:::

詳目顯示

回上一頁
題名:基因演算法結合長短期記憶於短期電力負荷預測
作者:莎曼塔
作者(外文):ARPITA SAMANTA SANTRA
校院名稱:元智大學
系所名稱:資訊管理學系
指導教授:林志麟 博士
學位類別:博士
出版日期:2019
主題關鍵詞:長短期記憶模型基因演算法短期負載預測電力負載預測多元時間序列Long Short Term Memory (LSTM)Genetic algorithm (GA)Short Term Load Forecasting (STLF)Electricity Load Forecastingmultivariate time series
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
對於電力公用事業能準確的預測負荷是一項很重要的任務,可提高電力系統的效能和相關運行,且能在制定電價的政策上給予參考,如果能預測未來24小時的電力附載,營運商就能參考預測結果做出規劃與優化資源的利用。本研究提出的短期負荷預測(STLF)方法尚未被其他研究提出,目的是利用長期短期記憶(LSTM)結合基因演算法(GA)更精確的預測短期電力負荷。本研究方法使用實際電力負荷與天氣條件作為訓練資料與建模,並進行電力負荷預測。長期短期記憶(LSTM)網路具有長期依賴性的缺點,本研究使用基因演算法(GA)計算長期短期記憶(LSTM)模組的最佳參數,解決長期依賴性的問題發生。長期短期記憶(LSTM)搭配最佳參數適用於局部最優搜索,因此本研究結合長期短期記憶(LSTM)、基因演算法(GA)的優點,更能夠有效預測次日的每小時電力負荷。
Electricity load forecasting is an important task to enhance energy efficiency and operation reliability of the power system. Forecasting the hourly electricity load of the next day assists optimizing the resources and minimizing the energy wastage. The main motivation of this study is to improve the robustness of short-term load forecasting (STLF) by utilizing long short term memory (LSTM) and genetic algorithm (GA). The proposed method is novel: LSTM networks are designed to avoid the problem of long-term dependencies, and GA is used to obtain the optimal LSTM’s parameters, which are then applied to predict the hourly electricity load for the next day. The proposed method is trained using actual load and weather data, and the performance results show that it yields small mean absolute percentage error on the test data.
1.Suganthi, L. and A.A. Samuel, Energy models for demand forecasting—A review. Renewable and sustainable energy reviews, 2012. 16(2): p. 1223-1240.new window
2.Tripathy, S.C., Demand forecasting in a power system. Energy conversion and management, 1997. 38(14): p. 1475-1481.
3.Al-Shobaki, S. and M. Mohsen, Modeling and forecasting of electrical power demands for capacity planning. Energy Conversion and Management, 2008. 49(11): p. 3367-3375.
4.Bunn, D.W., Forecasting loads and prices in competitive power markets. Proceedings of the IEEE, 2000. 88(2): p. 163-169.
5.Douglas, A.P., et al., Risk due to load forecast uncertainty in short term power system planning. IEEE Transactions on Power Systems, 1998. 13(4): p. 1493-1499.
6.Bunn, D. and E. Farmer, Economic and Operational Context of Electric Load Forecasting. Comparative Models for Electrical Load Forecasting. John Wiley & Sons Ltd, 1985.
7.Yildiz, B., J.I. Bilbao, and A.B. Sproul, A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renewable and Sustainable Energy Reviews, 2017. 73: p. 1104-1122.
8.Pappas, S.S., et al., Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electric Power Systems Research, 2010. 80(3): p. 256-264.
9.Ekonomou, L. and D. Oikonomou. Application and comparison of several artificial neural networks for forecasting the Hellenic daily electricity demand load. in Proceedings of the 7th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Cairo, Egypt. 2008.
10.Ekonomou, L., C. Christodoulou, and V. Mladenov, A short-term load forecasting method using artificial neural networks and wavelet analysis. Int. J. Power Syst, 2016. 1: p. 64-68.new window
11.Dudek, G., Neuro-fuzzy approach to the next day load curve forecasting. Przegląd Elektrotechniczny, 2011. 87(2): p. 61-64.
12.Dudek, G., Artificial immune system with local feature selection for short-term load forecasting. IEEE Transactions on Evolutionary Computation, 2017. 21(1): p. 116-130.new window
13.Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p. 1735-1780.
14.Mitchell, M., An introduction to genetic algorithms. 1998: MIT press.
15.Khuntia, S.R., J.L. Rueda, and M.A. van der Meijden, Forecasting the load of electrical power systems in mid-and long-term horizons: a review. IET Generation, Transmission & Distribution, 2016. 10(16): p. 3971-3977.
16.Hahn, H., S. Meyer-Nieberg, and S. Pickl, Electric load forecasting methods: Tools for decision making. European journal of operational research, 2009. 199(3): p. 902-907.
17.Liu, X., B. Ang, and T. Goh. Forecasting of electricity consumption: a comparison between an econometric model and a neural network model. in [Proceedings] 1991 IEEE International Joint Conference on Neural Networks. 1991. IEEE.
18.Abdel-Aal, R., Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks. Computers & Industrial Engineering, 2008. 54(4): p. 903-917.
19.Hippert, H.S., C.E. Pedreira, and R.C. Souza, Neural networks for short-term load forecasting: A review and evaluation. IEEE Transactions on power systems, 2001. 16(1): p. 44-55.new window
20.Tzafestas, S. and E. Tzafestas, Computational intelligence techniques for short-term electric load forecasting. Journal of Intelligent and Robotic Systems, 2001. 31(1-3): p. 7-68.
21.Huang, S.-J. and K.-R. Shih, Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Transactions on power systems, 2003. 18(2): p. 673-679.
22.Heinemann, G., D. Nordmian, and E. Plant, The relationship between summer weather and summer loads-a regression analysis. IEEE Transactions on Power Apparatus and Systems, 1966(11): p. 1144-1154.
23.Rahman, S. and I. Drezga, Identification of a standard for comparing short-term load forecasting techniques. Electric power systems research, 1992. 25(3): p. 149-158.
24.Barakat, E., et al., Short-term peak demand forecasting in fast developing utility with inherit dynamic load characteristics. I. Application of classical time-series methods. II. Improved modelling of system dynamic load characteristics. IEEE Transactions on Power Systems, 1990. 5(3): p. 813-824.
25.Pappas, S.S., et al., Adaptive load forecasting of the Hellenic electric grid. Journal of Zhejiang University-SCIENCE A, 2008. 9(12): p. 1724-1730.
26.Juberias, G., et al. A new ARIMA model for hourly load forecasting. in 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333). 1999. IEEE.
27.Wang, B., et al., A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting. Electric Power Systems Research, 2008. 78(10): p. 1679-1685.
28.Kang, C., et al., Novel approach considering load-relative factors in short-term load forecasting. Electric Power Systems Research, 2004. 70(2): p. 99-107.
29.Mukhopadhyay, P., et al. Electricity load forecasting using fuzzy logic: Short term load forecasting factoring weather parameter. in 2017 7th International Conference on Power Systems (ICPS). 2017. IEEE.
30.Roman, R.-C., R.-E. Precup, and R.-C. David, Second order intelligent proportional-integral fuzzy control of twin rotor aerodynamic systems. Procedia computer science, 2018. 139: p. 372-380.
31.Li, Y. and T. Fang, Wavelet and support vector machines for short-term electrical load forecasting, in Wavelet Analysis and Its Applications: (In 2 Volumes). 2003, World Scientific. p. 399-404.
32.Ruzic, S., A. Vuckovic, and N. Nikolic, Weather sensitive method for short term load forecasting in electric power utility of Serbia. IEEE Transactions on Power Systems, 2003. 18(4): p. 1581-1586.
33.Ekonomou, L., Greek long-term energy consumption prediction using artificial neural networks. Energy, 2010. 35(2): p. 512-517.
34.McClelland, J.L., D.E. Rumelhart, and P.R. Group, Parallel distributed processing. Explorations in the Microstructure of Cognition, 1986. 2: p. 216-271.
35.Bakirtzis, A., et al., A neural network short term load forecasting model for the Greek power system. IEEE Transactions on power systems, 1996. 11(2): p. 858-863.
36.Liao, G.-C. and T.-P. Tsao, Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting. IEEE Transactions on Evolutionary Computation, 2006. 10(3): p. 330-340.
37.Mori, H. and N. Kosemura. Optimal regression tree based rule discovery for short-term load forecasting. in 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 01CH37194). 2001. IEEE.
38.Ling, S.-H., et al., A novel genetic-algorithm-based neural network for short-term load forecasting. IEEE Transactions on Industrial Electronics, 2003. 50(4): p. 793-799.
39.Chow, T. and C.-T. Leung, Nonlinear autoregressive integrated neural network model for short-term load forecasting. IEE Proceedings-Generation, Transmission and Distribution, 1996. 143(5): p. 500-506.
40.Ryu, S., J. Noh, and H. Kim, Deep neural network based demand side short term load forecasting. Energies, 2016. 10(1): p. 3.new window
41.Marino, D.L., K. Amarasinghe, and M. Manic. Building energy load forecasting using deep neural networks. in IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. 2016. IEEE.
42.Mao, J., et al., Deep captioning with multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632, 2014.
43.Graves, A. and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. in International conference on machine learning. 2014.
44.Graves, A. and J. Schmidhuber. Offline handwriting recognition with multidimensional recurrent neural networks. in Advances in neural information processing systems. 2009.
45.Holland, J.H., Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 1992: MIT press.
46.Goldberg, D.E. Sizing populations for serial and parallel genetic algorithms. in Proceedings of the 3rd international conference on genetic algorithms. 1989. Morgan Kaufmann Publishers Inc.
47.Michalewicz, Z., Evolution strategies and other methods, in Genetic algorithms+ data structures= evolution programs. 1994, Springer. p. 167-184.
48.Schaffer, J., A study of control parameters affecting online performance of genetic algorithms for function optimization. San Meteo, California, 1989.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE