:::

詳目顯示

回上一頁
題名:負重時上、下階梯之摩擦需求分析
作者:朱振群
作者(外文):(CHU, JENN-CHUN
校院名稱:中華大學
系所名稱:科技管理博士學位學程
指導教授:李開偉
學位類別:博士
出版日期:2020
主題關鍵詞:滑倒跌倒階梯人工搬運摩擦需求Slip and FallStairsGaitRequire Coefficient of Friction
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
跌倒/滑倒不僅在日常生活中會發生,也常發生於職場中。與在平面上行走時跌倒相比,在上、下樓梯時跌倒的死亡率或創傷性腦損傷和髖部骨折等嚴重損傷的風險相對較高。因此,防範上、下樓梯時的跌倒意外是重要的公共與職業安全議題。人工物料搬運作業在工作場域中是常見的作業方式,即便在高度自動化的生產活動中,人工物料搬運依舊是無法避免的。人們在進行搬運作業時,其步態受到搬運重量與走路速度的影響,進而影響走路時的穩定性而可能引發跌倒、滑倒。本研究透過實驗方式,探討不同人工搬運方式、不同負重、每步不同登階數,分析上、下階梯時的摩擦需求與地面垂直反作用力之變化。結果發現著地期時會因為負重程度不同而產生不同之摩擦需求,且負重愈大所需之摩擦需求亦愈大;但在腳離地期負重重量不影響摩擦需求值。在腳著地期,當摩擦供應量較低時,後背方式及雙手搬運方式比單手提物時的滑倒風險較高。在腳離地期則是以單手搬運較其他方式有較高的滑倒風險。在腳著地期期間,單手持物如鞋與地面所產生的垂直作用力不夠大,容易產生滑倒的風險。離地期之地面垂直反作用力會受到每步登階數及上、下階梯和負重重量之影響,其中每步登二階與下階梯時產生較大的地面垂直反作用力,故如垂直作用力不足,容易造成滑倒事故的發生。
Slipping and falling are normal during daily life and at work places. Comparing with walking on a level surface, stairs climbing has higher risk of fall. Fall on stairs normally cause serious injuries and even death. Therefore, how to prevent the falls/slips on stairs is a critical topic on both public and occupational safety. Manual carryings are common even in a highly mechanized factory. When workers are carrying loads, their gaits are affected by the loads and their walking speed. This study was performed to collect friction requirement and ground reaction force data under different weights of carrying, carrying methods, different number of stair climbing, and ascent or decent. The results indicated that heavy loads carriage were associated with high friction requirement. When the participants carried with backpack or using both hands, the risks of falling/slipping were higher than those of the one-handed carrying at heel landing. At the toe-off period, the participants had higher risk of slipping when carried using one-handed as compared with those of backpacking and bimanual carrying. The ground reaction force was affected by stepping amplitude, weights of carrying, and ascend/descend modes. The risks were higher when the participants stepped two steps down to descend at the foot-off period.
王寶雲(1997)。應用力學-靜力學篇。台北市:五南崗書出版社。
行政院勞工安全衛生研究所(2007)。非對稱負重與地面條件對平衡的影響。行政院勞工安全衛生研究所,IOSH96-H102。
行政院勞工安全衛生研究所(2013)。滑跌倒職業災害之案例分析與現場調查研究。行政院勞工安全衛生研究所,IOSH102-H319。
行政院勞動部職業安全衛生署(2020)。107年勞動檢查統計年報。行政院勞動部職業安全衛生署。
李開偉、陳慶忠、劉立文、陳志勇(2013)。三種地板摩擦測試儀之比較。勞工安全衛生研究季刊,21(4),451-463.
李開偉、劉立文、陳慶忠、陳志勇、林軒丞(2016)。餐飲業地板抗滑性與勞工滑跌倒經驗分析。勞動及職業安全衛生季刊,24(2),163-171。
貝宗祐(2011)。固體顆粒尺寸對於鞋與地板間抗滑性的影響。未出版碩士論文,中華大學工業管理學研究所碩士論文,新竹市。
徐碧真(2008)。老年人上下樓梯時的生物力學及其與年輕人之比較。未出版碩士論文,成功大學醫學工程研究所,臺南市。
陳慶忠(2007)。鞋地紋路設計對防滑性影響之探討。未出版碩士論文,中華大學科技管理研究所博士論文。
黃斯胤(2017)。上下階梯的摩擦需求與膝關節受力分析,未出版碩士論文,中華大學科技管理博士學位學程博士論文。
黃韻靜、洪彰岑、黃文傑、鄭維怜、李宜芳、劉宇(2006)。視障生下階梯動作肌肉勁度調節能力與肌電現象之研究。體育學報,39(4),47-61.
蔡靜瑩、林育豪、孔建嘉、孟範武、洪得明(2012)。正向下階梯與背向下階梯時下肢肌肉活化之研究。中原體育學報,(1), 170-176.
賴學暐、張家豪、 蔡虔祿(2011)。以身體質心評估有無運動習慣的老人年在上下階梯之表現。華人運動生物力學期刊,(5),22-27.
簡致惠、翁梓林(2013) 。關節護具對老年人下階梯之生物力學探討。國北教大體育, (7), 136-141.
American Society for Testing and Materials, E-303-93.(2013). Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester. West Conshohocken, PA: ASTM International.
American Society for Testing and Materials, F-1677-05.(2005). Standard method of test for using a portable inclinable articulated strut slip tester (PIAST). West Conshohocken, PA: ASTM International.
American Society for Testing and Materials, F-1679-05.(2005). Standard Test Method for Using a Variable Incidence Tribometer (VIT), West Conshohocken, PA: ASTM International.
American Society for Testing and Materials, F-609-05.(2013). Standard Test Method for Using a Horizontal Pull Slipmeter (HPS). West Conshohocken, PA: ASTM International.
Andres, R.O., & Chaffin, D.B., 1985, Ergonomic analysis of slip-resistance measurement device. Ergonomics 28, 1065-1079.
Andriacchi, T. P., Andersson, G. B., Fermier, R. W., Stern, D., & Galante, J. O. (1980). A study of lower-limb mechanics during stair-climbing. The Journal of bone and joint surgery. American volume, 62(5), 749-757.
Attwells, R. L., Birrell, S. A., Hooper, R. H., & Mansfield, N. J. (2006). Influence of carrying heavy loads on soldiers' posture, movements and gait. Ergonomics, 49(14), 1527-1537.
Buczek, F. L., Cavanagh, P. R., Kulakowski, B. T., & Pradhan, P. (1990). Slip resistance needs of the mobility disabled during level and grade walk- ing. In B. E. Gray (Ed.), Slips, stumbles and falls: Pedestrian footwear and surfaces. (pp. 39–54). ASTM STP 1103. Philadelphia, PA: American Society for Testing and Materials.
Buczek, F. L., & Banks, S. A. (1996). High-resolution force plate analysis of utilized slip resistance in human walking. Journal of testing and evaluation, 24(6), 353-358.
Burnfield, J. M., & Powers, C. M. (2006). Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance. Ergonomics,49(10), 982-995.
Canadian Centre for Occupational Health and Safety, CCOHS (2016), Prevention of Slips, Trips and Falls, from https://www.ccohs.ca/oshanswers/safety_haz/falls.html,
Cayless, S. M. (2001). Slip, trip and fall accidents: relationship to building features and use of coroners’ reports in ascribing cause. Applied Ergonomics, 32(2), 155-162.
Chang, W. R., & Matz, S. (2001). The slip resistance of common footwear materials measured with two slipmeters. Applied ergonomics, 32(6), 549-558.
Chang, W. R., Grönqvist, R., Leclercq, S., Brungraber, R. J., Mattke, U., Strandberg, L., ... & Courtney, T. K. (2001a). The role of friction in the measurement of slipperiness, Part 2: Survey of friction measurement devices. Ergonomics,44(13), 1233-1261.
Chang, W. R., Grönqvist, R., Leclercq, S., Myung, R., Makkonen, L., Strandberg, L., & Thorpe, S. C. (2001b). The role of friction in the measurement of slipperiness, Part 1: Friction mechanisms and definition of test conditions. Ergonomics, 44(13), 1217-1232.
Chang, W. R., Kim, I. J., Manning, D. P., & Bunterngchit, Y. (2001c). The role of surface roughness in the measurement of slipperiness. Ergonomics, 44(13), 1200-1216.
Chang, W. R., Matz, S., & Chang, C. C. (2012). A comparison of required coef- ficient of friction for both feet in level walking. Safety Science, 50, 240– 243.
Chang, W. R., Lesch, M. F., Chang, C. C., & Matz, S. (2015). Contribution of gait parameters and available coefficient of friction to perceptions of slipperiness. Gait & posture, 41(1), 288-290.
Christina, K. A., & Cavanagh, P. R. (2002). Ground reaction forces and frictional demands during stair descent: effects of age and illumination. Gait & posture, 15(2), 153-158.
Cohen, H. H., Templer, J. & Archea, J.(1985). An analysis of occupational stair accident patterns. Journal of Safety Research, 16, 171-181.
European Union information agency for occupational safety and health, EU-OSHA,(2013), E-fact 73:Nanomaterials in the healthcare sector: occupational risks and prevention, from https://osha.europa.eu/en/publications/e-fact-73-nanomaterials-healthcare-sector-occupational-risks-and-prevention/view.
Eves, F. F., Webb, O. J., & Mutrie, N. (2006). A workplace intervention to promote stair climbing: greater effects in the overweight. Obesity, 14(12), 2210-2216.
Fong, D. T. P., Hong, Y., & Li, J. X. (2009). Human walks carefully when the ground dynamic coefficient of friction drops below 0.41. Safety science, 47(10), 1429-1433.
Goldsmith, A. (1986). Slip and fall accident. Hazard Prev, 5, 16-18.
Goldsmith, A. (1986). Slip and fall accident. Hazard Prevention, 5, 16-18.
Grönqvist, R., Chang, W.R., Courtnesy, T.K., Leamon, T.B., Redfern, M.S., Strandberg, L.(2001). Measurement of Sliperiness Fundamental Concepts and Defimitions. Ergonomics, 44(13), 1102-1117.
Grönqvist, R., Hirvonen, M., & Tohv, A. (2000). Evaluation of three portable floor slipperiness testers. International Journal of Industrial Ergonomics, 25(1), 85-95.
Grönqvist, R., Hirvonen, M., & Tuusa, A. (1993). Slipperiness of the shoe-floor interface: comparison of objective and subjective assessments. Applied ergonomics, 24(4), 258-262.
Grönqvist, R., Roine, J., Järvinen, E., & Korhonen, E. (1989). An apparatus and a method for determining the slip resistance of shoes and floors by simulation of human foot motions. Ergonomics, 32(8), 979-995.
Hanson, J. P., Redfern, M. S., & Mazumdar, M. (1999). Predicting slips and falls considering required and available friction. Ergonomics, 42(12), 1619-1633.
Health and Safety Authority(2017). Safer Work Stairs and Steps Information Sheet , from http://www.hsa.ie/eng/Publications_and_Forms/Publications/Slips_Trips_and_Falls/Safer_Work_Stairs_and_Steps_Information_Sheet.html.
Health and safety Executive, HSE (2017).from Health and safety statistics, https://www.hse.gov.uk/statistics.
Holbei, M. A., & Redfern, M. S. (1997). Functional stability limits while holding loads in various positions. International Journal of Industrial Ergonomics, 19(5), 387-395.
Hong, Y., & Brueggemann, G. P. (2000). Changes in gait patterns in 10-year-old boys with increasing loads when walking on a treadmill. Gait & posture, 11(3), 254-259.
Hong, Y., & Cheung, C. K. (2003). Gait and posture responses to backpack load during level walking in children. Gait & posture, 17(1), 28-33.
Hong, Y., & Li, J. X. (2005). Influence of load and carrying methods on gait phase and ground reactions in children’s stair walking. Gait & posture, 22(1), 63-68.
Hsiang, S. M., & Chang, C. (2002). The effect of gait speed and load carrying on the reliability of ground reaction forces. Safety Science, 40(7-8), 639-657.
Jacobs, J. V. (2016). A review of stairway falls and stair negotiation: Lessons learned and future needs to reduce injury. Gait & posture, 49, 159-167.
Jevsevar, D.S. Riley, P.O., Hodge, W.A., Krebs, D.E. (1993). Knee Kinematics and Kinetics during locomotor activities od daily living in subjects with knee arthroplasty and in healthy control subjects. Physical Therapy, 73(4), 229-242.
Kamel, M. H., Abdulmajeed, A. A., & Ismail, S. E. S. (2013). Risk factors of falls among elderly living in Urban Suez-Egypt. Pan African medical journal, 14(1), 1-7.
Kinoshita, H. (1985). Effects of different loads and carrying systems on selected biomechanical parameters describing walking gait. Ergonomics, 28(9), 1347-1362.
Kool, B. S., Ameratunga, W. Hazell, A. Ng. (2010). Unintentional falls at home among young and middle-aged New Zealanders resulting in hospital admission or death: context and characteristics. N. Z. Med. J, 123, 75–84.
Leamon, T. B., & Li, K. W. (1990, September). Microslip length and the perception of slipping. In Proceedings of 23rd International Congress on Occupational Health (p. 17).
Leamon, T. B., & Li, K. W. (1991, September). Load carrying and slip length. In Proceedings of the Human Factors Society Annual Meeting (Vol. 35, No. 15, pp. 1159-1161). Sage CA: Los Angeles, CA: SAGE Publications.
Li, K. W., & Chen, C. J. (2005). Effects of tread groove orientation and width of the footwear pads on measured friction coefficients. Safety Science, 43(7), 391-405.
Li, K. W., & Yu, R.F. (2013). A field assessment of floor slipperiness in a student cafeteria. International Journal of Injury Control and Safety Promotion, 20(3), 245-253.
Li, K. W., Chen, C.Y., Chen, C. C., Liu, L.W. L. (2012). Assessment of slip resistance under footwear materials, tread designs, floor contamination, and floor inclination conditions. Work: A Journal of Prevention Assessment & Rehabilitation, 41(1), 3349-3351.
Li, K. W., Hsu, Y. W., Chang, W. R., & Lin, C. H. (2007). Friction measurements on three commonly used floors on a college campus under dry, wet, and sand-covered conditions. Safety Science, 45(9), 980-992.
Li, K. W., Huang, S. Y., & Chiu, W. H. (2017). Ground reaction force and required friction during stair ascent and descent. Human Factors and Ergonomics in Manufacturing & Service Industries, 27(1), 66-73.
Li, K. W., Zhao C. J., Peng, L. & Liu, A. Q. (2018). Subjective assessments of floor slipperiness before and after walk under two lighting conditions. International Journal of Occupational Safety and Ergonomics, 24(2), 294-302.
Li, K. W., Zhao, C., Peng, L., & Liu, A. Q. (2018). Subjective assessments of floor slipperiness before and after walk under two lighting conditions. International journal of occupational safety and ergonomics, 24(2), 294-302.
Li, K.W., Chang, W. R, Leamon, T. B., & Chen, C. J. (2004). Floor slipperiness measurement: friction coefficient, roughness of floors, and subjective perception under spillage conditions. Safety Science, 42, 547-565.
Li, K.W., Meng, F., & Zhang, W. (2014). Friction between footwear and floor covered with solid particles under dry and wet conditions. International journal of occupational safety and ergonomics, 20(1), 43-53.
Liberty Mutual (2017), 2017 Liberty Mutual Workplace Safety Index, from https://www.libertymutualgroup.com/about-liberty-mutual-site/news-site/Pages/2017-Liberty-Mutual-Workplace-Safety-Index.aspx.
Liu, L.W, Li, K. W., Lee, .Y.H., Chen, C. C., Chen, C.Y. (2010). Friction measurements on “anti-slip” floors under shoe sole, contamination,and inclination conditions. Safety Science. 48(10),pp.1321-1326.
Liu, L.W., Lee, Y. H., Lin, J.C., Li, K. W, & Chen, C. Y. (2013). Shoe Sole Tread Designs and Outcomes of Slipping and Falling on Slippery Floor Surfaces. Plos One, 8(7), 1-7.
Madehkhaksar, F., & Egges, A. (2016). Effect of dual task type on gait and dynamic stability during stair negotiation at different inclinations. Gait & posture, 43, 114-119.
Malta, D. C., Silva, M. M. A. D., Mascarenhas, M. D. M., Sá, N. N. B. D., Morais Neto, O. L. D., Bernal, R. T. I., ... & Gawryszewski, V. P. (2012). The characteristics and factors of emergency service visits for falls. Revista de saude publica, 46(1), 128-137.
McFadyen, B. J., & Winter, D. A. (1988). An integrated biomechanical analysis of normal stair ascent and descent. Journal of Biomechanics, 21(9), 733-744.
Menz, H. B., Lord, S. R., & Fitzpatrick, R. C. (2003). Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait & Posture, 18(1), 35-46.
Miller, J. M. (1983). Slippery work surface: Towards a performance definition and quantitative coefficient of friction criteria. Journal of Safety Research, 14(4), 145-158.
Muir,S.W., Berg, K. Chesworth, B.M., Klar, N., Speechley, M. (2010). Modifiable risk factors identify people who transition from non-fallers to fallers in community-dwelling older adults: a prospective study. Physiother. Can, 62 , 358–367.
Myung, R., & Smith, J. L., 1997, The effect of load carrying and floor contaminants on slip and fall parameters. Ergonomics, 40(2), 235-246.
National Safety Council, (NSC) (2017), NSC Injury Facts, from https://injuryfacts.nsc.org/state-data/at-work/work-deaths-by-state/.
Nottrodt, J. W., & Manley, P. (1989). Acceptable loads and locomotor patterns selected in different carriage methods. Ergonomics, 32(8), 945-957.
Oguro, y. (1982). A study on walking width, time and speed in manually carrying loads. In ergonomics (vol. 25, no. 6, pp. 496-496). One gunpowder square, London, England EC4A 3DE: Taylor & Francis LTD.
Perkins, P. J. (1978). Measurement of slip between the shoe and ground during walking. In Walkway surfaces: Measurement of slip resistance. ASTM Internationa STP 649. Baltimore, MD ASTM International.
Perkins, P. J., & Wilson, M. P. (1983). Slip resistance testing of shoes—new developments. Ergonomics, 26(1), 73-82
Protopapadaki, A., Drechsler, W. I., Cramp, M. C., Coutts, F. J., & Scott, O. M. (2007). Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clinical biomechanics, 22(2), 203-210.
Raina, P., Sohel, N., Oremus, M., Shannon, H., Mony, P., Kumar, R., ... & Yusuf, R. (2016). Assessing global risk factors for non-fatal injuries from road traffic accidents and falls in adults aged 35–70 years in 17 countries: a cross-sectional analysis of the Prospective Urban Rural Epidemiological (PURE) study. Injury prevention, 22(2), 92-98.
Redfern, M. S., Cham, R., Gielo-Perczak, K., Grönqvist, R., Hirvonen, M., Lanshammar, H., & Powers, C. (2001). Biomechanics of slips. Ergonomics, 44(13), 1138-1166.
Richards, J. (2008). Biomechanics in clinic and research. London: Churchill Livingstone.
Riener, R., Rabuffetti, M., & Frigo, C. (2002). Stair ascent and descent at different inclinations. Gait & posture, 15(1), 32-44.
Sheehan, R. C., & Gottschall, J. S. (2011). Stair walking transitions are an anticipation of the next stride. Journal of electromyography and kinesiology, 21(3), 533-541.
Shinno, N. (1971). Analysis of knee function in ascending and descending stairs. In Biomechanics II (Vol. 6, pp. 202-207). Karger Publishers.
Stacoff, A., Diezi, C., Luder, G., Stüssi, E., & Kramers-de Quervain, I. A. (2005). Ground reaction forces on stairs: effects of stair inclination and age. Gait & posture, 21(1), 24-38.
Startzell,J.K., D.A. Owens, L.M. Mulfinger, P.R., Cavanagh(2000). Stair negotiation in older people: a review, J. Am. Geriatr. Soc. 48 ,567–580.
Strandberg, L., & Lanshammar, H.(1981). The dynamics of slipping accidents. Journal of Occupational Accidents, 3, pp.153-162.
Strandberg, L. (1983). On accident analysis and slip-resistance measurement. Ergonomics, 26(1), 11-32.
Strandberg, L. (1985). The effect of conditions underfoot on falling and overexertion accidents. Ergonomics, 28(1), 131-147.
Talbot,L.A., R.J. Musiol, E.K. Witham, E.J. Metter, (2005). Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury, BMC Public Health, 5 , 86.
Templer, J. (1992). The staircase: Studies of hazards, falls, and safer design. Cambridge, MA: MIT Press.
Vaughan, C. L., Davis, B. L., & O'Connor, J. C. (1992). Dynamics of human gait, Human Kinetics Publishers, 9-12.
Yamaguchi, T. Hokkirigawa, K., (2008). Walking-Mode Maps Based on Slip/Non-Slip Criteria, Industrial Health, 46, 23–31.
Zachazewski, J. E., Riley, P. O., & Krebs, D. E. (1993). Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects. Journal of rehabilitation research and development, 30, 412-412.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE