:::

詳目顯示

回上一頁
題名:探討思覺失調症候選基因 Akt1 及背內側紋狀體在小鼠酬賞決策過程中所扮演的角色
作者:張家源
作者(外文):Chia-Yuan Chang
校院名稱:國立臺灣大學
系所名稱:心理學研究所
指導教授:賴文崧
學位類別:博士
出版日期:2020
主題關鍵詞:Akt1思覺失調症強化學習二擇一動態酬賞作業背內側紋狀體小白蛋白γ-胺基丁酸機器學習Akt1schizophreniareinforcement learningtwo choice dynamic foraging taskdorsomedial striatumparvalbuminGABAmachine learning
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
思覺失調症是一種伴隨各種認知缺損的重大精神疾病,越來越多證據顯示有許多基因是思覺失調症的致病候選基因,其中包含 AKT1 在內。AKT1 本身是蛋 白質激酶也是多巴胺二型受體(D2 receptor)的下游,對於調節多巴胺訊號傳遞扮演重要角色。過去研究顯示,多巴胺訊號傳遞的變化可能參與在思覺失調症的致病機制,且病人在許多決策相關作業上表現比一般人差。近期研究更進一步指出 AKT1 在依賴紋狀體(striatum)功能的酬賞相關決策作業中是不可或缺的。 然而到目前為止,AKT1 到底在酬賞相關決策作業歷程的神經機制中,特別是在 背內側紋狀體(dorsomedial striatum)的神經機制,扮演什麼樣的角色仍不清楚。 在本研究當中,我們提出了四個研究目標去檢驗 AKT1 在酬賞決策行為中有何影響,特別針對背內側紋狀體神經活動及特定型態的神經元與決策行為之間的關係作探討。(1)AKT1 對二擇一動態酬賞作業表現的影響。(2)AKT1 在決策 行為不同階段時如何調節背內側紋狀體神經活動。(3)背內側紋狀體神經活動 與決策行為的因果關係。(4)背內側紋狀體中特定型態的神經元對決策行為的 影響。實驗結果顯示(1)相較於控制組,Akt1 異型合子小鼠只需要較少的試驗 數便可學會作業,並且勝利保持行為(win-stay)的比例也顯著地高。更利用強 化學習(reinforcement learning)的數學模型去推估小鼠決策行為的模型參數,其 顯示 Akt1 異型合子小鼠擁有較高對無酬賞結果的學習速率,但同時表現較低的 選擇一致性。(2)活體電生理記錄顯示在小鼠背內側紋狀體中,無酬賞結果所引發的事件相關神經活動與決策作業中的行為表現及決策行為的模型參數有高度相關。在利用機器學習去解碼背內側紋狀體的局部場電位(local field potential) 時,我們發現此腦區神經活動包含許多決策相關資訊在內。(3)利用化學遺傳 學方法(chemogenetic)直接抑制 Akt1 異型合子小鼠的背內側紋狀體神經活性會導致異型合子小鼠的決策行為表現與野生型小鼠相似,包含需要較多的試驗數才學會作業,且勝利保持行為(win-stay)的比例也顯著地低。(4)我們進一步利 用 GAD-cre 小鼠及 PV-cre 小鼠,專一性地操弄背內側紋狀體中 γ-胺基丁酸 (GABA)神經元及表現小白蛋白(parvalbumin, PV)的中介神經元,行為資料顯示專一性地剔除小鼠背內側紋狀體中的小白蛋白中介神經元會導致較高的勝利保持行為比例及較高的學習速率及較低的選擇一致性。 . 根據上述的結果,Akt1 基因缺損極有可能是藉由改變背內側紋狀體中的小白蛋白中介神經元的活動影響到個體策略抉擇進而改變其在酬賞相關決策作業中的表現。
Schizophrenia is a severe neuropsychiatric disorder in which cognitive impairment features prominently. Accumulating evidence from human genetic studies suggests that multiple susceptibility genes might contribute to the pathogenesis of schizophrenia, including AKT1 (protein kinase B α), a key signaling kinase intermediate downstream of dopamine D2 receptor. Alterations of dopaminergic transmission have been implicated in the pathogenesis of schizophrenia, and patients with schizophrenia also show worse performance than healthy controls in many decision-making tasks. Recent findings further revealed that Akt1 might play a crucial role in the modulation of reward-based decision making, especially in the striatum. However, the importance of Akt1 in reward-based decision making and its specific role in the dorsomedial striatum (DMS) during this process remain elusive. To this end, we proposed 4 aims to examine the role of Akt1 in the reward-related decision making behavior and the relationship between neural activity or specific type of neurons in DMS and behavioral performance in decision making task. (1) the impact of Akt1 in a probabilistic two-choice foraging task. (2) The role of Akt1 in the regulation of dorsomedial striatum (DMS) neural activity during different stages of decision-making. (3) The causal relationship between DMS neural activity and decision-making behavior. (4) The cell type-specific role of DMS neurons in decision-making. Our results indicated that (1) Akt1 mutant mice required significantly fewer trials to achieve the criteria and higher ratio of win-stay behavior compared to their controls in both acquisition and reversal phases. Taking advantage of a Bayesian approach to estimate the parameters in a modified reinforcement learning model, we found that Akt1 mutant mice have a higher learning rate in the no reward outcomes and lower choice consistency compared to controls. (2) The in vivo recording showed that no-reward-evoked power in the DMS is highly correlated with their behavioral performance and reinforcement learning model parameters. The decoding of local field potential in DMS by machine learning reveals the choice related information is embedded in DMS neural activity and it also shows the genotypic difference. (3) The direct inhibition of DMS by the chemogentic approach in Akt1 mutant mice make WT-like behavior, including higher accumulated trials and lower ratio of win-stay behavior. (4) The behavioral results from cell type-specific modulation in DMS through GAD-cre mice and parvalbumin (PV)-cre mice shows that the lesion of PV interneurons made the higher ratio of win-stay behavior, higher learning rate and lower choice consistency. Collectively, our results suggest that Akt1 deficiency cause the alternation of neural oscillation in the DMS potentially through the PV interneurons in DMS, which is contributed to the learning rate which resulted in the differential selection of choice strategy (e.g. win-stay) during decision making.
Abi-Dargham, A. (2004). Do we still believe in the dopamine hypothesis? New data bring new evidence. International Journal of Neuropsychopharmacology, 7 Suppl 1, S1-5. doi:10.1017/S1461145704004110
Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1, 24-57. doi:10.1162/CPSY_a_00002
Alptekin, K., Akvardar, Y., Kivircik Akdede, B. B., Dumlu, K., Isik, D., Pirincci, F., . . . Kitis, A. (2005). Is quality of life associated with cognitive impairment in schizophrenia? Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 239-244. doi:10.1016/j.pnpbp.2004.11.006
Aparicio-Legarza, M. I., Davis, B., Hutson, P. H., & Reynolds, G. P. (1998). Increased density of glutamate/N-methyl-D-aspartate receptors in putamen from schizophrenic patients. Neuroscience Letters, 241, 143-146. doi:10.1016/s0304-3940(98)00017-2
Balan, S., Yamada, K., Iwayama, Y., Hashimoto, T., Toyota, T., Shimamoto, C., . . . Yoshikawa, T. (2017). Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia. Schizophrenia Research, 185, 33-40. doi:10.1016/j.schres.2017.01.003
Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience, 27, 8161-8165. doi:10.1523/JNEUROSCI.1554-07.2007
Bari, B. A., Grossman, C. D., Lubin, E. E., Rajagopalan, A. E., Cressy, J. I., & Cohen, J. Y. (2019). Stable Representations of Decision Variables for Flexible Behavior. Neuron, 103, 922-933 e927. doi:10.1016/j.neuron.2019.06.001
Bartha, R., Williamson, P. C., Drost, D. J., Malla, A., Carr, T. J., Cortese, L., . . . Neufeld, R. W. (1997). Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Archives Of General Psychiatry, 54, 959-965. doi:10.1001/archpsyc.1997.01830220085012
Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., & Caron, M. G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell, 122, 261-273. doi:10.1016/j.cell.2005.05.012
Benes, F. M. (1997). The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia. Journal of Psychiatric Research, 31, 257-275. doi:10.1016/s0022-3956(96)00044-1
Benes, F. M., & Berretta, S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology, 25, 1-27. doi:10.1016/S0893-133X(01)00225-1
Bergstrom, H. C., Lipkin, A. M., Lieberman, A. G., Pinard, C. R., Gunduz-Cinar, O., Brockway, E. T., . . . Holmes, A. (2018). Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning. Cell Reports, 23, 2264-2272. doi:10.1016/j.celrep.2018.04.081
Berke, J. D., Breck, J. T., & Eichenbaum, H. (2009). Striatal versus hippocampal representations during win-stay maze performance. Journal of Neurophysiology, 101, 1575-1587. doi:10.1152/jn.91106.2008
Berke, J. D., Okatan, M., Skurski, J., & Eichenbaum, H. B. (2004). Oscillatory entrainment of striatal neurons in freely moving rats. Neuron, 43, 883-896. doi:10.1016/j.neuron.2004.08.035
Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S., & Mitra, P. P. (2010). Chronux: a platform for analyzing neural signals. Journal of Neuroscience Methods, 192, 146-151. doi:10.1016/j.jneumeth.2010.06.020
Bowie, C. R., & Harvey, P. D. (2006). Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric Disease and Treatment, 2, 531-536. doi:10.2147/nedt.2006.2.4.531
Boydell, J. (2001). Risk factors for schizophrenia. Expert Review of Neurotherapeutics, 1, 183-191. doi:10.1586/14737175.1.2.183
Braun, S., & Hauber, W. (2011). The dorsomedial striatum mediates flexible choice behavior in spatial tasks. Behavioural Brain Research, 220, 288-293. doi:10.1016/j.bbr.2011.02.008
Bressan, R. A., & Pilowsky, L. S. (2000). Imaging the glutamatergic system in vivo--relevance to schizophrenia. European Journal of Nuclear Medicine and Molecular Imaging, 27, 1723-1731. doi:10.1007/s002590000372
Bridgman, A. C., Barr, M. S., Goodman, M. S., Chen, R., Rajji, T. K., Daskalakis, Z. J., & George, T. P. (2016). Deficits in GABAA receptor function and working memory in non-smokers with schizophrenia. Schizophrenia Research, 171, 125-130. doi:10.1016/j.schres.2016.01.008
Brown, A. S., & Derkits, E. J. (2010). Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. American Journal of Psychiatry, 167, 261-280. doi:10.1176/appi.ajp.2009.09030361
Brown, A. S., Susser, E. S., Butler, P. D., Richardson Andrews, R., Kaufmann, C. A., & Gorman, J. M. (1996). Neurobiological plausibility of prenatal nutritional deprivation as a risk factor for schizophrenia. Journal of Nervous and Mental Disease, 184, 71-85. doi:10.1097/00005053-199602000-00003
Brown, J. S., Jr. (2011). Association of increased prenatal estrogen with risk factors for schizophrenia. Schizophrenia Bulletin, 37, 946-949. doi:10.1093/schbul/sbp161
Brunet, A., Datta, S. R., & Greenberg, M. E. (2001). Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Current Opinion in Neurobiology, 11, 297-305. doi: 10.3390/ijms19123725
Bush, R. R., & Mosteller, F. (1955). Stochastic models for learning. New York,: Wiley.
Camerer, C., & Ho, T. H. (1998). Experience-weighted attraction learning in coordination games: Probability rules, heterogeneity, and time-variation. Journal of Mathematical Psychology l, 42, 305-326. doi:10.1006/jmps.1998.1217
Cannon, M., Jones, P. B., & Murray, R. M. (2002). Obstetric complications and schizophrenia: historical and meta-analytic review. American Journal of Psychiatry, 159, 1080-1092. doi:10.1176/appi.ajp.159.7.1080
Cannon, T. D., van Erp, T. G., Bearden, C. E., Loewy, R., Thompson, P., Toga, A. W., . . . Tsuang, M. T. (2003). Early and late neurodevelopmental influences in the prodrome to schizophrenia: Contributions of genes, environment, and their interactions. Schizophrenia Bulletin, 29, 653-669. doi:10.1093/oxfordjournals.schbul.a007037
Carlsson, A., Lindqvist, M., & Magnusson, T. (1957). 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180(4596), 1200. doi:10.1038/1801200a0
Carvalho Poyraz, F., Holzner, E., Bailey, M. R., Meszaros, J., Kenney, L., Kheirbek, M. A., . . . Kellendonk, C. (2016). Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action. Journal of Neuroscience, 36, 5988-6001. doi:10.1523/JNEUROSCI.0444-16.2016
Castane, A., Theobald, D. E., & Robbins, T. W. (2010). Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behavioural Brain Research, 210, 74-83. doi:10.1016/j.bbr.2010.02.017
Chana, G., Bousman, C. A., Money, T. T., Gibbons, A., Gillett, P., Dean, B., & Everall, I. P. (2013). Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis. Frontiers in Cellular Neuroscience, 7, 95. doi:10.3389/fncel.2013.00095
Chang, C. Y., Chen, Y. W., Wang, T. W., & Lai, W. S. (2016). Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency modulates GABAergic functions and hippocampus-dependent functions. Scientific Reports, 6, 33095. doi:10.1038/srep33095
Chen, Y. C., Chen, Y. W., Hsu, Y. F., Chang, W. T., Hsiao, C. K., Min, M. Y., & Lai, W. S. (2012). Akt1 deficiency modulates reward learning and reward prediction error in mice. Genes, Brain and Behavior, 11(2), 157-169. doi:10.1111/j.1601-183X.2011.00759.x
Chen, Y. W., Kao, H. Y., Min, M. Y., & Lai, W. S. (2014). A sex- and region-specific role of Akt1 in the modulation of methamphetamine-induced hyperlocomotion and striatal neuronal activity: Implications in schizophrenia and methamphetamine-induced psychosis. Schizophrenia Bulletin, 40, 388-398. doi:10.1093/schbul/sbt031
Chen, Y. W., & Lai, W. S. (2011). Behavioral phenotyping of v-akt murine thymoma viral oncogene homolog 1-deficient mice reveals a sex-specific prepulse inhibition deficit in females that can be partially alleviated by glycogen synthase kinase-3 inhibitors but not by antipsychotics. Neuroscience, 174, 178-189. doi:10.1016/j.neuroscience.2010.09.056
Cho, H., Thorvaldsen, J. L., Chu, Q. W., Feng, F., & Birnbaum, M. J. (2001). Akt1/PKB alpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. Journal of Biological Chemistry, 276, 38349-38352. doi:DOI 10.1074/jbc.C100462200
Chudasama, Y., & Robbins, T. W. (2006). Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans. Biological Psychology, 73(1), 19-38. doi:10.1016/j.biopsycho.2006.01.005
Chuhma, N., Mingote, S., Kalmbach, A., Yetnikoff, L., & Rayport, S. (2017). Heterogeneity in dopamine neuron synaptic actions across the striatum and its relevance for schizophrenia. Biological Psychiatry, 81(1), 43-51. doi:10.1016/j.biopsych.2016.07.002
Coffer, P. J., Jin, J., & Woodgett, J. R. (1998). Protein kinase B (c-Akt): A multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochemical Journal, 335 ( Pt 1), 1-13. doi: 10.1042/bj3350001
Corbit, L. H., Nie, H., & Janak, P. H. (2012). Habitual alcohol seeking: Time course and the contribution of subregions of the dorsal striatum. Biological Psychiatry, 72, 389-395. doi:10.1016/j.biopsych.2012.02.024
Coricelli, G., Critchley, H. D., Joffily, M., O'Doherty, J. P., Sirigu, A., & Dolan, R. J. (2005). Regret and its avoidance: A neuroimaging study of choice behavior. Nature Neuroscience, 8, 1255-1262. doi:10.1038/nn1514
Crow, T. J. (1980). Molecular pathology of schizophrenia: More than one disease process? British Medical Journal, 280(6207), 66-68. doi:10.1136/bmj.280.6207.66
Culbreth, A. J., Gold, J. M., Cools, R., & Barch, D. M. (2016). Impaired activation in cognitive control regions predicts reversal learning in schizophrenia. Schizophrenia Bulletin, 42, 484-493. doi:10.1093/schbul/sbv075
Curley, A. A., Arion, D., Volk, D. W., Asafu-Adjei, J. K., Sampson, A. R., Fish, K. N., & Lewis, D. A. (2011). Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: Clinical, protein, and cell type-specific features. American Journal of Psychiatry, 168, 921-929. doi:10.1176/appi.ajp.2011.11010052
Damodaran, S., Evans, R. C., & Blackwell, K. T. (2014). Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of Neurophysiology, 111, 836-848. doi:10.1152/jn.00382.2013
Darvas, M., Fadok, J. P., & Palmiter, R. D. (2011). Requirement of dopamine signaling in the amygdala and striatum for learning and maintenance of a conditioned avoidance response. Learning & Memory, 18(3), 136-143. doi:10.1101/lm.2041211
Davidson, L. L., & Heinrichs, R. W. (2003). Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: A meta-analysis. Psychiatry Research, 122, 69-87. doi:10.1016/s0925-4927(02)00118-x
Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: A review and reconceptualization. American Journal of Psychiatry, 148, 1474-1486. doi:10.1176/ajp.148.11.1474
Davis, K. N., Tao, R., Li, C., Gao, Y., Gondre-Lewis, M. C., Lipska, B. K., . . . Hyde, T. M. (2016). GAD2 alternative transcripts in the human prefrontal cortex, and in schizophrenia and affective disorders. PLoS One, 11(2), e0148558. doi:10.1371/journal.pone.0148558
de la Fuente-Sandoval, C., Reyes-Madrigal, F., Mao, X., Leon-Ortiz, P., Rodriguez-Mayoral, O., Jung-Cook, H., . . . Shungu, D. C. (2018). Prefrontal and striatal gamma-aminobutyric acid levels and the effect of antipsychotic treatment in first-episode psychosis patients. Biological Psychiatry, 83, 475-483. doi:10.1016/j.biopsych.2017.09.028
Delay, J., Deniker, P., & Harl, J. M. (1952). [Therapeutic use in psychiatry of phenothiazine of central elective action (4560 RP)]. Annales Medico-Psychologiques), 110, 112-117. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12986408
Di Forti, M., Lappin, J. M., & Murray, R. M. (2007). Risk factors for schizophrenia--all roads lead to dopamine. European Neuropsychopharmacology, 17 Suppl 2, S101-107. doi:10.1016/j.euroneuro.2007.02.005
Divac, I., Rosvold, H. E., & Szwarcbart, M. K. (1967). Behavioral effects of selective ablation of the caudate nucleus. Journal of Comparative and Physiological Psychology, 63(2), 184-190. doi:10.1037/h0024348
Dong, E., Ruzicka, W. B., Grayson, D. R., & Guidotti, A. (2015). DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients. Schizophrenia Research, 167(1-3), 35-41. doi:10.1016/j.schres.2014.10.030
Dudek, A., Krzystanek, M., Krysta, K., & Gorna, A. (2019). Evolution of religious topics in schizophrenia in 80 years period. Psychiatria Danubina, 31(Suppl 3), 524-529. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31488785
Eaton, W. W. (1985). Epidemiology of schizophrenia. Epidemiologic Reviews, 7, 105-126. doi:10.1093/oxfordjournals.epirev.a036278
Egerton, A., & Stone, J. M. (2012). The glutamate hypothesis of schizophrenia: Neuroimaging and drug development. Current Pharmaceutical Biotechnology, 13, 1500-1512. doi:10.2174/138920112800784961
Emamian, E. S. (2012). AKT/GSK3 signaling pathway and schizophrenia. Frontiers in Molecular Neuroscience, 5, 33. doi:10.3389/fnmol.2012.00033
Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nature Genetics, 36(2), 131-137. doi:10.1038/ng1296
Fatemi, S. H., Folsom, T. D., & Thuras, P. D. (2017). GABAA and GABAB receptor dysregulation in superior frontal cortex of subjects with schizophrenia and bipolar disorder. Synapse, 71(7). doi:10.1002/syn.21973
Ferrante, M., Redish, A. D., Oquendo, M. A., Averbeck, B. B., Kinnane, M. E., & Gordon, J. A. (2019). Computational psychiatry: A report from the 2017 NIMH workshop on opportunities and challenges. Molecular Psychiatry, 24, 479-483. doi:10.1038/s41380-018-0063-z
Fino, E., Vandecasteele, M., Perez, S., Saudou, F., & Venance, L. (2018). Region-specific and state-dependent action of striatal GABAergic interneurons. Nature Communications, 9, 3339. doi:10.1038/s41467-018-05847-5
Gage, G. J., Stoetzner, C. R., Wiltschko, A. B., & Berke, J. D. (2010). Selective activation of striatal fast-spiking interneurons during choice execution. Neuron, 67, 466-479. doi:10.1016/j.neuron.2010.06.034
Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant "default mode" functional connectivity in schizophrenia. American Journal of Psychiatry, 164, 450-457. doi:10.1176/appi.ajp.164.3.450
Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Statistics and Computing, 24, 997-1016. doi:10.1007/s11222-013-9416-2
Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441-466. doi:10.1146/annurev-neuro-061010-113641
Gogos, J. A., & Gerber, D. J. (2006). Schizophrenia susceptibility genes: Emergence of positional candidates and future directions. Trends in Pharmacology Sciences, 27, 226-233. doi:10.1016/j.tips.2006.02.005
Gonzalez-Burgos, G., & Lewis, D. A. (2012). NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophrenia Bulletin, 38, 950-957. doi:10.1093/schbul/sbs010
Grace, A. A. (2010). Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress. Neurotoxicity Research, 18, 367-376. doi:10.1007/s12640-010-9154-6
Gremel, C. M., & Costa, R. M. (2013). Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nature Communications, 4, 2264. doi:10.1038/ncomms3264
Grone, B. P., & Maruska, K. P. (2016). Three distinct glutamate decarboxylase genes in vertebrates. Scientific Reports, 6, 30507. doi:10.1038/srep30507
Grospe, G. M., Baker, P. M., & Ragozzino, M. E. (2018). Cognitive flexibility deficits following 6-OHDA lesions of the rat dorsomedial striatum. Neuroscience, 374, 80-90. doi:10.1016/j.neuroscience.2018.01.032
Guo, Q., Wang, D., He, X., Feng, Q., Lin, R., Xu, F., . . . Luo, M. (2015). Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS One, 10(4), e0123381. doi:10.1371/journal.pone.0123381
Higley, M. J., Soler-Llavina, G. J., & Sabatini, B. L. (2009). Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration. Nature Neuroscience, 12, 1121-1128. doi:10.1038/nn.2368
Hippenmeyer, S., Vrieseling, E., Sigrist, M., Portmann, T., Laengle, C., Ladle, D. R., & Arber, S. (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling. Plos Biology, 3, 878-890. doi:10.1371/journal.pbio.0030159
Hjorth, J. J. J., Kozlov, A., Carannante, I., Nylen, J. F., Lindroos, R., Johansson, Y., . . . Grillner, S. (2020). The microcircuits of striatum in silico. Proceedings of the National Academy of Sciences of the United States of America, 117, 9554-9565. doi:10.1073/pnas.2000671117
Holcomb, H. H., Lahti, A. C., Medoff, D. R., Cullen, T., & Tamminga, C. A. (2005). Effects of noncompetitive NMDA receptor blockade on anterior cingulate cerebral blood flow in volunteers with schizophrenia. Neuropsychopharmacology, 30, 2275-2282. doi:10.1038/sj.npp.1300824
Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III--the final common pathway. Schizophrenia Bulletin, 35, 549-562. doi:10.1093/schbul/sbp006
Howes, O. D., McDonald, C., Cannon, M., Arseneault, L., Boydell, J., & Murray, R. M. (2004). Pathways to schizophrenia: the impact of environmental factors. International Journal of Neuropsychopharmacology, 7 Suppl 1, S7-S13. doi:10.1017/S1461145704004122
Hunt, M. J., Kopell, N. J., Traub, R. D., & Whittington, M. A. (2017). Aberrant network activity in schizophrenia. Trends in Neurosciences, 40, 371-382. doi:10.1016/j.tins.2017.04.003
Hutton, S. B., Murphy, F. C., Joyce, E. M., Rogers, R. D., Cuthbert, I., Barnes, T. R., . . . Robbins, T. W. (2002). Decision making deficits in patients with first-episode and chronic schizophrenia. Schizophrenia Research, 55(3), 249-257. doi:10.1016/s0920-9964(01)00216-x
Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., . . . Ozaki, N. (2004). Association of AKT1 with schizophrenia confirmed in a Japanese population. Biological Psychiatry, 56, 698-700. doi:10.1016/j.biopsych.2004.07.023
Jablensky, A. (2006). Subtyping schizophrenia: Implications for genetic research. Molecular Psychiatry, 11, 815-836. doi:10.1038/sj.mp.4001857
Jablensky, A. (2010). The diagnostic concept of schizophrenia: Its history, evolution, and future prospects. Dialogues in Clinical Neuroscience, 12, 271-287. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20954425
Javitt, D. C., & Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. American Journal of Psychiatry, 148, 1301-1308. doi:10.1176/ajp.148.10.1301
Jentsch, J. D., & Roth, R. H. (1999). The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 20, 201-225. doi:10.1016/S0893-133X(98)00060-8
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285. doi:DOI 10.1613/jair.301
Kesby, J. P., Eyles, D. W., McGrath, J. J., & Scott, J. G. (2018). Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Translational Psychiatry, 8, 30. doi:10.1038/s41398-017-0071-9
Kita, H., Kosaka, T., & Heizmann, C. W. (1990). Parvalbumin-immunoreactive neurons in the rat neostriatum: A light and electron microscopic study. Brain Research, 536, 1-15. doi:10.1016/0006-8993(90)90002-s
Kornhuber, J., Mack-Burkhardt, F., Riederer, P., Hebenstreit, G. F., Reynolds, G. P., Andrews, H. B., & Beckmann, H. (1989). [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. Journal of Neural Transmission, 77, 231-236. doi:10.1007/BF01248936
Krystal, J. H., Abi-Saab, W., Perry, E., D'Souza, D. C., Liu, N., Gueorguieva, R., . . . Breier, A. (2005). Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl), 179, 303-309. doi:10.1007/s00213-004-1982-8
Lahti, A. C., Holcomb, H. H., Medoff, D. R., & Tamminga, C. A. (1995). Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport, 6, 869-872. doi:10.1097/00001756-199504190-00011
Lai, W. S., Xu, B., Westphal, K. G., Paterlini, M., Olivier, B., Pavlidis, P., . . . Gogos, J. A. (2006). Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proceedings of the National Academy of Sciences of the United States of America, 103, 16906-16911. doi:10.1073/pnas.0604994103
Laruelle, M., & Abi-Dargham, A. (1999). Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. Journal of Psychopharmacology, 13, 358-371. doi:10.1177/026988119901300405
Lee, K., Holley, S. M., Shobe, J. L., Chong, N. C., Cepeda, C., Levine, M. S., & Masmanidis, S. C. (2017). Parvalbumin interneurons modulate striatal output and enhance performance during associative learning. Neuron, 93, 1451-1463 e1454. doi:10.1016/j.neuron.2017.02.033
Lett, T. A., Kennedy, J. L., Radhu, N., Dominguez, L. G., Chakravarty, M. M., Nazeri, A., . . . Voineskos, A. N. (2016). Prefrontal white matter structure mediates the influence of GAD1 on working memory. Neuropsychopharmacology, 41, 2224-2231. doi:10.1038/npp.2016.14
Lewis, C. M., Levinson, D. F., Wise, L. H., DeLisi, L. E., Straub, R. E., Hovatta, I., . . . Helgason, T. (2003). Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. American Journal of Human Genetics, 73, 34-48. doi:10.1086/376549
Lewis, D. A., Cho, R. Y., Carter, C. S., Eklund, K., Forster, S., Kelly, M. A., & Montrose, D. (2008). Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. American Journal of Psychiatry, 165, 1585-1593. doi:10.1176/appi.ajp.2008.08030395
Lewis, D. A., & Lieberman, J. A. (2000). Catching up on schizophrenia: Natural history and neurobiology. Neuron, 28, 325-334. doi:10.1016/s0896-6273(00)00111-2
Lewis, D. A., & Sweet, R. A. (2009). Schizophrenia from a neural circuitry perspective: Advancing toward rational pharmacological therapies. Journal of Clinical Investigation, 119, 706-716. doi:10.1172/JCI37335
Li, C. T., Lai, W. S., Liu, C. M., & Hsu, Y. F. (2014). Inferring reward prediction errors in patients with schizophrenia: A dynamic reward task for reinforcement learning. Frontiers in Psychology, 5, 1282. doi:10.3389/fpsyg.2014.01282
Lieberman, J. A., Kane, J. M., & Alvir, J. (1987). Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl), 91, 415-433. doi:10.1007/BF00216006
Liu, H. H., Hsieh, M. H., Hsu, Y. F., & Lai, W. S. (2015). Effects of affective arousal on choice behavior, reward prediction errors, and feedback-related negativities in human reward-based decision making. Frontiers in Psychology, 6, 592. doi:10.3389/fpsyg.2015.00592
Liu, H. H., Hwang, Y. D., Hsieh, M. H., Hsu, Y. F., & Lai, W. S. (2017). Misfortune may be a blessing in disguise: Fairness perception and emotion modulate decision making. Psychophysiology, 54, 1163-1179. doi:10.1111/psyp.12870
Liu, Y. W. (2015). The role of striatal subregions in reinforcement learning process and reward prediction error using excitotoxic lesion in male mice [Unpublished master thesis]. National Taiwan University, Taiwan.
Luo, D.-Z., Chang, C.-Y., Huang, T.-R., Studer, V., Wang, T.-W., & Lai, W.-S. (2020). Lithium for schizophrenia: supporting evidence from a 12-year, nationwide health insurance database and from Akt1-deficient mouse and cellular models. Scientific Reports, 10, 647. doi:10.1038/s41598-019-57340-8
Madras, B. K. (2013). History of the discovery of the antipsychotic dopamine D2 receptor: A basis for the dopamine hypothesis of schizophrenia. Journal of the History of the Neurosciences, 22, 62-78. doi:10.1080/0964704X.2012.678199
Maia, T. V., Huys, Q. J. M., & Frank, M. J. (2017). Theory-based computational psychiatry. Biological Psychiatry, 82, 382-384. doi:10.1016/j.biopsych.2017.07.016
Manning, B. D., & Cantley, L. C. (2007). AKT/PKB signaling: navigating downstream. Cell, 129, 1261-1274. doi:10.1016/j.cell.2007.06.009
Manoliu, A., Riedl, V., Zherdin, A., Muhlau, M., Schwerthoffer, D., Scherr, M., . . . Sorg, C. (2014). Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophrenia Bulletin, 40, 428-437. doi:10.1093/schbul/sbt037
March, D., Hatch, S. L., Morgan, C., Kirkbride, J. B., Bresnahan, M., Fearon, P., & Susser, E. (2008). Psychosis and place. Epidemiologic Reviews, 30, 84-100. doi:10.1093/epirev/mxn006
Marder, S. R. (2006). The NIMH-MATRICS project for developing cognition-enhancing agents for schizophrenia. Dialogues in Clinical Neuroscience, 8, 109-113. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16640121
Mathur, A., Law, M. H., Megson, I. L., Shaw, D. J., & Wei, J. (2010). Genetic association of the AKT1 gene with schizophrenia in a British population. Psychiatric Genetics, 20, 118-122. doi:10.1097/YPG.0b013e32833a2234
Matsui, M., Sumiyoshi, T., Arai, H., Higuchi, Y., & Kurachi, M. (2008). Cognitive functioning related to quality of life in schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32, 280-287. doi:10.1016/j.pnpbp.2007.08.019
McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107, 3-22. doi:10.1037//0735-7044.107.1.3
McGrath, J., Saha, S., Welham, J., El Saadi, O., MacCauley, C., & Chant, D. (2004). A systematic review of the incidence of schizophrenia: The distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Medicine, 2, 13. doi:10.1186/1741-7015-2-13
McGue, M., & Gottesman, II. (1989). Genetic linkage in schizophrenia: Perspectives from genetic epidemiology. Schizophrenia Bulletin, 15, 453-464. doi:10.1093/schbul/15.3.453
McGuire, P., Howes, O. D., Stone, J., & Fusar-Poli, P. (2008). Functional neuroimaging in schizophrenia: Diagnosis and drug discovery. Trends in Pharmacology Sciences, 29, 91-98. doi:10.1016/j.tips.2007.11.005
Medoff, D. R., Holcomb, H. H., Lahti, A. C., & Tamminga, C. A. (2001). Probing the human hippocampus using rCBF: Contrasts in schizophrenia. Hippocampus, 11, 543-550. doi:10.1002/hipo.1070
Mirsky, A. F., DeLisi, L. E., Buchsbaum, M. S., Quinn, O. W., Schwerdt, P., Siever, L. J., . . . et al. (1984). The Genain Quadruplets: psychological studies. Psychiatry Research, 13, 77-93. doi:10.1016/0165-1781(84)90120-3
Modinos, G., Iyegbe, C., Prata, D., Rivera, M., Kempton, M. J., Valmaggia, L. R., . . . McGuire, P. (2013). Molecular genetic gene-environment studies using candidate genes in schizophrenia: A systematic review. Schizophrenia Research, 150(2-3), 356-365. doi:10.1016/j.schres.2013.09.010
Moghaddam, B., & Adams, B. W. (1998). Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science, 281, 1349-1352. doi:10.1126/science.281.5381.1349
Moghaddam, B., & Javitt, D. (2012). From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37, 4-15. doi:10.1038/npp.2011.181
Mohamed, S., Paulsen, J. S., O'Leary, D., Arndt, S., & Andreasen, N. (1999). Generalized cognitive deficits in schizophrenia: A study of first-episode patients. Archives Of General Psychiatry, 56, 749-754. doi:10.1001/archpsyc.56.8.749
Montague, P. R., King-Casas, B., & Cohen, J. D. (2006). Imaging valuation models in human choice. Annual Review of Neuroscience, 29, 417-448. doi:10.1146/annurev.neuro.29.051605.112903
Monteiro, P., Barak, B., Zhou, Y., McRae, R., Rodrigues, D., Wickersham, I. R., & Feng, G. (2018). Dichotomous parvalbumin interneuron populations in dorsolateral and dorsomedial striatum. Journal of Physiology, 596, 3695-3707. doi:10.1113/JP275936
Moore, H., Geyer, M. A., Carter, C. S., & Barch, D. M. (2013). Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models. Neuroscience & Biobehavioral Reviews, 37, 2087-2091. doi:10.1016/j.neubiorev.2013.09.011
Morgan, C., & Fisher, H. (2007). Environment and schizophrenia: Environmental factors in schizophrenia: childhood trauma--a critical review. Schizophrenia Bulletin, 33, 3-10. doi:10.1093/schbul/sbl053
Murray, R. M., Lappin, J., & Di Forti, M. (2008). Schizophrenia: From developmental deviance to dopamine dysregulation. European Neuropsychopharmacology, 18 Suppl 3, S129-134. doi:10.1016/j.euroneuro.2008.04.002
Norton, N., Williams, H. J., & Owen, M. J. (2006). An update on the genetics of schizophrenia. Current opinion in Psychiatry, 19, 158-164. doi:10.1097/01.yco.0000214341.52249.59
Olney, J. W., Newcomer, J. W., & Farber, N. B. (1999). NMDA receptor hypofunction model of schizophrenia. Journal of Psychiatric Research, 33(6), 523-533. doi:10.1016/s0022-3956(99)00029-1
Omrani, A., Bijlsma, A., Spoelder, M., Verharen, J. P. H., Bauer, L., Cornelis, C., . . . Wierenga, C. J. (2020). An altered cognitive strategy associated with reduction of synaptic inhibition in the prefrontal cortex after social play deprivation in rats. bioRxiv. doi:10.1101/2020.05.01.070540.
Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. Journal of Neuroscience, 9, 1465-1472. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2723738
Pantazopoulos, H., Wiseman, J. T., Markota, M., Ehrenfeld, L., & Berretta, S. (2017). Decreased numbers of somatostatin-expressing neurons in the amygdala of subjects with bipolar disorder or schizophrenia: Relationship to circadian rhythms. Biological Psychiatry, 81, 536-547. doi:10.1016/j.biopsych.2016.04.006
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825-2830. doi:10.5555/1953048.2078195
Perry, T. L., Kish, S. J., Buchanan, J., & Hansen, S. (1979). Gamma-aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet, 1(8110), 237-239. doi:10.1016/s0140-6736(79)90767-0
Plitman, E., de la Fuente-Sandoval, C., Reyes-Madrigal, F., Chavez, S., Gomez-Cruz, G., Leon-Ortiz, P., & Graff-Guerrero, A. (2016). Elevated myo-inositol, choline, and glutamate levels in the associative striatum of antipsychotic-naive patients with first-episode psychosis: A proton magnetic resonance spectroscopy study with implications for glial dysfunction. Schizophrenia Bulletin, 42, 415-424. doi:10.1093/schbul/sbv118
Powell, C. M., & Miyakawa, T. (2006). Schizophrenia-relevant behavioral testing in rodent models: A uniquely human disorder? Biological Psychiatry, 59, 1198-1207. doi:10.1016/j.biopsych.2006.05.008
R Core Team. (2018). R: A Language and Environment for Statistical Computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Ragland, J. D., Maddock, R. J., Hurtado, M. Y., Tanase, C., Lesh, T. A., Niendam, T. A., . . . Ranganath, C. (2020). Disrupted GABAergic facilitation of working memory performance in people with schizophrenia. NeuroImage: Clinical, 25, 102127. doi:10.1016/j.nicl.2019.102127
Ragland, J. D., Yoon, J., Minzenberg, M. J., & Carter, C. S. (2007). Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. International Review of Psychiatry, 19, 417-427. doi:10.1080/09540260701486365
Reddy, L. F., Waltz, J. A., Green, M. F., Wynn, J. K., & Horan, W. P. (2016). Probabilistic reversal learning in schizophrenia: Stability of deficits and potential causal mechanisms. Schizophrenia Bulletin, 42, 942-951. doi:10.1093/schbul/sbv226
Riley, B., & Kendler, K. S. (2006). Molecular genetic studies of schizophrenia. Eur J Human Genetics, 14, 669-680. doi:10.1038/sj.ejhg.5201571
Rocco, B. R., Lewis, D. A., & Fish, K. N. (2016). Markedly lower glutamic acid decarboxylase 67 protein levels in a subset of boutons in schizophrenia. Biological Psychiatry, 79, 1006-1015. doi:10.1016/j.biopsych.2015.07.022
Ross, R. S., Sherrill, K. R., & Stern, C. E. (2011). The hippocampus is functionally connected to the striatum and orbitofrontal cortex during context dependent decision making. Brain Research, 1423, 53-66. doi:10.1016/j.brainres.2011.09.038
Rutledge, R. B., Lazzaro, S. C., Lau, B., Myers, C. E., Gluck, M. A., & Glimcher, P. W. (2009). Dopaminergic drugs modulate learning rates and perseveration in parkinson's patients in a dynamic foraging task. Journal of Neuroscience, 29, 15104-15114. doi:10.1523/Jneurosci.3524-09.2009
Saha, S., Chant, D., Welham, J., & McGrath, J. (2005). A systematic review of the prevalence of schizophrenia. PLoS Medicine, 2(5), e141. doi:10.1371/journal.pmed.0020141
Sale, E. M., & Sale, G. J. (2008). Protein kinase B: signalling roles and therapeutic targeting. Cellular and Molecular Life Sciences, 65, 113-127. doi:10.1007/s00018-007-7274-9
Saperia, S., Da Silva, S., Siddiqui, I., Agid, O., Daskalakis, Z. J., Ravindran, A., . . . Foussias, G. (2019). Reward-driven decision-making impairments in schizophrenia. Schizophrenia Research, 206, 277-283. doi:10.1016/j.schres.2018.11.004
Scheid, M. P., & Woodgett, J. R. (2001). PKB/AKT: Functional insights from genetic models. Nature Reviews Molecular Cell Biology, 2, 760-768. doi:10.1038/35096067
Schubert, K. O., Focking, M., Prehn, J. H., & Cotter, D. R. (2012). Hypothesis review: Are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Molecular Psychiatry, 17, 669-681. doi:10.1038/mp.2011.123
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593-1599. doi:10.1126/science.275.5306.1593
Schwab, S. G., Hoefgen, B., Hanses, C., Hassenbach, M. B., Albus, M., Lerer, B., . . . Wildenauer, D. B. (2005). Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biological Psychiatry, 58, 446-450. doi:10.1016/j.biopsych.2005.05.005
Schwab, S. G., & Wildenauer, D. B. (2009). Update on key previously proposed candidate genes for schizophrenia. Current opinion in Psychiatry, 22, 147-153. doi:10.1097/YCO.0b013e328325a598
Sharma, R. P., Grayson, D. R., & Gavin, D. P. (2008). Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: Analysis of the National Brain Databank microarray collection. Schizophrenia Research, 98(1-3), 111-117. doi:10.1016/j.schres.2007.09.020
Shurman, B., Horan, W. P., & Nuechterlein, K. H. (2005). Schizophrenia patients demonstrate a distinctive pattern of decision-making impairment on the Iowa Gambling Task. Schizophrenia Research, 72(2-3), 215-224. doi:10.1016/j.schres.2004.03.020
Simpson, E. H., Kellendonk, C., & Kandel, E. (2010). A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron, 65, 585-596. doi:10.1016/j.neuron.2010.02.014
Smith, A. D., & Bolam, J. P. (1990). The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends in Neuroscience, 13, 259-265. doi:10.1016/0166-2236(90)90106-k
Souza, B. R., Romano-Silva, M. A., & Tropepe, V. (2011). Dopamine D2 receptor activity modulates Akt signaling and alters GABAergic neuron development and motor behavior in zebrafish larvae. Journal of Neuroscience, 31, 5512-5525. doi:10.1523/JNEUROSCI.5548-10.2011
Speed, N., Saunders, C., Davis, A. R., Owens, W. A., Matthies, H. J., Saadat, S., . . . Galli, A. (2011). Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding. PLoS One, 6(9), e25169. doi:10.1371/journal.pone.0025169
Steiner, J., Brisch, R., Schiltz, K., Dobrowolny, H., Mawrin, C., Krzyzanowska, M., . . . Gos, T. (2016). GABAergic system impairment in the hippocampus and superior temporal gyrus of patients with paranoid schizophrenia: A post-mortem study. Schizophrenia Research, 177(1-3), 10-17. doi:10.1016/j.schres.2016.02.018
Stopper, C. M., Tse, M. T. L., Montes, D. R., Wiedman, C. R., & Floresco, S. B. (2014). Overriding phasic dopamine signals redirects action selection during risk/reward decision making. Neuron, 84, 177-189. doi:10.1016/j.neuron.2014.08.033
Strauss, J. S., Carpenter, W. T., Jr., & Bartko, J. J. (1974). The diagnosis and understanding of schizophrenia. Summary and conclusions. Schizophrenia Bulletin, 11, 70-80. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/4619922
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives Of General Psychiatry, 60, 1187-1192. doi:10.1001/archpsyc.60.12.1187
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning : An introduction. Cambridge, MA.: MIT Press.
Svrakic, D. M., Zorumski, C. F., Svrakic, N. M., Zwir, I., & Cloninger, C. R. (2013). Risk architecture of schizophrenia: The role of epigenetics. Current opinion in Psychiatry, 26, 188-195. doi:10.1097/YCO.0b013e32835d8329
Takata, A., Xu, B., Ionita-Laza, I., Roos, J. L., Gogos, J. A., & Karayiorgou, M. (2014). Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron, 82, 773-780. doi:10.1016/j.neuron.2014.04.043
Tan, C. O., & Bullock, D. (2008). A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward. Journal of Neuroscience, 28, 10062-10074. doi:10.1523/JNEUROSCI.0259-08.2008
Taniguchi, H., He, M., Wu, P., Kim, S., Paik, R., Sugino, K., . . . Huang, Z. J. (2011). A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron, 71, 995-1013. doi:10.1016/j.neuron.2011.07.026
Tepper, J. M., Koos, T., & Wilson, C. J. (2004). GABAergic microcircuits in the neostriatum. Trends in Neuroscience, 27, 662-669. doi:10.1016/j.tins.2004.08.007
Theberge, J., Bartha, R., Drost, D. J., Menon, R. S., Malla, A., Takhar, J., . . . Williamson, P. C. (2002). Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. American Journal of Psychiatry, 159, 1944-1946. doi:10.1176/appi.ajp.159.11.1944
Thompson, M., Weickert, C. S., Wyatt, E., & Webster, M. J. (2009). Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. Journal of Psychiatric Research, 43(11), 970-977. doi:10.1016/j.jpsychires.2009.02.005
Todtenkopf, M. S., Stellar, J. R., Williams, E. A., & Zahm, D. S. (2004). Differential distribution of parvalbumin immunoreactive neurons in the striatum of cocaine sensitized rats. Neuroscience, 127(1), 35-42. doi:10.1016/j.neuroscience.2004.04.054
Tso, I. F., Fang, Y., Phan, K. L., Welsh, R. C., & Taylor, S. F. (2015). Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study. Schizophrenia Research, 168(1-2), 338-344. doi:10.1016/j.schres.2015.08.022
Uno, Y., & Coyle, J. T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry and Clinical Neurosciences, 73, 204-215. doi:10.1111/pcn.12823
van Os, J., Kenis, G., & Rutten, B. P. (2010). The environment and schizophrenia. Nature, 468(7321), 203-212. doi:10.1038/nature09563
van Winkel, R., Stefanis, N. C., & Myin-Germeys, I. (2008). Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophrenia Bulletin, 34, 1095-1105. doi:10.1093/schbul/sbn101
Vogel, S., Klumpers, F., Krugers, H. J., Fang, Z., Oplaat, K. T., Oitzl, M. S., . . . Fernandez, G. (2015). Blocking the mineralocorticoid receptor in humans prevents the stress-induced enhancement of centromedial amygdala connectivity with the dorsal striatum. Neuropsychopharmacology, 40, 947-956. doi:10.1038/npp.2014.271
Vogel, S., Klumpers, F., Schroder, T. N., Oplaat, K. T., Krugers, H. J., Oitzl, M. S., . . . Fernandez, G. (2017). Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor. Neuropsychopharmacology, 42, 1262-1271. doi:10.1038/npp.2016.262
Volk, D. W., Edelson, J. R., & Lewis, D. A. (2016). Altered expression of developmental regulators of parvalbumin and somatostatin neurons in the prefrontal cortex in schizophrenia. Schizophrenia Research, 177(1-3), 3-9. doi:10.1016/j.schres.2016.03.001
Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological Methods, 17, 228-243. doi:10.1037/a0027127
Waltz, J. A., Demro, C., Schiffman, J., Thompson, E., Kline, E., Reeves, G., . . . Gold, J. (2015). Reinforcement learning performance and risk for psychosis in youth. Journal of Nervous and Mental Disease, 203, 919-926. doi:10.1097/NMD.0000000000000420
Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biological Psychiatry, 62, 756-764. doi:10.1016/j.biopsych.2006.09.042
Wang, J., Tang, Y., Zhang, T., Cui, H., Xu, L., Zeng, B., . . . Wang, J. (2016). Reduced gamma-aminobutyric acid and glutamate+glutamine levels in drug-naive patients with first-episode schizophrenia but not in those at ultrahigh risk. Neural Plasticity, 2016, 3915703. doi:10.1155/2016/3915703
Wang, Q., Liu, L., Pei, L., Ju, W., Ahmadian, G., Lu, J., . . . Wang, Y. T. (2003). Control of synaptic strength, a novel function of Akt. Neuron, 38, 915-928. doi:10.1016/s0896-6273(03)00356-8
Watkins, C. J. C. H., & Dayan, P. (1992). Q-Learning. Machine Learning, 8(3-4), 279-292. doi:Doi 10.1023/A:1022676722315
White, D. M., Kraguljac, N. V., Reid, M. A., & Lahti, A. C. (2015). Contribution of substantia nigra glutamate to prediction error signals in schizophrenia: A combined magnetic resonance spectroscopy/functional imaging study. NPJ Schizophrenia, 1, 14001. doi:10.1038/npjschz.2014.1
Wong, S. A., Thapa, R., Badenhorst, C. A., Briggs, A. R., Sawada, J. A., & Gruber, A. J. (2017). Opposing effects of acute and chronic d-amphetamine on decision-making in rats. Neuroscience, 345, 218-228. doi:10.1016/j.neuroscience.2016.04.021
Xu, M. Q., Xing, Q. H., Zheng, Y. L., Li, S., Gao, J. J., He, G., . . . He, L. (2007). Association of AKT1 gene polymorphisms with risk of schizophrenia and with response to antipsychotics in the Chinese population. Journal of Clinical Psychiatry, 68, 1358-1367. doi:10.4088/jcp.v68n0906
Yang, Z., Zhu, Y., Song, Z., Mei, L., Zhang, J., Chen, T., . . . Liu, D. (2015). Comparison of the density of gamma-aminobutyric acid in the ventromedial prefrontal cortex of patients with first-episode psychosis and healthy controls. Shanghai Archives of Psychiatry, 27, 341-347. doi:10.11919/j.issn.1002-0829.215130
Zammit, S., Allebeck, P., Andreasson, S., Lundberg, I., & Lewis, G. (2002). Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: Historical cohort study. British Medical Journal, 325(7374), 1199. doi:10.1136/bmj.325.7374.1199
Zavitsanou, K., Ward, P. B., & Huang, X. F. (2002). Selective alterations in ionotropic glutamate receptors in the anterior cingulate cortex in schizophrenia. Neuropsychopharmacology, 27, 826-833. doi:10.1016/S0893-133X(02)00347-0
Zhao, Z., Ksiezak-Reding, H., Riggio, S., Haroutunian, V., & Pasinetti, G. M. (2006). Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophrenia Research, 84(1), 1-14. doi:10.1016/j.schres.2006.02.009
Zheng, W., Wang, H., Zeng, Z., Lin, J., Little, P. J., Srivastava, L. K., & Quirion, R. (2012). The possible role of the Akt signaling pathway in schizophrenia. Brain Research, 1470, 145-158. doi:10.1016/j.brainres.2012.06.032
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關博士論文
 
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE