Exercise, 45(9), 1712–1720. https://doi.org/10.1249/MSS.0b013e31828cf5f3
Belluardo, N., Westerblad, H., Mudó, G., Casabona, A., Bruton, J., Caniglia, G., Pastoris, O., Grassi, F., & Ibáñez, C. F. (2001). Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Molecular and Cellular Neurosciences, 18(1), 56–67. https://doi.org/10.1006/mcne.2001.1001
Bhasin, S., Storer, T. W., Berman, N., Callegari, C., Clevenger, B., Phillips, J., Bunnell, T. J., Tricker, R., Shirazi, A., & Casaburi, R. (1996). The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. New England Journal of Medicine, 335(1), 1–7. https://doi.org/10.1056/NEJM199607043350101
Bhasin, S., Woodhouse, L., & Storer, T. W. (2003). Androgen effects on body composition. Growth Hormone & IGF Research : Official Journal of the Growth Hormone Research Society and the International IGF Research Society, 13 Suppl A, S63-71. https://doi.org/10.1016/s1096-6374(03)00058-3
Bodine, S. C., & Baehr, L. M. (2014). Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American Journal of Physiology-Endocrinology and Metabolism, 307(6), E469–E484. https://doi.org/10.1152/ajpendo.00204.2014
Bolster, D. R., Crozier, S. J., Kimball, S. R., & Jefferson, L. S. (2002). AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. The Journal of Biological Chemistry, 277(27), 23977–23980. https://doi.org/10.1074/jbc.C200171200
Boonyarom, O., & Inui, K. (2006). Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiologica (Oxford, England), 188(2), 77–89. https://doi.org/10.1111/j.1748-1716.2006.01613.x
Booth, F. W., Ruegsegger, G. N., Toedebusch, R. G., & Yan, Z. (2015). Endurance exercise and the regulation of skeletal muscle metabolism. Progress in Molecular Biology and Translational Science, 135, 129–151. https://doi.org/10.1016/bs.pmbts.2015.07.016
Bottinelli, R., Pellegrino, M. A., Canepari, M., Rossi, R., & Reggiani, C. (1999). Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 9(2), 87–95. https://doi.org/10.1016/s1050-6411(98)00040-6
Brancaccio, P., Maffulli, N., & Limongelli, F. M. (2007). Creatine kinase monitoring in sport medicine. British Medical Bulletin, 81–82, 209–230. https://doi.org/10.1093/bmb/ldm014
Brown, D. M., Parr, T., & Brameld, J. M. (2012). Myosin heavy chain mRNA isoforms are expressed in two distinct cohorts during C2C12 myogenesis. Journal of Muscle Research and Cell Motility, 32(6), 383–390. https://doi.org/10.1007/s10974-011-9267-4
Cairns, S. P. (2006). Lactic acid and exercise performance : culprit or friend? Sports Medicine, 36(4), 279–291. https://doi.org/10.2165/00007256-200636040-00001
Calders, P., Matthys, D., Derave, W., & Pannier, J. L. (1999). Effect of branched-chain amino acids (BCAA), glucose, and glucose plus BCAA on endurance performance in rats. Medicine and Science in Sports and Exercise, 31(4), 583–587. https://doi.org/10.1097/00005768-199904000-00015
Callahan, D. M., Bedrin, N. G., Subramanian, M., Berking, J., Ades, P. A., Toth, M. J., & Miller, M. S. (2014). Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function. Journal of Applied Physiologyhysiology, 116(12), 1582–1592. https://doi.org/10.1152/japplphysiol.01362.2013
Cao, S., Li, B., Yi, X., Chang, B., Zhu, B., Lian, Z., Zhang, Z., Zhao, G., Liu, H., & Zhang, H. (2012). Effects of Exercise on AMPK Signaling and Downstream Components to PI3K in Rat with Type 2 Diabetes. PLoS ONE, 7(12), e51709. https://doi.org/10.1371/journal.pone.0051709
Chen, B., Niu, S. P., Wang, Z. Y., Wang, Z. W., Deng, J. X., Zhang, P. X., Yin, X. F., Han, N., Kou, Y. H., & Jiang, B. G. (2015). Local administration of icariin contributes to peripheral nerve regeneration and functional recovery. Neural Regeneration Research, 10(1), 84–89. https://doi.org/10.4103/1673-5374.150711
Chen, C. Y. (2009). Computational screening and design of traditional Chinese medicine (TCM) to block phosphodiesterase-5. Journal of Molecular Graphics and Modelling, 28(3), 261–269. https://doi.org/10.1016/j.jmgm.2009.08.004
Chen, S. Q., Ding, L. N., Zeng, N. X., Liu, H. M., Zheng, S. H., Xu, J. W., & Li, R. M. (2019). Icariin induces irisin/FNDC5 expression in C2C12 cells via the AMPK pathway. Biomedicine & Pharmacotherapy, 115, 108930. https://doi.org/10.1016/j.biopha.2019.108930
Chen, W. C., Huang, W. C., Chiu, C. C., Chang, Y. K., & Huang, C. C. (2014). Whey protein improves exercise performance and biochemical profiles in trained mice. Medicine and Science in Sports and Exercise, 46(8), 1517–1524. https://doi.org/10.1249/MSS.0000000000000272
Chen, W. F., Wu, L., Du, Z. R., Chen, L., Xu, A. L., Chen, X. H., Teng, J. J., & Wong, M. S. (2017). Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways. Phytomedicine, 25, 93–99. https://doi.org/10.1016/j.phymed.2016.12.017
Chen, X., Guo, Y., Jia, G., Liu, G., Zhao, H., & Huang, Z. (2018). Arginine promotes skeletal muscle fiber type transformation from fast-twitch to slow-twitch via Sirt1/AMPK pathway. The Journal of Nutritional Biochemistry, 61, 155–162. https://doi.org/10.1016/j.jnutbio.2018.08.007
Chen, X. J., Ji, H., Zhang, Q. W., Tu, P. F., Wang, Y. T., Guo, B. L., & Li, S. P. (2008). A rapid method for simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and ultra-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 46(2), 226–235. https://doi.org/10.1016/j.jpba.2007.09.016
Cheng, H., Feng, S., Jia, X., Li, Q., Zhou, Y., & Ding, C. (2013). Structural characterization and antioxidant activities of polysaccharides extracted from Epimedium acuminatum. Carbohydrate Polymers, 92(1), 63–68. https://doi.org/10.1016/j.carbpol.2012.09.051
Chinese Pharmacopoeia Commission. (2015). Pharmacopoeia of The People’s Republic of China (10th ed.). Chinese Pharmacopoeia Commission.
Cho, Y. Y., Yao, K., Bode, A. M., Bergen, H. R., Madden, B. J., Oh, S. M., Ermakova, S., Kang, B. S., Choi, H. S., Shim, J. H., & Dong, Z. (2007). RSK2 mediates muscle cell differentiation through regulation of NFAT3. The Journal of Biological Chemistry, 282(11), 8380–8392. https://doi.org/10.1074/jbc.M611322200
Cohen, S., Nathan, J. A., & Goldberg, A. L. (2015). Muscle wasting in disease: molecular mechanisms and promising therapies. Nature Reviews Drug Discovery, 14(1), 58–74. https://doi.org/10.1038/nrd4467
Collins, C. A., Olsen, I., Zammit, P. S., Heslop, L., Petrie, A., Partridge, T. A., & Morgan, J. E. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122(2), 289–301. https://doi.org/10.1016/j.cell.2005.05.010
Coyle, E. F., Hagberg, J. M., Hurley, B. F., Martin, W. H., Ehsani, A. A., & Holloszy, J. O. (1983). Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55(1 Pt 1), 230–235. https://doi.org/10.1152/jappl.1983.55.1.230
Craig, D. M., Ashcroft, S. P., Belew, M. Y., Stocks, B., Currell, K., Baar, K., & Philp, A. (2015). Utilizing small nutrient compounds as enhancers of exercise-induced mitochondrial biogenesis. Frontiers in Physiology, 6, 296. https://doi.org/10.3389/fphys.2015.00296
Czerwinski, S. M., Martin, J. M., & Bechtel, P. J. (1994). Modulation of IGF mRNA abundance during stretch-induced skeletal muscle hypertrophy and regression. Journal of Applied Physiology, 76(5), 2026–2030. https://doi.org/10.1152/jappl.1994.76.5.2026
D’Antona, G., Pellegrino, M. A., Adami, R., Rossi, R., Naccari Carlizzi, C., Canepari, M., Saltin, B., & Bottinelli, R. (2003). The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. Journal of Physiology, 552(2), 499–511. https://doi.org/10.1113/jphysiol.2003.046276
Das, A. K., Yang, Q. Y., Fu, X., Liang, J. F., Duarte, M. S., Zhu, M. J., Trobridge, G. D., & Du, M. (2012). AMP-activated protein kinase stimulates myostatin expression in C2C12 cells. Biochemical and Biophysical Research Communications, 427(1), 36–40. https://doi.org/10.1016/j.bbrc.2012.08.138
Deane, C. S., Hughes, D. C., Sculthorpe, N., Lewis, M. P., Stewart, C. E., & Sharples, A. P. (2013). Impaired hypertrophy in myoblasts is improved with testosterone administration. The Journal of Steroid Biochemistry and Molecular Biology, 138, 152–161. https://doi.org/10.1016/j.jsbmb.2013.05.005
Dehoux, M., VanBeneden, R., Pasko, N., Lause, P., Verniers, J., Underwood, L., Ketelslegers, J. M., & Thissen, J. P. (2004). Role of the insulin-like growth factor I decline in the induction of atrogin-1/MAFbx during fasting and diabetes. Endocrinology, 145(11), 4806–4812. https://doi.org/10.1210/en.2004-0406
Ding, L., Liang, X. G., Zhu, D. Y., & Lou, Y. J. (2007). Icariin promotes expression of PGC-1alpha, PPARalpha, and NRF-1 during cardiomyocyte differentiation of murine embryonic stem cells in vitro. Acta Pharmacologica Sinica, 28(10), 1541–1549. https://doi.org/10.1111/j.1745-7254.2007.00648.x
Domené, H., Krishnamurthi, K., Eshet, R., Gilad, I., Laron, Z., Koch, I., Stannard, B., Cassorla, F., Roberts, C. T., & LeRoith, D. (1993). Growth hormone (GH) stimulates insulin-like growth factor-I (IGF-I) and IGF-I-binding protein-3, but not GH receptor gene expression in livers of juvenile rats. Endocrinology, 133(2), 675–682. https://doi.org/10.1210/endo.133.2.7688291
Dubois, V., Laurent, M., Boonen, S., Vanderschueren, D., & Claessens, F. (2012). Androgens and skeletal muscle: Cellular and molecular action mechanisms underlying the anabolic actions. Cellular and Molecular Life Sciences, 69(10), 1651–1667. https://doi.org/10.1007/s00018-011-0883-3
Dubois, V., Laurent, M. R., Sinnesael, M., Cielen, N., Helsen, C., Clinckemalie, L., Spans, L., Gayan‐Ramirez, G., Deldicque, L., Hespel, P., Carmeliet, G., Vanderschueren, D., & Claessens, F. (2014). A satellite cell‐specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. The FASEB Journal, 28(7), 2979–2994. https://doi.org/10.1096/fj.14-249748
Dumont, N. A., Wang, Y. X., & Rudnicki, M. A. (2015). Intrinsic and extrinsic mechanisms regulating satellite cell function. Development, 142(9), 1572–1581. https://doi.org/10.1242/dev.114223
Elkina, Y., vonHaehling, S., Anker, S. D., & Springer, J. (2011). The role of myostatin in muscle wasting: an overview. Journal of Cachexia, Sarcopenia and Muscle, 2(3), 143–151. https://doi.org/10.1007/s13539-011-0035-5
Estrada, M., Espinosa, A., Müller, M., & Jaimovich, E. (2003). Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology, 144(8), 3586–3597. https://doi.org/10.1210/en.2002-0164
Feng, R., Feng, L., Yuan, Z., Wang, D., Wang, F., Tan, B., Han, S., Li, T., Li, D., & Han, Y. (2013). Icariin protects against glucocorticoid-induced osteoporosis in vitro and prevents glucocorticoid-induced osteocyte apoptosis in vivo. Cell Biochemistry and Biophysics, 67(1), 189–197. https://doi.org/10.1007/s12013-013-9533-8
Feng, R., Ma, X., Ma, J., Jia, H., Ma, B., Xu, L., & Liu, A. (2015). Positive effect of IGF-1 injection on gastrocnemius of rat during distraction osteogenesis. Journal of Orthopaedic Research, 33(10), 1424–1432. https://doi.org/10.1002/jor.22796
Fenton, T. R., & Gout, I. T. (2011). Functions and regulation of the 70kDa ribosomal S6 kinases. The International Journal of Biochemistry & Cell Biology, 43(1), 47–59. https://doi.org/10.1016/j.biocel.2010.09.018
Ferri, P., Barbieri, E., Burattini, S., Guescini, M., D’Emilio, A., Biagiotti, L., DelGrande, P., DeLuca, A., Stocchi, V., & Falcieri, E. (2009). Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle C2C12 myoblasts. Journal of Cellular Biochemistry, 108(6), 1302–1317. https://doi.org/10.1002/jcb.22360
Florini, J. R., Ewton, D. Z., & Coolican, S. A. (1996). Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Reviews, 17(5), 481–517. https://doi.org/10.1210/edrv-17-5-481
Fogarty, S., Hawley, S. A., Green, K. A., Saner, N., Mustard, K. J., & Hardie, D. G. (2010). Calmodulin-dependent protein kinase kinase-beta activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. The Biochemical Journal, 426(1), 109–118. https://doi.org/10.1042/BJ20091372
Forcales, S. V., & Puri, P. L. (2005). Signaling to the chromatin during skeletal myogenesis: Novel targets for pharmacological modulation of gene expression. Seminars in Cell & Developmental Biology, 16(4–5), 596–611. https://doi.org/10.1016/j.semcdb.2005.07.005
Frost, R. A., & Lang, C. H. (2007). Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass. Journal of Applied Physiology, 103(1), 378–387. https://doi.org/10.1152/japplphysiol.00089.2007
Fu, L., Li, F., Bruckbauer, A., Cao, Q., Cui, X., Wu, R., Shi, H., Xue, B., & Zemel, M. B. (2015). Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 8, 227–239. https://doi.org/10.2147/DMSO.S82338
Furuichi, Y., Manabe, Y., Takagi, M., Aoki, M., & Fujii, N. L. (2018). Evidence for acute contraction-induced myokine secretion by C2C12 myotubes. PLoS ONE, 13(10), 1–15. https://doi.org/10.1371/journal.pone.0206146
Girón, M. D., Vílchez, J. D., Shreeram, S., Salto, R., Manzano, M., Cabrera, E., Campos, N., Edens, N. K., Rueda, R., & López-Pedrosa, J. M. (2015). β-Hydroxy-β-methylbutyrate (HMB) normalizes dexamethasone-induced autophagy-lysosomal pathway in skeletal muscle. PloS One, 10(2), e0117520. https://doi.org/10.1371/journal.pone.0117520
Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. International Journal of Biochemistry and Cell Biology, 37(10 SPEC. ISS.), 1974–1984. https://doi.org/10.1016/j.biocel.2005.04.018
Gordon, S. E., Lake, J. A., Westerkamp, C. M., & Thomson, D. M. (2008). Does AMP-activated protein kinase negatively mediate aged fastitch skeletal muscle mass? Exercise and Sport Sciences Reviews, 36(4), 179–186. https://doi.org/10.1097/JES.0b013e3181877e13
Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P., & Brunet, A. (2007). The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. The Journal of Biological Chemistry, 282(41), 30107–30119. https://doi.org/10.1074/jbc.M705325200
Guo, Y., Zhang, Y., Zhang, D., Li, M., Cao, Y., Liu, L., & Wang, C. (2018). Icariin ameliorates palmitate-induced insulin resistance through reducing thioredoxin-interacting protein (TXNIP) and suppressing ER stress in C2C12 myotubes. Frontiers in Pharmacology, 9(October), 1–12. https://doi.org/10.3389/fphar.2018.01180
Haddad, F., & Adams, G. R. (2004). Inhibition of MAP/ERK kinase prevents IGF-I-induced hypertrophy in rat muscles. Journal of Applied Physiology, 96(1), 203–210. https://doi.org/10.1152/japplphysiol.00856.2003
Halevy, O., & Cantley, L. C. (2004). Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Experimental Cell Research, 297(1), 224–234. https://doi.org/10.1016/j.yexcr.2004.03.024
Han, Y. Y., Song, M. Y., Hwang, M. S., Hwang, J. H., Park, Y. K., & Jung, H. W. (2016). Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes. Chinese Journal of Natural Medicines, 14(9), 671–676. https://doi.org/10.1016/S1875-5364(16)30079-6
Han, Y., Jung, H. W., & Park, Y. K. (2015). Effects of Icariin on insulin resistance via the activation of AMPK pathway in C2C12 mouse muscle cells. European Journal of Pharmacology, 758, 60–63. https://doi.org/10.1016/j.ejphar.2015.03.059
Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews. Molecular Cell Biology, 13(4), 251–262. https://doi.org/10.1038/nrm3311
Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., & Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism, 2(1), 9–19. https://doi.org/10.1016/j.cmet.2005.05.009
He, X. L., Zhou, W. Q., Bi, M. G., & Du, G. H. (2010). Neuroprotective effects of icariin on memory impairment and neurochemical deficits in senescence-accelerated mouse prone 8 (SAMP8) mice. Brain Research, 1334, 73–83. https://doi.org/10.1016/j.brainres.2010.03.084
Helms, E. R., Aragon, A. A., & Fitschen, P. J. (2014). Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. Journal of the International Society of Sports Nutrition, 11, 20. https://doi.org/10.1186/1550-2783-11-20
Hennebry, A., Oldham, J., Shavlakadze, T., Grounds, M. D., Sheard, P., Fiorotto, M. L., Falconer, S., Smith, H. K., Berry, C., Jeanplong, F., Bracegirdle, J., Matthews, K., Nicholas, G., Senna-Salerno, M., Watson, T., & McMahon, C. D. (2017). IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. Journal of Endocrinology, 234(2), 187–200. https://doi.org/10.1530/joe-17-0032
Hsieh, T. P., Sheu, S. Y., Sun, J. S., Chen, M. H., & Liu, M. H. (2010). Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression. Phytomedicine, 17(6), 414–423. https://doi.org/10.1016/j.phymed.2009.08.007
Hu, J., Mao, Z., He, S., Zhan, Y., Ning, R., Liu, W., Yan, B., & Yang, J. (2017). Icariin protects against glucocorticoid induced osteoporosis, increases the expression of the bone enhancer DEC1 and modulates the PI3K/Akt/GSK3β/β-catenin integrated signaling pathway. Biochemical Pharmacology, 136, 109–121. https://doi.org/10.1016/j.bcp.2017.04.010
Hu, Z., Lee, I. H., Wang, X., Sheng, H., Zhang, L., Du, J., & Mitch, W. E. (2007). PTEN expression contributes to the regulation of muscle protein degradation in diabetes. Diabetes, 56(10), 2449–2456. https://doi.org/10.2337/db06-1731
Huang, C. C., Hsu, M. C., Huang, W. C., Yang, H. R., & Hou, C. C. (2012). Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice. Evidence-Based Complementary and Alternative Medicine : ECAM, 2012, 364741. https://doi.org/10.1155/2012/364741
Huang, J., Cai, W., Zhang, X., & Shen, Z. (2014). Icariin promotes self-renewal of neural stem cells: an involvement of extracellular regulated kinase signaling pathway. Chinese Journal of Integrative Medicine, 20(2), 107–115. https://doi.org/10.1007/s11655-013-1583-7
Hwang, S. Y., Kang, Y. J., Sung, B., Kim, M., Kim, D. H., Lee, Y., Yoo, M. A., Kim, C. M., Chung, H. Y., & Kim, N. D. (2015). Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the Akt signaling pathway. International Journal of Molecular Medicine, 36(4), 1073–1080. https://doi.org/10.3892/ijmm.2015.2311
Inoki, K., Li, Y., Zhu, T., Wu, J., & Guan, K. L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology, 4(9), 648–657. https://doi.org/10.1038/ncb839
Jenkins, N. D. M., Buckner, S. L., Baker, R. B., Bergstrom, H. C., Cochrane, K. C., Weir, J. P., Housh, T. J., & Cramer, J. T. (2014). Effects of 6 weeks of aerobic exercise combined with conjugated linoleic acid on the physical working capacity at fatigue threshold. Journal of Strength and Conditioning Research, 28(8), 2127–2135. https://doi.org/10.1519/JSC.0000000000000513
Jin, M., Shi, S., Zhang, Y., Yan, Y., Sun, X., Liu, W., & Liu, H. (2010). Icariin-mediated differentiation of mouse adipose-derived stem cells into cardiomyocytes. Molecular and Cellular Biochemistry, 344(1–2), 1–9. https://doi.org/10.1007/s11010-010-0523-5
Jorgensen, S. B., Nielsen, J. N., Birk, J. B., Olsen, G. S., Viollet, B., Andreelli, F., Schjerling, P., Vaulont, S., Hardie, D. G., Hansen, B. F., Richter, E. A., & Wojtaszewski, J. F. P. (2004). The 2-5’AMP-Activated Protein Kinase Is a Site 2 Glycogen Synthase Kinase in Skeletal Muscle and Is Responsive to Glucose Loading. Diabetes, 53(12), 3074–3081. https://doi.org/10.2337/diabetes.53.12.3074
Kalista, S., Schakman, O., Gilson, H., Lause, P., Demeulder, B., Bertrand, L., Pende, M., & Thissen, J. P. (2012). The type 1 insulin-like growth factor receptor (IGF-IR) pathway is mandatory for the follistatin-induced skeletal muscle hypertrophy. Endocrinology, 153(1), 241–253. https://doi.org/10.1210/en.2011-1687
Ke, Z., Liu, J., Xu, P., Gao, A., Wang, L., & Ji, L. (2015). The Cardioprotective Effect of Icariin on Ischemia-Reperfusion Injury in Isolated Rat Heart: Potential Involvement of the PI3K-Akt Signaling Pathway. Cardiovascular Therapeutics, 33(3), 134–140. https://doi.org/10.1111/1755-5922.12121
Kim, H. J., & Lee, W. J. (2009). Insulin-like growth factor-I induces androgen receptor activation in differentiating C2C12 skeletal muscle cells. Molecules and Cells, 28(3), 189–194. https://doi.org/10.1007/s10059-009-0118-8
Kimura, K., Cheng, X. W., Inoue, A., Hu, L., Koike, T., & Kuzuya, M. (2014). β-Hydroxy-β-methylbutyrate facilitates PI3K/Akt-dependent mammalian target of rapamycin and FoxO1/3a phosphorylations and alleviates tumor necrosis factor α/interferon γ–induced MuRF-1 expression in C2C12 cells. Nutrition Research, 34(4), 368–374. https://doi.org/10.1016/j.nutres.2014.02.003
Knight, J. D. R., & Kothary, R. (2011). The myogenic kinome: Protein kinases critical to mammalian skeletal myogenesis. Skeletal Muscle, 1(1), 29. https://doi.org/10.1186/2044-5040-1-29
Kou, Y., Wang, Z., Wu, Z., Zhang, P., Zhang, Y., Yin, X., Wong, X., Qiu, G., & Jiang, B. (2013). Epimedium extract promotes peripheral nerve regeneration in rats. Evidence-Based Complementary and Alternative Medicine : ECAM, 2013, 954798. https://doi.org/10.1155/2013/954798
Krawiec, B. J., Nystrom, G. J., Frost, R. A., Jefferson, L. S., & Lang, C. H. (2007). AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells. American Journal of Physiology-Endocrinology and Metabolism, 292(6), E1555–E1567. https://doi.org/10.1152/ajpendo.00622.2006
Kumar, V., Atherton, P., Smith, K., & Rennie, M. J. (2009). Human muscle protein synthesis and breakdown during and after exercise. Journal of Applied Physiology, 106(6), 2026–2039. https://doi.org/10.1152/japplphysiol.91481.2008
Lang, T. F. (2011). The bone-muscle relationship in men and women. Journal of Osteoporosis, 2011, 702735. https://doi.org/10.4061/2011/702735
Larsson, L., & Moss, R. L. (1993). Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. The Journal of Physiology, 472, 595–614. https://doi.org/10.1113/jphysiol.1993.sp019964
Lee, S. J., & McPherron, A. C. (2001). Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences of the United States of America, 98(16), 9306–9311. https://doi.org/10.1073/pnas.151270098
Lee, S. W., Dai, G., Hu, Z., Wang, X., Du, J., & Mitch, W. E. (2004). Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. Journal of the American Society of Nephrology : JASN, 15(6), 1537–1545. https://doi.org/10.1097/01.asn.0000127211.86206.e1
Lee, W. J. (2009). Insulin-like growth factor-I-induced androgen receptor activation is mediated by the PI3K/Akt pathway in C2C12 skeletal muscle cells. Molecules and Cells, 28(5), 495–499. https://doi.org/10.1007/s10059-009-0142-8
Levenhagen, D. K., Carr, C., Carlson, M. G., Maron, D. J., Borel, M. J., & Flakoll, P. J. (2002). Postexercise protein intake enhances whole-body and leg protein accretion in humans. Medicine & Science in Sports & Exercise, 34(5), 828–837. https://doi.org/10.1097/00005768-200205000-00016
Levinovitz, A., Jennische, E., Oldfors, A., Edwall, D., & Norstedt, G. (1992). Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation. Molecular Endocrinology, 6(8), 1227–1234. https://doi.org/10.1210/mend.6.8.1406701
Li, D. M., Yin, X. F., & Cai, D. W. (2007). Experimental study on acute toxicity with total flavonoids of Epimedium in mice. China Pharmacist, 10, 1011–1012.
Li, D. M., Yin, X. F., Liu, J. H., & Cai, D. W. (2008). Experimental study on long term toxicity of total flavonoids of Epimedium. Chinese Journal of Experimental Traditional Medical Formulae, 7, 60–62.
Li, C., Li, Q., Mei, Q., & Lu, T. (2015). Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sciences, 126, 57–68. https://doi.org/10.1016/j.lfs.2015.01.006
Li, F., Dong, H. X., Gong, Q. H., Wu, Q., Jin, F., & Shi, J. S. (2015). Icariin decreases both APP and Aβ levels and increases neurogenesis in the brain of Tg2576 mice. Neuroscience, 304, 29–35. https://doi.org/10.1016/j.neuroscience.2015.06.010
Li, M., Zhang, Y., Cao, Y., Zhang, D., Liu, L., Guo, Y., &Wang, C. (2018). Icariin ameliorates palmitate-induced insulin resistance through reducing thioredoxin-interacting protein (TXNIP) and suppressing ER stress in C2C12 myotubes. Frontiers in Pharmacology, 9, 1180. https://doi.org/10.3389/fphar.2018.01180
Liao, H., & Jacob, R. (2012). Chinese herbal drugs for erectile dysfunction through NO-cGMP-PDE5 signaling pathway. Zhonghua Nan Ke Xue = National Journal of Andrology, 18(3), 260–265. http://www.ncbi.nlm.nih.gov/pubmed/22474995
Lipina, C., Kendall, H., McPherron, A. C., Taylor, P. M., & Hundal, H. S. (2010). Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS Letters, 584(11), 2403–2408. https://doi.org/10.1016/j.febslet.2010.04.039
Liu, J. J., Li, S. P., & Wang, Y. T. (2006). Optimization for quantitative determination of four flavonoids in Epimedium by capillary zone electrophoresis coupled with diode array detection using central composite design. Journal of Chromatography. A, 1103(2), 344–349. https://doi.org/10.1016/j.chroma.2005.11.036
Liu, W., Thomas, S. G., Asa, S. L., Gonzalez-Cadavid, N., Bhasin, S., & Ezzat, S. (2003). Myostatin is a skeletal muscle target of growth hormone anabolic action. Journal of Clinical Endocrinology and Metabolism, 88(11), 5490–5496. https://doi.org/10.1210/jc.2003-030497
Lu, J., McKinsey, T. A., Zhang, C. L., & Olson, E. N. (2000). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Molecular Cell, 6(2), 233–244. https://doi.org/10.1016/s1097-2765(00)00025-3
Ma, H., He, X., Yang, Y., Li, M., Hao, D., & Jia, Z. (2011). The genus Epimedium: An ethnopharmacological and phytochemical review. Journal of Ethnopharmacology, 134(3), 519–541. https://doi.org/10.1016/j.jep.2011.01.001
Magne, H., Savary-Auzeloux, I., Rémond, D., & Dardevet, D. (2013). Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutrition Research Reviews, 26(2), 149–165. https://doi.org/10.1017/S0954422413000115
Megeney, L. A., & Rudnicki, M. A. (1995). Determination versus differentiation and the MyoD family of transcription factors. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire, 73(9–10), 723–732. https://doi.org/10.1139/o95-080
Mehta, R. K., & Agnew, M. J. (2012). Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work. European Journal of Applied Physiology, 112(8), 2891–2902. https://doi.org/10.1007/s00421-011-2264-x
Mendler, L., Baka, Z., Kovács-Simon, A., & Dux, L. (2007). Androgens negatively regulate myostatin expression in an androgen-dependent skeletal muscle. Biochemical and Biophysical Research Communications, 361(1), 237–242. https://doi.org/10.1016/j.bbrc.2007.07.023
Meng, F. H., Li, Y. B., Xiong, Z. L., Jiang, Z. M., & Li, F. M. (2005). Osteoblastic proliferative activity of Epimedium brevicornum Maxim. Phytomedicine, 12(3), 189–193. https://doi.org/10.1016/j.phymed.2004.03.007
Merrill, G. F., Kurth, E. J., Hardie, D. G., & Winder, W. W. (1997). AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. American Journal of Physiology-Endocrinology and Metabolism, 273(6), E1107–E1112. https://doi.org/10.1152/ajpendo.1997.273.6.E1107
Mira, L., Fernandez, M. T., Santos, M., Rocha, R., Florêncio, M. H., & Jennings, K. R. (2002). Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Research, 36(11), 1199–1208. https://doi.org/10.1080/1071576021000016463
Miyazaki, M., McCarthy, J. J., & Esser, K. A. (2010). Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. FEBS Journal, 277(9), 2180–2191. https://doi.org/10.1111/j.1742-4658.2010.07635.x
Moretti, I., Ciciliot, S., Dyar, K. A., Abraham, R., Murgia, M., Agatea, L., Akimoto, T., Bicciato, S., Forcato, M., Pierre, P., Uhlenhaut, N. H., Rigby, P. W. J., Carvajal, J. J., Blaauw, B., Calabria, E., & Schiaffino, S. (2016). MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nature Communications, 7(May), 1–12. https://doi.org/10.1038/ncomms12397
Morissette, M. R., Cook, S. A., Buranasombati, C., Rosenberg, M. A., & Rosenzweig, A. (2009). Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. American Journal of Physiology. Cell Physiology, 297(5), C1124-32. https://doi.org/10.1152/ajpcell.00043.2009
Mourkioti, F., & Rosenthal, N. (2005). IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends in Immunology, 26(10), 535–542. https://doi.org/10.1016/j.it.2005.08.002
Myburgh, K. H. (2004). Can any metabolites partially alleviate fatigue manifestations at the cross-bridge? Medicine and Science in Sports and Exercise, 36(1), 20–27. https://doi.org/10.1249/01.MSS.0000106200.02230.E6
Novelli, G. P., Bracciotti, G., & Falsini, S. (1990). Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radical Biology & Medicine, 8(1), 9–13. https://doi.org/10.1016/0891-5849(90)90138-9
O’Brien, W. J., Stannard, S. R., Clarke, J. A., & Rowlands, D. S. (2013). Fructose-maltodextrin ratio governs exogenous and other CHO oxidation and performance. Medicine and Science in Sports and Exercise, 45(9), 1814–1824. https://doi.org/10.1249/MSS.0b013e31828e12d4
Oakhill, J. S., Steel, R., Chen, Z. P., Scott, J. W., Ling, N., Tam, S., & Kemp, B. E. (2011). AMPK is a direct adenylate charge-regulated protein kinase. Science, 332(6036), 1433–1435. https://doi.org/10.1126/science.1200094
Oh, S. L., Yoon, S. H., &Lim, J. Y. (2018). Age- and sex-related differences in myosin heavy chain isoforms and muscle strength, function, and quality: a cross sectional study. Journal of Exercise Nutrition & Biochemistry, 22(2), 43–50. https://doi.org/10.20463/jenb.2018.0016
Ohira, T., Wang, X. D., Ito, T., Kawano, F., Goto, K., Izawa, T., Ohno, H., Kizaki, T., & Ohira, Y. (2015). Macrophage deficiency in osteopetrotic ( op / op ) mice inhibits activation of satellite cells and prevents hypertrophy in single soleus fibers. American Journal of Physiology-Cell Physiology, 308(10), C848–C855. https://doi.org/10.1152/ajpcell.00348.2014
Pan, Y., Hong, Y., Zhang, Q. Y., & Kong, L.-D. (2013). Impaired hypothalamic insulin signaling in CUMS rats: Restored by icariin and fluoxetine through inhibiting CRF system. Psychoneuroendocrinology, 38(1), 122–134. https://doi.org/10.1016/j.psyneuen.2012.05.007
Pasiakos, S. M., McLellan, T. M., & Lieberman, H. R. (2015). The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: a systematic review. Sports Medicine, 45(1), 111–131. https://doi.org/10.1007/s40279-014-0242-2
Peake, J. M., Gatta, P.Della, Suzuki, K., & Nieman, D. C. (2015). Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exercise Immunology Review, 21(32), 8–25. https://doi.org/10.1016/S0021-8502(98)90528-6
Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiological Reviews, 88(4), 1379–1406. https://doi.org/10.1152/physrev.90100.2007
Perez-Gomez, J., Rodriguez, G. V., Ara, I., Olmedillas, H., Chavarren, J., González-Henriquez, J. J., Dorado, C., & Calbet, J. A. L. (2008). Role of muscle mass on sprint performance: gender differences? European Journal of Applied Physiology, 102(6), 685–694. https://doi.org/10.1007/s00421-007-0648-8
Perry, R. L., & Rudnick, M. A. (2000). Molecular mechanisms regulating myogenic determination and differentiation. Frontiers in Bioscience : A Journal and Virtual Library, 5, D750-67. https://doi.org/10.2741/perry
Phillips, S. M. (2014). A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Medicine, 44 Suppl 1, S71-7. https://doi.org/10.1007/s40279-014-0152-3
Pitkänen, H. T., Nykänen, T., Knuutinen, J., Lahti, K., Keinänen, O., Alen, M., Komi, P.V., & Mero, A. A. (2003). Free amino acid pool and muscle protein balance after resistance exercise. Medicine and Science in Sports and Exercise, 35(5), 784–792. https://doi.org/10.1249/01.MSS.0000064934.51751.F9
Qian, G., Zhang, X., Lu, L., Wu, X., Li, S., & Meng, J. (2006). Regulation of Cbfa1 expression by total flavonoids of Herba epimedii. Endocrine Journal, 53(1), 87–94. https://doi.org/10.1507/endocrj.53.87
Retamales, A., Zuloaga, R., Valenzuela, C. A., Gallardo-Escarate, C., Molina, A., & Valdés, J. A. (2015). Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation. Biochemical and Biophysical Research Communications, 464(2), 596–602. https://doi.org/10.1016/j.bbrc.2015.07.018
Risson, V., Mazelin, L., Roceri, M., Sanchez, H., Moncollin, V., Corneloup, C., Richard-Bulteau, H., Vignaud, A., Baas, D., Defour, A., Freyssenet, D., Tanti, J. F., Le-Marchand-Brustel, Y., Ferrier, B., Conjard-Duplany, A., Romanino, K., Bauché, S., Hantaï, D., Mueller, M., …Gangloff, Y. G. (2009). Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. Journal of Cell Biology, 187(6), 859–874. https://doi.org/10.1083/jcb.200903131
Rodriguez, J., Vernus, B., Chelh, I., Cassar-Malek, I., Gabillard, J. C., Hadj Sassi, A., Seiliez, I., Picard, B., & Bonnieu, A. (2014). Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cellular and Molecular Life Sciences, 71(22), 4361–4371. https://doi.org/10.1007/s00018-014-1689-x
Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D., & Glass, D. J. (2001). Mediation of IGF-1-induced skeletal myotube hypertrophy by Pl(3)K/Alt/mTOR and Pl(3)K/Akt/GSK3 pathways. Nature Cell Biology. https://doi.org/10.1038/ncb1101-1009
Ronnebaum, S. M., Patterson, C., & Schisler, J. C. (2014). Minireview: Hey U(PS): Metabolic and Proteolytic Homeostasis Linked via AMPK and the Ubiquitin Proteasome System. Molecular Endocrinology, 28(10), 1602–1615. https://doi.org/10.1210/me.2014-1180
Russell, B., Motlagh, D., & Ashley, W. W. (2000). Form follows function: how muscle shape is regulated by work. Journal of Applied Physiology, 88(3), 1127–1132. https://doi.org/10.1152/jappl.2000.88.3.1127
Sacheck, J. M., Ohtsuka, A., McLary, S. C., & Goldberg, A. L. (2004). IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. American Journal of Physiology-Endocrinology and Metabolism, 287(4), E591–E601. https://doi.org/10.1152/ajpendo.00073.2004
Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine and Science in Sports and Exercise, 43(9), 1725–1734. https://doi.org/10.1249/MSS.0b013e318213f880
Sanchez, A. M., Csibi, A., Raibon, A., Cornille, K., Gay, S., Bernardi, H., & Candau, R. (2012). AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. Journal of Cellular Biochemistry, 113(2), 695–710. https://doi.org/10.1002/jcb.23399
Sanchez, A. M. J., Candau, R. B., Csibi, A., Pagano, A. F., Raibon, A., & Bernardi, H. (2012). The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. American Journal of Physiology - Cell Physiology, 303(5), C475–C485. https://doi.org/10.1152/ajpcell.00125.2012
Sartori, R., Milan, G., Patron, M., Mammucari, C., Blaauw, B., Abraham, R., & Sandri, M. (2009). Smad2 and 3 transcription factors control muscle mass in adulthood. American Journal of Physiology-Cell Physiology, 296(6), C1248–C1257. https://doi.org/10.1152/ajpcell.00104.2009
Sattler, F. R., Castaneda-Sceppa, C., Binder, E. F., Schroeder, E. T., Wang, Y., Bhasin, S., Kawakubo, M., Stewart, Y., Yarasheski, K. E., Ulloor, J., Colletti, P., Roubenoff, R., & Azen, S. P. (2009). Testosterone and growth hormone improve body composition and muscle performance in older men. The Journal of Clinical Endocrinology and Metabolism, 94(6), 1991–2001. https://doi.org/10.1210/jc.2008-2338
Schantz, P., Randall-Fox, E., Hutchison, W., Tydén, A., & Astrand, P. O. (1983). Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiologica Scandinavica, 117(2), 219–226. https://doi.org/10.1111/j.1748-1716.1983.tb07200.x
Schiaffino, S., Dyar, K. A., Ciciliot, S., Blaauw, B., & Sandri, M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS Journal, 280(17), 4294–4314. https://doi.org/10.1111/febs.12253
Schiaffino, S, & Reggiani, C. (1994). Myosin isoforms in mammalian skeletal muscle. Journal of Applied Physiology, 77(2), 493–501. https://doi.org/10.1152/jappl.1994.77.2.493
Schiaffino, Stefano, & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological Reviews, 91(4), 1447–1531. https://doi.org/10.1152/physrev.00031.2010
Schroeder, E. T., Terk, M., & Sattler, F. R. (2003). Androgen therapy improves muscle mass and strength but not muscle quality: results from two studies. American Journal of Physiology. Endocrinology and Metabolism, 285(1), E16-24. https://doi.org/10.1152/ajpendo.00032.2003
Schultz, E., Jaryszak, D. L., & Valliere, C. R. (n.d.). Response of satellite cells to focal skeletal muscle injury. Muscle & Nerve, 8(3), 217–222. https://doi.org/10.1002/mus.880080307
Sculthorpe, N., Solomon, A. M., Sinanan, A. C. M., Bouloux, P. M. G., Grace, F., & Lewis, M. P. (2012). Androgens affect myogenesis in vitro and increase local IGF-1 expression. Medicine and Science in Sports and Exercise, 44(4), 610–615. https://doi.org/10.1249/MSS.0b013e318237c5c0
Serra, C., Bhasin, S., Tangherlini, F., Barton, E. R., Ganno, M., Zhang, A., Shansky, J., Vandenburgh, H. H., Travison, T. G., Jasuja, R., & Morris, C. (2011). The role of GH and IGF-I in mediating anabolic effects of testosterone on androgen-responsive muscle. Endocrinology, 152(1), 193–206. https://doi.org/10.1210/en.2010-0802
Serra, C., Palacios, D., Mozzetta, C., Forcales, S.V., Morantte, I., Ripani, M., Jones, D. R., Du, K., Jhala, U. S., Simone, C., & Puri, P. L. (2007). Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Molecular Cell, 28(2), 200–213. https://doi.org/10.1016/j.molcel.2007.08.021
Shen, P., Guo, B. L., Gong, Y., Hong, D. Y. Q., Hong, Y., & Yong, E. L. (2007). Taxonomic, genetic, chemical and estrogenic characteristics of Epimedium species. Phytochemistry, 68(10), 1448–1458. https://doi.org/10.1016/j.phytochem.2007.03.001
Shi, H., Scheffler, J. M., Zeng, C., Pleitner, J. M., Hannon, K. M., Grant, A. L., & Gerrard, D. E. (2009). Mitogen-activated protein kinase signaling is necessary for the maintenance of skeletal muscle mass. American Journal of Physiology-Cell Physiology, 296(5), C1040–C1048. https://doi.org/10.1152/ajpcell.00475.2008
Siegel, A. L., Kuhlmann, P. K., & Cornelison, D. D. W. (2011). Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging. Skeletal Muscle, 1(1), 7. https://doi.org/10.1186/2044-5040-1-7
Solomon, L., Nisenbaum, R., Reyes, M., Papanicolaou, D. A., & Reeves, W. C. (2003). Functional status of persons with chronic fatigue syndrome in the Wichita, Kansas, population. Health and Quality of Life Outcomes, 1, 48. https://doi.org/10.1186/1477-7525-1-48
Song, L., Zhao, J., Zhang, X., Li, H., & Zhou, Y. (2013). Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. European Journal of Pharmacology, 714(1–3), 15–22. https://doi.org/10.1016/j.ejphar.2013.05.039
Song, Y. H., Cai, H., Zhao, Z. M., Chang, W. J., Gu, N., Cao, S. P., & Wu, M. L. (2016). Icariin attenuated oxidative stress induced-cardiac apoptosis by mitochondria protection and ERK activation. Biomedicine and Pharmacotherapy, 83, 1089–1094. https://doi.org/10.1016/j.biopha.2016.08.016
Steinberg, G. R., & Kemp, B. E. (2009). AMPK in Health and Disease. Physiological Reviews, 89(3), 1025–1078. https://doi.org/10.1152/physrev.00011.2008
Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., Gonzalez, M., Yancopoulos, G. D., & Glass, D. J. (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular Cell, 14(3), 395–403. https://doi.org/10.1016/S1097-2765(04)00211-4
Sumitani, S., Goya, K., Testa, J. R., Kouhara, H., & Kasayama, S. (2002). Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Endocrinology, 143(3), 820–828. https://doi.org/10.1210/endo.143.3.8687
Tesch, P., & Karlsson, J. (1978). Isometric strength performance and muscle fibre type distribution in man. Acta Physiologica Scandinavica, 103(1), 47–51. https://doi.org/10.1111/j.1748-1716.1978.tb06189.x
Tong, J. F., Yan, X., Zhu, M. J., & Du, M. (2009). AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. Journal of Cellular Biochemistry, 108(2), 458–468. https://doi.org/10.1002/jcb.22272
Trendelenburg, A. U., Meyer, A., Rohner, D., Boyle, J., Hatakeyama, S., & Glass, D. J. (2009). Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. American Journal of Physiology. Cell Physiology, 296(6), C1258-70. https://doi.org/10.1152/ajpcell.00105.2009
Velloso, C. P. (2008). Regulation of muscle mass by growth hormone and IGF-I. British Journal of Pharmacology, 154(3), 557–568. https://doi.org/10.1038/bjp.2008.153
Wang, B., Yan, F., & Cai, L. (2014). Anti-fatigue properties of icariin from Epimedium brevicornum. Biomedical Research (India), 25(3), 297–302.
Wang, S. Y., Huang, W. C., Liu, C. C., Wang, M. F., Ho, C. S., Huang, W. P., Hou, C. C., Chuang, H. L., & Huang, C. C. (2012). Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice. Molecules, 17(10), 11864–11876. https://doi.org/10.3390/molecules171011864
Wang, X., Liu, C., Xu, Y., Chen, P., Shen, Y., Xu, Y., …Liu, C. (2017). Combination of mesenchymal stem cell injection with icariin for the treatment of diabetes-associated erectile dysfunction. PLoS ONE, 12(3):e0174145. https://doi.org/10.1371/journal.pone.0174145
Wang, Y. K., & Huang, Z. Q. (2005). Protective effects of icariin on human umbilical vein endothelial cell injury induced by H2O2 in vitro. Pharmacological Research, 52(2), 174–182. https://doi.org/10.1016/j.phrs.2005.02.023
Warren, G. L., Ingalls, C. P., Lowe, D. A., & Armstrong, R. B. (2001). Excitation-contraction uncoupling: major role in contraction-induced muscle injury. Exercise and Sport Sciences Reviews, 29(2), 82–87. https://doi.org/10.1097/00003677-200104000-00008
Welsh, G. I., Miller, C. M., Loughlin, A. J., Price, N. T., & Proud, C. G. (1998). Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Letters, 421(2), 125–130. https://doi.org/10.1016/s0014-5793(97)01548-2
White, J. P., Gao, S., Puppa, M. J., Sato, S., Welle, S. L., & Carson, J. A. (2013). Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Molecular and Cellular Endocrinology, 365(2), 174–186. https://doi.org/10.1016/j.mce.2012.10.019
Wilborn, C. D., & Willoughby, D. S. (2004). The Role of Dietary Protein Intake and Resistance Training on Myosin Heavy Chain Expression. Journal of the International Society of Sports Nutrition, 1(2), 27. https://doi.org/10.1186/1550-2783-1-2-27
Williamson, D. L., Bolster, D. R., Kimball, S. R., & Jefferson, L. S. (2006). Time course changes in signaling pathways and protein synthesis in C 2C12 myotubes following AMPK activation by AICAR. American Journal of Physiology - Endocrinology and Metabolism, 291(1), 80–89. https://doi.org/10.1152/ajpendo.00566.2005
Wu, H., Lien, E. J., & Lien, L. L. (2003). Chemical and pharmacological investigations of Epimedium species: a survey. Progress in Drug Research. Fortschritte Der Arzneimittelforschung. Progres Des Recherches Pharmaceutiques, 60, 1–57. https://doi.org/10.1007/978-3-0348-8012-1_1
Wu, R. E., Huang, W. C., Liao, C. C., Chang, Y. K., Kan, N. W., & Huang, C. C. (2013). Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules, 18(4), 4689–4702. https://doi.org/10.3390/molecules18044689
Wu, Y., Bauman, W. A., Blitzer, R. D., & Cardozo, C. (2010). Testosterone-induced hypertrophy of L6 myoblasts is dependent upon Erk and mTOR. Biochemical and Biophysical Research Communications, 400(4), 679–683. https://doi.org/10.1016/j.bbrc.2010.08.127
Wu, Yong, Bauman, W. A., Blitzer, R. D., & Cardozo, C. (2010). Testosterone-induced hypertrophy of L6 myoblasts is dependent upon Erk and mTOR. Biochemical and Biophysical Research Communications, 400(4), 679–683. https://doi.org/10.1016/j.bbrc.2010.08.127
Wu, Y., Xia, L., Zhou, Y., Xu, Y., & Jiang, X. (2015). Icariin induces osteogenic differentiation of bone mesenchymal stem cells in a MAPK-dependent manner. Cell Proliferation, 48(3), 375–384. https://doi.org/10.1111/cpr.12185
Xu, M., Chen, X., Huang, Z., Chen, D., Chen, H., Luo, Y., Zheng, P., He, J., Yu, J., & Yu, B. (2020). Procyanidin B2 promotes skeletal slow-twitch myofiber gene expression through the AMPK signaling pathway in C2C12 myotubes. Journal of Agricultural and Food Chemistry, 68(5), 1306–1314. https://doi.org/10.1021/acs.jafc.9b07489
Xu, Q., & Wu, Z. (2000). The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. Journal of Biological Chemistry, 275(47), 36750–36757. https://doi.org/10.1074/jbc.M005030200
Yao, R., Zhang, L., Li, X., & Li, L. (2010). Effects of Epimedium flavonoids on proliferation and differentiation of neural stem cells in vitro. Neurological Research, 32(7), 736–742. https://doi.org/10.1179/174313209X459183
Yasui, T., Matsui, S., Tani, A., Kunimi, K., Yamamoto, S., & Irahara, M. (2012). Androgen in postmenopausal women. The Journal of Medical Investigation, 59(1,2), 12–27. https://doi.org/10.2152/jmi.59.12
Zanou, N., & Gailly, P. (2013). Skeletal muscle hypertrophy and regeneration: Interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cellular and Molecular Life Sciences, 70(21), 4117–4130. https://doi.org/10.1007/s00018-013-1330-4
Zhai, M., He, L., Ju, X., Shao, L., Li, G., Zhang, Y., Liu, Y., & Zhao, H. (2015). Icariin acts as a potential agent for preventing cardiac ischemia/reperfusion injury. Cell Biochemistry and Biophysics, 72(2), 589–597. https://doi.org/10.1007/s12013-014-0506-3
Zhang, D. W., Cheng, Y., Wang, N. L., Zhang, J. C., Yang, M. S., & Yao, X. S. (2008). Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 15(1–2), 55–61. https://doi.org/10.1016/j.phymed.2007.04.002
Zhang, D., Wang, Z., Sheng, C., Peng, W., Hui, S., Gong, W., & Chen, S. (2015). Icariin prevents amyloid beta-induced apoptosis via the PI3K/akt pathway in PC-12 cells. Evidence-Based Complementary and Alternative Medicine, 2015, 1–9. https://doi.org/10.1155/2015/235265
Zhang, J., Li, S., Zhang, S., Wang, Y., Jin, S., Zhao, C., Yang, W., Liu, Y., & Kong, G. (2020). Effect of Icariside II and Metformin on penile erectile function, histological structure, mitochondrial autophagy, glucose-lipid metabolism, angiotensin II and sex hormone in type 2 diabetic rats with erectile dysfunction. Sexual Medicine, 8(2), 168–177. https://doi.org/10.1016/j.esxm.2020.01.006
Zhang, Z. B., & Yang, Q. T. (2006). The testosterone mimetic properties of icariin. Asian Journal of Andrology, 8(5), 601–605. https://doi.org/10.1111/j.1745-7262.2006.00197.x
Zhang, Z. K., Li, J., Liu, J., Guo, B., Leung, A., Zhang, G., & Zhang, B. T. (2016). Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading. Scientific Reports, 6(September 2015), 1–12. https://doi.org/10.1038/srep20300
Zhao, B., Wang, J., Song, J., Wang, C., Gu, J., Yuan, J., Zhang, L., Jiang, J., Feng, L., & Jia, X. (2016). Beneficial Effects of a Flavonoid Fraction of Herba Epimedii on Bone Metabolism in Ovariectomized Rats. Planta Medica, 82(04), 322–329. https://doi.org/10.1055/s-0035-1558294
Zheng, D., Peng, S., Yang, S. H., Shao, Z. W., Yang, C., Feng, Y., Wu, W., & Zhen, W. X. (2012). The beneficial effect of Icariin on bone is diminished in osteoprotegerin-deficient mice. Bone, 51(1), 85–92. https://doi.org/10.1016/j.bone.2012.04.006
Zheng, H., Qiao, C., Tang, R., Li, J., Bulaklak, K., Huang, Z., Zhao, C., Dai, Y., Li, J., & Xiao, X. (2017). Follistatin N terminus differentially regulates muscle size and fat in vivo. Experimental & Molecular Medicine, 49(9), e377. https://doi.org/10.1038/emm.2017.135

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE