:::

詳目顯示

回上一頁
題名:急性連續有氧與高強度間歇運動對神經認知功能表現之影響:延續效應與乳酸之角色
作者:劉人豪
作者(外文):LIU, JEN-HAO
校院名稱:國立體育大學
系所名稱:競技與教練科學研究所
指導教授:張育愷
學位類別:博士
出版日期:2020
主題關鍵詞:高強度間歇健身運動乳酸認知功能事件相關電位high-intensity intervalexerciselactatecognitive functionERP
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:1
先前多數研究已證實運動對大腦、認知功能與神經電生理有正向的效益,但大多數文獻聚焦在使用單一類型的運動介入,來探討其中之關聯。本研究旨在探討急性連續有氧與高強度間歇運動對神經認知功能表現之影響與比較不同運動型態之延續效應,以及探討乳酸在認知功能中扮演的可能角色。99名受試者隨機分派至連續有氧運動組、高強度間歇運動或控制組。連續有氧運動組以60%儲備心跳率 (HRR) 強度持續在跑步機上跑20分鐘,高強度間歇組則分成高強度運動與動態休息,採1:1方式,高強度設定90%儲備心跳率,接著以60%儲備心跳率,各一分鐘,共五回合10分鐘。結果:連續有氧運動組與高強度間歇組運動後有較佳的認知行為表現與延續效應,在事件相關電位表現上,連續有氧運動組與高強度間歇組運動後15分鐘與40分鐘之延續效果有較大的神經電生理指標。高強度間歇組之乳酸在運動後立即、8分鐘、15分鐘均高於連續有氧運動組與控制組。結論:20分鐘急性連續有氧運動與10分鐘急性高強度間歇運動在運動後15分鐘及其運動後40分鐘認知行為表現有正面助益,顯現其延續效應。急性連續有氧運動與高強度間歇運動在運動後及其延續效果有較大振幅之神經電生理指標。高強度間歇運動可能是透過乳酸之增加,提供大腦在運動後及其延續時間上較多能量,進一步影響認知功能,使其產生正向變化的生化物質。
Prior research has indicated the positive influence of exercise on the cognitive function, nevertheless, majority studies focused on only single type of exercise. Therefore, current study aimed to further explore the relationships between various modes of exercise and aspects of cognitive function, biochemistry, neuroelectric function, and brain function. The purpose of this study was to investigate the effects of acute continuous aerobic and high-intensity interval exercise on neurocognitive function performance and to compare the continuation effect of different types of exercise and the possible role of lactate in cognitive function. 99 participants were randomly assigned to the continuous aerobic exercise group, high-intensity interval exercise or control group. The continuous aerobic exercise with 60% heart rate reserve (HRR) intensity for 20 minutes treadmill running, and the high-intensity interval group with 90% heart rate reserve for 1 minute, and then 60% heart rate reserve for 1 minute, total of 5 rounds for 10 minutes. Results: The continuous aerobic exercise group and the high-intensity interval group had better cognitive behavioral performance and sustained effect. The continuous aerobic exercise group and high intensity interval exercise group had greater neuroelectrophysiological index after the exercise and the sustained effect. The lactate of high-intensity interval exercise group was higher than the continuous aerobic exercise group and the control group for immediately, 8 minutes, and 15 minutes after exercise. Conclusion: The 20 minutes acute continuous aerobic exercise and the 10 minutes acute high-intensity interval exercise have a positive effect on cognitive performance at 15 minutes and 40 minutes after exercise. Acute continuous aerobic exercise and high-intensity interval exercise have large P3 amplitude for 15 minutes and 40 minutes after exercise. High-intensity interval exercise may be through the increase of lactate to provide the brain with more energy after exercise and recovery duration, which further affects cognitive function and produces positive changes for sustained effects.
Ainslie, P. N., Cotter, J. D., George, K. P., Lucas, S., Murrell, C., Shave, R., . . . Atkinson, G. (2008). Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. The Journal of physiology, 586(16), 4005-4010.
Aitken, R. C. (1969). Measurement of feelings using visual analogue scales. Proceedings of the Royal Society of Medicine, 62(10), 989.
Alberini, C. M., Cruz, E., Descalzi, G., Bessières, B., & Gao, V. (2018). Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia, 66(6), 1244-1262.
Allard, F., Brawley, L., Deakin, J., & Elliot, F. (1989). The effect of exercise on visual attention performance. Human Performance, 2(2), 131-145.
Alves, C. R., Tessaro, V. H., Teixeira, L. A., Murakava, K., Roschel, H., Gualano, B., & Takito, M. Y. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual and Motor Skills, 118(1), 63-72.
American College of Sports Medicine (1995). ACSM's Guideline for Exercise Testing and Prescription (5th ed.): Baltimore: Williams and Wilkins.
Angadi, S. S., Mookadam, F., Lee, C. D., Tucker, W. J., Haykowsky, M. J., & Gaesser, G. A. (2015). High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study. Journal of Applied Physiology, 119(6), 753-758.
Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2008). Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task. Acta Psychologica, 129(3), 410-419.
Bagley, L., Slevin, M., Bradburn, S., Liu, D., Murgatroyd, C., Morrissey, G., . . . McPhee, J. S. (2016). Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO 2 max during exercise. British Medical Journal open sport and exercise medicine, 2(1), e000056-e000064.
Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., . . . Cholerton, B. A. (2010). Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Archives of Neurology, 67(1), 71-79.
Banich, M. T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science, 18(2), 89-94. doi:10.1111/j.1467-8721.2009.01615.x
Basso, J. C., & Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plasticity, 2(2), 127-152.
Bazargani, N., & Attwell, D. (2016). Astrocyte calcium signaling: the third wave. Nature Neuroscience, 19(2), 182-189.
Boutcher, S. H. (2010). High-intensity intermittent exercise and fat loss. Journal of Obesity, 2011, 1-10.
Brisswalter, J., Collardeau, M., & Rene, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32, 555-566.
Brooks, G. A. (2007). Lactate. Sports Medicine, 37(4-5), 341-343.
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219-223.
Burton, D. A., Stokes, K., & Hall, G. M. (2004). Physiological effects of exercise. Continuing Education in Anaesthesia Critical Care and Pain, 4(6), 185-188.
Byun, K., Hyodo, K., Suwabe, K., Ochi, G., Sakairi, Y., Kato, M., . . . Soya, H. (2014). Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study. Neuroimage, 98, 336-345.
Casey, B., Thomas, K. M., Welsh, T. F., Badgaiyan, R. D., Eccard, C. H., Jennings, J. R., & Crone, E. A. (2000). Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proceedings of the National Academy of Sciences, 97(15), 8728-8733.
Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG technology, 25(2), 83-92.
Córdova, C., Silva, V., Moraes, C. F., Simões, H. G., & Nóbrega, O. d. T. (2009). Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females. Brazilian Journal of Medical and Biological Research, 42(5), 458-464.
Chang, Y.-K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport and Exercise Psychology, 31(5), 640-656.
Chang, Y.-K., Labban, J., Gapin, J., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Research, 1453, 87-101.
Chmura, J., & Nazar, K. (2010). Parallel changes in the onset of blood lactate accumulation (OBLA) and threshold of psychomotor performance deterioration during incremental exercise after training in athletes. International Journal of Psychophysiology, 75(3), 287-290.
Chmura, J., Nazar, K., & Kaciuba-Uścilko, H. (1994). Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. International Journal of Sports Medicine, 15(4), 172-176.
Christ, E. R., Zehnder, M., Boesch, C., Trepp, R., Mullis, P. E., Diem, P., & Décombaz, J. (2006). The effect of increased lipid intake on hormonal responses during aerobic exercise in endurance-trained men. European Journal of Endocrinology, 154(3), 397-403.
Chu, C.-H., Alderman, B. L., Wei, G.-X., & Chang, Y.-K. (2015). Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. Journal of Sport and Health Science, 4(1), 73-81.
Cian, C., Koulmann, N., Barraud, P., Raphel, C., Jimenez, C., & Melin, B. (2000). Influences of variations in body hydration on cognitive function: Effect of hyperhydration, heat stress, and exercise-induced dehydration. Journal of Psychophysiology, 14(1), 29.
Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., . . . Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 1166-1170.
Coles, K., & Tomporowski, P. D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26(3), 333-344. doi:http://dx.doi.org/10.1080/02640410701591417
Córdova, C., Silva, V., Moraes, C. F., Simões, H. G., & Nóbrega, O. d. T. (2009). Acute exercise performed close to the anaerobic threshold improves cognitive performance in elderly females. Brazilian Journal of Medical and Biological Research, 42(5), 458-464.
Cotman, C. W., & Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. Exercise and Sport Sciences Reviews, 30(2), 75-79.
Dalleck, L. C., & Kravitz, L. (2006). Relationship between% heart rate reserve and% VO2 reserve during elliptical crosstrainer exercise. Journal of Sports Science and Medicine, 5(4), 662.
Dalsgaard, M. K., Nybo, L., Cai, Y., & Secher, N. H. (2003). Cerebral metabolism is influenced by muscle ischaemia during exercise in humans. Experimental Physiology, 88(2), 297-302.
Davis, C. L., Tomporowski, P. D., Boyle, C. A., Waller, J. L., Miller, P. H., Naglieri, J. A., & Gregoski, M. (2007). Effects of aerobic exercise on overweight children's cognitive functioning: a randomized controlled trial. Research Quarterly for Exercise and Sport, 78(5), 510-519.
Davranche, K., & McMorris, T. (2009). Specific effects of acute moderate exercise on cognitive control. Brain and Cognition, 69(3), 565-570.
De Araujo, A. C. C., Roschel, H., Picanço, A. R., do Prado, D. M. L., Villares, S. M. F., de Sá Pinto, A. L., & Gualano, B. (2012). Similar health benefits of endurance and high-intensity interval training in obese children. PloS One, 7(8).
Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11(3), 357-374.
Drollette, E. S., Scudder, M. R., Raine, L. B., Moore, R. D., Saliba, B. J., Pontifex, M. B., & Hillman, C. H. (2014). Acute exercise facilitates brain function and cognition in children who need it most: an ERP study of individual differences in inhibitory control capacity. Developmental Cognitive Neuroscience, 7, 53-64.
Duncan-Johnson, C. (1981). Young Psychophysiologist Award address, 1980. P300 latency: a new metric of information processing. Psychophysiology, 18(3), 207.
Erickson, K., & Kramer, A. F. (2009). Aerobic exercise effects on cognitive and neural plasticity in older adults. British Journal of Sports Medicine, 43(1), 22-24.
Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., & Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. Journal of Sport and Exercise Psychology, 19(3), 249-277.
Ferris, L. T., Williams, J. S., & Shen, C.-L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39(4), 728-734.
Fleury, M., Bard, C., Jobin, J., & Carrière, L. (1981). Influence of different types of physical fatigue on a visual detection task. Perceptual and Motor Skills, 53(3), 723-730.
Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of Physiology, 590(5), 1077-1084.
Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exercise and Sport Sciences Reviews, 36(2), 58-63.
Hatta, A., Nishihira, Y., Kim, S. R., Kaneda, T., Kida, T., Kamijo, K., . . . Haga, S. (2005). Effects of habitual moderate exercise on response processing and cognitive processing in older adults. The Japanese Journal of Physiology, 55(1), 29-36.
Haydon, P., & Nedergaard, M. (2014). How do astrocytes participate in neural plasticity? Cold Spring Harbor Perspectives in Biology, 7(3), a020438-a020454.
Heck, H., Mader, A., Hess, G., Mücke, S., Müller, R., & Hollmann, W. (1985). Justification of the 4-mmol/l lactate threshold. International Journal of Sports Medicine, 6(3), 117-130.
Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., . . . Bach, R. (2007). Aerobic high-intensity intervals improve V O2max more than moderate training. Medicine and Science in Sports and Exercise, 39(4), 665-671.
Hellstrom, G., Fischer-Colbrie, W., Wahlgren, N., & Jogestrand, T. (1996). Carotid artery blood flow and middle cerebral artery blood flow velocity during physical exercise. Journal of Applied Physiology, 81(1), 413-418.
Henneberger, C., Papouin, T., Oliet, S. H., & Rusakov, D. A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature, 463(7278), 232-238.
Higgins, S., Fedewa, M. V., Hathaway, E. D., Schmidt, M. D., & Evans, E. M. (2016). Sprint interval and moderate-intensity cycling training differentially affect adiposity and aerobic capacity in overweight young-adult women. Applied Physiology, Nutrition, and Metabolism, 41(11), 1177-1183.
Hillman, C. H., Kamijo, K., & Scudder, M. (2011). A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Preventive Medicine, 52, S21-S28.
Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044-1054.
Hillman, C. H., Snook, E. M., & Jerome, G. J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology, 48(3), 307-314.
Hood, D. A. (2001). Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology, 90(3), 1137-1157.
Hughes, J. R. (1984). Psychological effects of habitual aerobic exercise: A critical review. Preventive Medicine, 13(1), 66-78.
Ide, K., Schmalbruch, I. K., Quistorff, B., Horn, A., & Secher, N. H. (2000). Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. The Journal of Physiology, 522(1), 159-164.
Isaacs, L., & Pohlman, R. (1991). Effects of exercise intensity on an accompanying timing task. Journal of Human Movement Studies, 20(3), 123-131.
Joyce, J., Graydon, J., McMorris, T., & Davranche, K. (2009). The time course effect of moderate intensity exercise on response execution and response inhibition. Brain and Cognition, 71(1), 14-19.
Kamijo, K., Hayashi, Y., Sakai, T., Yahiro, T., Tanaka, K., & Nishihira, Y. (2009). Acute effects of aerobic exercise on cognitive function in older adults. Journals of Gerontology: Series B, 64(3), 356-363.
Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Wasaka, T., Kida, T., & Kuroiwa, K. (2004). Differential influences of exercise intensity on information processing in the central nervous system. European Journal of Applied Physiology, 92(3), 305-311.
Kamijo, K., Nishihira, Y., Higashiura, T., Hatta, A., Kaneda, T., Kim, S., . . . Kim, B. (2006). Influence of exercise intensity on cognitive processing and arousal level in the central nervous system. Advances in Exercise and Sports Physiology, 12(1), 1.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65(2), 114-121.
Kang, J., Chaloupka, E. C., Mastrangelo, M. A., Donnelly, M. S., Martz, W. P., & Robertson, R. J. (1998). Regulating exercise intensity using ratings of perceived exertion during arm and leg ergometry. European Journal of Applied Physiology and Occupational Physiology, 78(3), 241-246.
Kao, S. C., Drollette, E. S., Ritondale, J. P., Khan, N., & Hillman, C. H. (2018). The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychology of Sport and Exercise, 38, 90-99.
Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high‐intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335-1345.
Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28(4), 155-164.
Keast, D., Cameron, K., & Morton, A. (1988). Exercise and the immune response. Sports Medicine, 5(4), 248-267.
Kemppainen, J., Aalto, S., Fujimoto, T., Kalliokoski, K. K., Långsjö, J., Oikonen, V., . . . Knuuti, J. (2005). High intensity exercise decreases global brain glucose uptake in humans. The Journal of Physiology, 568(1), 323-332.
Kenney, W. L., Wilmore, J., & Costill, D. (2015). Physiology of Sport and Exercise 6th Edition: Human kinetics.
Kilpatrick, M. W., Jung, M. E., & Little, J. P. (2014). High-intensity interval training: a review of physiological and psychological responses. ACSM's Health and Fitness Journal, 18(5), 11-16.
Kindermann, W., Simon, G., & Keul, J. (1979). The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. European Journal of Applied Physiology and Occupational Physiology, 42(1), 25-34.
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12-24.
Laursen, P. B., & Jenkins, D. G. (2002). The scientific basis for high-intensity interval training. Sports Medicine, 32(1), 53-73.
Lees, C., & Hopkins, J. (2013). Peer reviewed: effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: a systematic review of randomized control trials. Preventing Chronic Disease, 10, 1-8.
Little, J. P., Gillen, J. B., Percival, M. E., Safdar, A., Tarnopolsky, M. A., Punthakee, Z., . . . Gibala, M. J. (2011). Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology, 111(6), 1554-1560.
Lojovich, J. M. (2010). The relationship between aerobic exercise and cognition: is movement medicinal? The Journal of Head Trauma Rehabilitation, 25(3), 184-192.
Lowe, C. J., Kolev, D., & Hall, P. A. (2016). An exploration of exercise-induced cognitive enhancement and transfer effects to dietary self-control. Brain and Cognition, 110, 102-111.
Ma, J. K., Le Mare, L., & Gurd, B. J. (2015). Four minutes of in-class high-intensity interval activity improves selective attention in 9-to 11-year olds. Applied Physiology, Nutrition, and Metabolism, 40(3), 238-244.
Magliero, A., Bashore, T. R., Coles, M. G., & Donchin, E. (1984). On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology, 21(2), 171-186.
Magnie, M.-N., Bermon, S., Martin, F., Madany-Lounis, M., Suisse, G., Muhammad, W., & Dolisi, C. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37(3), 369-377.
McMorris, T. (2015). Exercise-cognition interaction: Neuroscience perspectives: Academic Press.
McMorris, T., & Graydon, J. (1997). The effect of exercise on cognitive performance
in soccer-specific tests. Journal of Sports Sciences, 15(5), 459-468.
McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain and Cognition, 80(3), 338-351.
McMorris, T., & Hale, B. J. (2015). Is there an acute exercise-induced physiological/biochemical threshold which triggers increased speed of cognitive functioning? A meta-analytic investigation. Journal of Sport and Health Science, 4(1), 4-13.
McMorris, T., & Keen, P. (1994). Effect of exercise on simple reaction times of recreational athletes. Perceptual and Motor Skills, 78(1), 123-130.
McMorris, T., Myers, S., MacGillivary, W. W., Sexsmith, J. R., Fallowfield, J., Graydon, J. A. N., & Forster, D. (1999). Exercise, plasma catecholamine concentrations and decision-making performance of soccer players on a soccer-specific test. Journal of Sports Sciences, 17(8), 667-676. doi:10.1080/026404199365687
Miller, M. G., Hanson, N., Tennyck, J., & Plantz, K. (2019). A Comparison of High-Intensity Interval Training (HIIT) Volumes on Cognitive Performance. Journal of Cognitive Enhancement, 3(2), 168-173. doi:10.1007/s41465-018-0107-y
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. doi:10.1006/cogp.1999.0734
Molteni, R., Ying, Z., & Gómez‐Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity‐related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience, 16(6), 1107-1116.
Moraga-Amaro, R., Jerez-Baraona, J., Simon, F., & Stehberg, J. (2014). Role of astrocytes in memory and psychiatric disorders. Journal of Physiology-Paris, 108(4-6), 240-251.
Moraine, J.-J., Lamotte, M., Berré, J., Niset, G., Leduc, A., & Naeijel, R. (1993). Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. European Journal of Applied Physiology and Occupational Physiology, 67(1), 35-38.
Murray, N., & Janelle, C. M. (2007). Event-related potential evidence for the processing efficiency theory. Journal of Sports Sciences, 25(2), 161-171.
Newman, L. A., Korol, D. L., & Gold, P. E. (2011). Lactate produced by glycogenolysis in astrocytes regulates memory processing. PloS One, 6(12), e28427.
Nishihira, Y., Ohno, T., Hatta, A., Fumoto, M., Kaneda, T., Tokitou, S., . . . Funase, K. (1999). P300 Before and Affer Transient Hard Exercise. Advances in Exercise and Sports Physiology, 5(2), 49-54.
Nowotny, B., Nowotny, P. J., Strassburger, K., & Roden, M. (2012). Precision and accuracy of blood glucose measurements using three different instruments. Diabetic Medicine, 29(2), 260-265.
Ogoh, S., Tsukamoto, H., Hirasawa, A., Hasegawa, H., Hirose, N., & Hashimoto, T. (2014). The effect of changes in cerebral blood flow on cognitive function during exercise. Physiological Reports, 2(9), e12171. doi:10.14814/phy2.12163
Olson, R. L., Chang, Y.-K., Brush, C. J., Kwok, A. N., Gordon, V. X., & Alderman, B. L. (2016). Neurophysiological and behavioral correlates of cognitive control during low and moderate intensity exercise. Neuroimage, 131, 171-180.
Pachana, N. A., Thompson, L. W., Marcopulos, B. A., & Yoash-Gantz, R. (2004). California Older Adult Stroop Test (COAST): development of a Stroop test adapted for geriatric populations. Clinical Gerontologist, 27, 3-22. http://dx.doi.org/10.1300/J018v27n03_02.
Panissa, V. L. G., Alves, E. D., Salermo, G. P., Franchini, E., & Takito, M. Y. (2016). Can short-term high-intensity intermittent training reduce adiposity? Sport Sciences for Health, 12(1), 99-104.
Pannasch, U., & Rouach, N. (2013). Emerging role for astroglial networks in information processing: from synapse to behavior. Trends in Neurosciences, 36(7), 405-417.
Pellerin, L., & Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences, 91(22), 10625-10629.
Pellerin, L., & Magistretti, P. J. (2003). How to balance the brain energy budget while spending glucose differently. The Journal of Physiology, 546(2), 325.
Perea, G., Navarrete, M., & Araque, A. (2009). Tripartite synapses: astrocytes process and control synaptic information. Trends in Neurosciences, 32(8), 421-431.
Perry, C. G., Lally, J., Holloway, G. P., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2010). Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. The Journal of Physiology, 588(23), 4795-4810.
Pilegaard, H., Ordway, G. A., Saltin, B., & Neufer, P. D. (2000). Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. American Journal of Physiology-Endocrinology and Metabolism, 279(4), E806-E814.
Plowman, S. A., & Smith, D. L. (2013). Exercise Physiology for Health Fitness and Performance: Lippincott Williams & Wilkins.
Poitry-Yamate, C. L., Poitry, S., & Tsacopoulos, M. (1995). Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. Journal of Neuroscience, 15(7), 5179-5191.
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
Polich, J., & Lardon, M. T. (1997). P300 and long-term physical exercise. Electroencephalography and Clinical Neurophysiology, 103(4), 493-498.
Pontifex, M. B., Saliba, B. J., Raine, L. B., Picchietti, D. L., & Hillman, C. H. (2013). Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. The Journal of Pediatrics, 162(3), 543-551.
Powers, S. K., & Howley, E. T. (2014). Exercise Physiology: Theory and Application to Fitness and Performance: McGraw-Hill Humanities/Social Sciences/Languages.
Proia, P., Di Liegro, C. M., Schiera, G., Fricano, A., & Di Liegro, I. (2016). Lactate as a Metabolite and a Regulator in the Central Nervous System. International Journal of Molecular Sciences, 17(9), 1450-1470.
Puhan, M. A., Büsching, G., Schünemann, H. J., Zaugg, C., & Frey, M. (2006). Interval versus Continuous High-Intensity Exercise in Chronic Obstructive Pulmonary DiseaseA Randomized Trial. Annals of Internal Medicine, 145(11), 816-825.
Quaney, B. M., Boyd, L. A., McDowd, J. M., Zahner, L. H., He, J., Mayo, M. S., & Macko, R. F. (2009). Aerobic exercise improves cognition and motor function poststroke. Neurorehabilitation and Neural Repair, 23(9), 879-885.
Quistorff, B., Secher, N. H., & Van Lieshout, J. J. (2008). Lactate fuels the human brain during exercise. The Federation of American Societies for Experimental Biology Journal, 22(10), 3443-3449.
Rasmussen, P., Wyss, M. T., & Lundby, C. (2011). Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. The FASEB Journal, 25(9), 2865-2873.
Reuter, B. H., & Hagerman, P. S. (2008). Essentials of Strength Training and Conditioning (3rd ed). Champaign, IL: Human Kinetics.
Rognmo, Ø., Moholdt, T., Bakken, H., Hole, T., Mølstad, P., Myhr, N. E., . . . Wisløff, U. (2012). Cardiovascular Risk of High- Versus Moderate-Intensity Aerobic Exercise in Coronary Heart Disease Patients. Circulation, 126(12), 1436-1440. doi:10.1161/circulationaha.112.123117
Ross, A., & Leveritt, M. (2001). Long-term metabolic and skeletal muscle adaptations to short-sprint training. Sports Medicine, 31(15), 1063-1082.
Samuel, R. D., Zavdy, O., Levav, M., Reuveny, R., Katz, U., & Dubnov-Raz, G. (2017). The Effects of Maximal Intensity Exercise on Cognitive Performance in Children. Journal of Human Kinetics, 57(1), 85-96.
Schoenfeld, B., & Dawes, J. (2009). High-intensity interval training: Applications for general fitness training. Strength and Conditioning Journal, 31(6), 44-46.
Schurr, A. (2008). Lactate: a major and crucial player in normal function of both muscle and brain. The Journal of Physiology, 586(11), 2665-2666.
Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23(6), 695-703, 1986.
Seynnes, O. R., de Boer, M., & Narici, M. V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of Applied Physiology, 102(1), 368-373.
Sibley, B. A., & Beilock, S. L. (2007). Exercise and working memory: an individual differences investigation. Journal of Sport and Exercise Psychology, 29(6), 783-791.
Sibley, B. A., Etnier, J. L., & Le Masurier, G. C. (2006). Effects of an acute bout of exercise on cognitive aspects of Stroop performance. Journal of Sport and Exercise Psychology, 28(3), 285-299.
Slusher, A. L., Patterson, V. T., Schwartz, C. S., & Acevedo, E. O. (2018). Impact of high intensity interval exercise on executive function and brain derived neurotrophic factor in healthy college aged males. Physiology and Behavior, 191, 116-122. doi:https://doi.org/10.1016/j.physbeh.2018.04.018
Smith, D., Pernet, A., Hallett, W. A., Bingham, E., Marsden, P. K., & Amiel, S. A. (2003). Lactate: a preferred fuel for human brain metabolism in vivo. Journal of Cerebral Blood Flow and Metabolism, 23(6), 658-664.
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., . . . Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239-252.
Stoudemire, N. M., Wideman, L., Pass, K. A., Mcginnes, C. L., Gaesser, G. A., & Weltman, A. (1996). The validity of regulating blood lactate concentration during running by ratings of perceived exertion. Medicine and Science in Sports and Exercise, 28(4), 490-495.
Stroth, S., Kubesch, S., Dieterle, K., Ruchsow, M., Heim, R., & Kiefer, M. (2009). Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Research, 1269, 114-124.
Talanian, J. L., Galloway, S. D., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439-1447.
Tandan, R., & Fries, T. J. (1988). Continuous motor unit activity confined to the upper extremities. Muscle and Nerve, 11(3), 255-260.
Thorstensson, A., Karlsson, J., Viitasalo, J., Luhtanen, P., & Komi, P. (1976). Effect of strength training on EMG of human skeletal muscle. Acta Physiologica, 98(2), 232-236.
Tomporowski, P. D. (2003a). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297-324.
Tomporowski, P. D. (2003b). Cognitive and behavioral responses to acute exercise in youths: A review. Pediatric Exercise Science, 15(4), 348-359.
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., . . . Hashimoto, T. (2016). Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology and Behavior, 155, 224-230.
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., . . . Hashimoto, T. (2016). Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology and Behavior, 160, 26-34.
Van Hall, G., Stømstad, M., Rasmussen, P., Jans, Ø., Zaar, M., Gam, C., . . . Nielsen, H. B. (2009). Blood lactate is an important energy source for the human brain. Journal of Cerebral Blood Flow and Metabolism, 29(6), 1121-1129.
Van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: A functional MRI study. Neuroimage, 27(3), 497-504.
Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34(2), 131-156.
Wang, C.-C., Chu, C.-H., Chu, I.-H., Chan, K.-H., & Chang, Y.-K. (2013). Executive function during acute exercise: The role of exercise intensity. Journal of Sport and Exercise Psychology, 35(4), 358-367.
Weltman, A., Snead, D., Seip, R., Schurrer, R., Weltman, J., Rutt, R., & Rogol, A. (1990). Percentages of maximal heart rate, heart rate reserve and VO2max for determining endurance training intensity in male runners. International Journal of Sports Medicine, 11(3), 218-222.
Wisløff, U., Støylen, A., Loennechen, J. P., Bruvold, M., Rognmo, Ø., Haram, P. M., . . . Lee, S. J. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients. Circulation, 115(24), 3086-3094.
Wrisbert, C. A., & Herbert, W. G. (1976). Fatigue Effects on the Timing Performance
of Well-Practiced Subjects. Research Quarterly, 47(4), 839-844.
Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., & Soya, H. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 50(4), 1702-1710.
Yoshida, T. (1984). Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise. European Journal of Applied Physiology and Occupational Physiology, 53(3), 200-205.
Zierath, J. R., & Hawley, J. A. (2004). Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biology, 2(10), e337-e348.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top