:::

詳目顯示

回上一頁
題名:Covid-19新冠肺炎的傳播干預及預測
作者:賴榮斌
作者(外文):LAI, JUNG-PIN
校院名稱:國立暨南國際大學
系所名稱:新興產業策略與發展博士學位學程
指導教授:白炳豐
學位類別:博士
出版日期:2021
主題關鍵詞:Covid-19隔室模型預測長短期記憶模型基因演算法Covid-19Compartment modelForecastingLSTMGenetic Algorithm
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:0
許多研究結果已經表明高疫苗接種率和遵守公共衛生預防措施對於控制Covid-19疫情流行並防止未來住院趨勢和死亡人數激增至關重要。實施公共政策的決策者可以通過加速疫苗接種增加覆蓋率來擴大群體免疫和實施各項非藥物干預措施 (NPIs),例如隔離干預、關閉學校及設施、身體距離限制的及戴口罩等措施來控制疫情擴散,其中各國疫苗接種政策的實施亦是抑制疫情的重要關鍵。在本研究中使用隔室模型(Compartment model)中的感染數據用以模擬疫情傳播的狀態並獲取感染人數數據,預測模型使用長短期記憶(Long Short-Term Memory,LSTM)用以進行短期預測,訓練模型時使用基因演算法(Genetic Algorithm, GA)進行超參數優化。在感染人數預測中並進一步探討不同國家在政策干預下的情況,用以了解實施政策管制程度以及疫苗接種實施政策在不同國家中疾病傳播效果。本研究結果表明,所提出的GA-LSTM模型預測算法對於Covid-19疾病傳播在預測國家未來感染人數的可用性,誤差評估呈現精確的表現;另在透過非藥物干預措施(NPIs)及疫苗政策進行感染預測方面,研究結果亦顯示這是一個可靠且可執行的預測模型工具,政府管理者可透過此預測方法對疫情管制政策的實施進行決策評估,且可以即時依所在地需求進行政策調整。
Many research results have shown that high vaccination rates and compliance with public health precautions are essential to control the Covid-19 epidemic and prevent future hospitalization trends and a surge in deaths. Decision makers implementing public policies can expand herd immunity and implement various non-pharmaceutical interventions (NPIs) by accelerating vaccination and increasing coverage, such as isolation interventions, closing schools and facilities, restricting physical distance, and wearing masks to control The spread of the epidemic, and the implementation of vaccination policies in various countries is also an important key to curbing the epidemic. In this study, the infection data in the Compartment model is used to simulate the spread of the epidemic and to obtain data on the number of infected people. The prediction model uses Long Short-Term Memory (LSTM) to make short-term predictions. When training the model, genetic algorithm (GA) is used for hyper-parameter optimization. In the prediction of the number of infections, we will further explore the situation of different countries under policy intervention to understand the degree of policy control and the effect of disease transmission in different countries by the implementation of vaccination policies. The results of this study show that the proposed GA-LSTM model prediction algorithm has an accurate performance in predicting the availability of the Covid-19 disease spread in predicting the number of people infected in the country in the future, and the error assessment shows an accurate performance; in addition, it is carried out through non-pharmaceutical interventions (NPIs) and vaccine policies. In terms of infection prediction, the research results also show that this is a reliable and executable predictive model tool. Government managers can use this predictive method to make decision-making assessments on the implementation of epidemic control policies, and they can make immediate policy adjustments based on local needs.
1. Askitas, N.; Tatsiramos, K.; Verheyden, B. Estimating Worldwide Effects of Non-Pharmaceutical Interventions on COVID-19 Incidence and Population Mobility Patterns Using a Multiple-Event Study. Sci. Rep. 2021, 11.
2. Gumel, A.B.; Iboi, E.A.; Ngonghala, C.N.; Ngwa, G.A. Toward achieving a vaccine-derived herd immunity threshold for COVID-19 in the U.S. Front. Public Health 2021, 9, 709369.
3. Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020, 384, 403–416.
4. Bartsch, S.M.; O’Shea, K.J.; Ferguson, M.C.; Bottazzi, M.E.; Wedlock, P.T.; Strych, U.; McKinnell, J.A.; Siegmund, S.S.; Cox, S.N.; Hotez, P.J.; et al. Vaccine efficacy needed for a COVID-19 coronavirus vaccine to prevent or stop an epidemic as the sole intervention. Am. J. Prev. Med. 2020, 59, 493–503.
5. Jentsch, P.C.; Anand, M.; Bauch, C.T. Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: A mathematical modelling study. Lancet Infect. Dis. 2021.
6. Wells, C. R.; Galvani, A. P. The interplay between COVID-19 restrictions and vaccination. Lancet Infect Dis. 2021.
7. Annika, R.; Lydia R.; David B.; Dorothee V.L.; Janine K. ARS-CoV-2 B.1.1.529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals. December 11, 2021.
8. Liu, Y.; Morgenstern, C.; Kelly, J.; Lowe, R.; CMMID COVID-19 Working Group; Jit, M. The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Med. 2021, 19, 40.
9. Chowell, G. Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infect. Dis. Model. 2017, 2, 379–398.
10. Cruz-Mendoza, I.; Quevedo-Pulido, J.; Adanaque-Infante, L. "LSTM performance analysis for predictive models based on Covid-19 dataset," 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 2020.
11. Shastri, S.; Singh, K.; Kumar, S.; Kour, P.; Mansotra, V. Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos Solitons Fractals 2020, 140, 110227.
12. Daley DJ, Gani J (2005). Epidemic Modeling: An Introduction. New York: Cambridge University Press.
13. Kermack, W. O., and A. G. McKendrick (1927), Proc. R. Soc. Lond. A 115, 700.
14. Harko, T.; Lobo, F.S.N.; Mak, M.K. Exact analytical solutions of the susceptible-infected-recovered (SIR) epidemic model and on SIR model with equal death and birth rates. Appl. Math. Comput. 2014, 236, 184–194.
15. Yang, W.; Zhang, D.; Peng, L.; Zhuge, C.; Hong, L. Rational evaluation of various epidemic models based on the COVID-19 data of China 2020. arXiv 2020, arXiv:2003.05666.
16. Hethcote, Herbert. (2000). the Mathematics of Infectious Diseases. SIAM Review. 42. 599-653.
17. Delamater, P.L.; Street, E.J.; Leslie, T.F.; Yang, Y.T.; Jacobsen, K.H. Complexity of the Basic Reproduction Number (R0). Emerg. Infect. Dis. J. 2019, 25.
18. Sen, D.; Sen, D. Use of a Modified SIRD Model to Analyze COVID-19 Data. Ind. Eng. Chem. Res. 2021, 60, 4251–4260.
19. Rath, S.; Tripathy, A.; Tripathy, A.R. Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model. Diabetes Metab. Syndr. Clin. Res. Rev. 2020.
20. Bailey, Norman T. J. (1975). The mathematical theory of infectious diseases and its applications (2nd Ed.). London: Griffin. ISBN 0-85264-231-8.
21. Fernando Javier Aguilar Canto and Eric José Avila-Vales. Fitting parameters of SEIR and SIRD models of COVID-19 pandemic in Mexico. ResearchGate. 2020.
22. Lai, J.-P.; Chang, Y.-M.; Chen, C.-H.; Pai, P.-F. A Survey of Machine Learning Models in Renewable Energy Predictions. Appl. Sci. 2020, 10, 5975.
23. Kotsiantis, S.B. Supervised machine learning: A review of classification techniques. Informatica 2007, 31, 249–268.
24. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, L.; Wang, G.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2017, 1, 1–24.
25. Kufel, T. ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 181–204. 26. Bedi, P., Shivani, P.; Gole, N. Gupta, and V. Jindal, ‘‘Projections for COVID-19 spread in India and its worst affected five states using the modified SEIRD and LSTM models,’’ 2020, arXiv:2009.06457.
27. F. W. Wibowo and Wihayati, "Prediction Modelling of COVID-19 on Provinces in Indonesia using Long Short-Term Memory Machine Learning", Journal of Physics: Conference Series, vol. 1844, no. 1, pp. 012006, 2021.
28. ArunKumar, K.E.; Dinesh, V.; Kalaga, Ch.; Mohan Sai Kumar.; Masahiro K.; Timothy, M. Brenza. Forecasting of covid-19 using deep layer recurrent neural networks (rnns) with gated recurrent units (grus) and long short-term memory (lstm) cells. Chaos, Solitons and Fractals, 146:110861, 2021.
29. Davahli, M.R.; Fiok, K.; Karwowski, W.; Aljuaid, A.M.; Taiar, R. Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks. Int. J. Environ. Res. Public Health 2021, 18, 3834.
30. Deng, Q. Dynamics and development of the Covid-19 epidemics in the us: a compartmental model with deep learning enhancement. medRxiv, 2020.
31. Soures, N.; Chambers, D.; Carmichael, Z.; Daram, A.; Shah, D.P.; Clark, K.; Potter, L.; Kudithipudi, D. SIRNET: Understanding Social Distancing Measures with Hybrid Neural Network Model for COVID-19 Infectious Spread. arXiv 2020, arXiv:2004.10376v1.
32. Chandra, R.; Jain, A.; Chauhan, D.S. Deep learning via LSTM models for COVID-19 infection forecasting in India. arXiv 2021, preprint. arXiv:2101.11881.
33. Long, J.; Khaliq, A.; Furati, K. Identification and prediction of time-varying parameters of COVID-19 model: A data-driven deep learning approach. Int. J. Comput. Math. 2021, 98, 1617–1632.
34. Liu, F.; Wang, J.; Liu, J.; Li, Y.; Liu, D.; Tong, J.; Li, Z.; Yu, D.; Fan, Y.; Bi, X.; et al. Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models. PLoS ONE 2020, 15, e0238280.
35. Yang, Z.; Zeng, Z. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thorac. Dis. 2020.
36. Verma, H.; Mandal, S.; Gupta, A. Temporal Deep Learning Architecture for Prediction of COVID-19 Cases in India. arXiv: 2108.13823, 31 Aug 2021.
37. Prasanth, S.; Singh, U.; Kumar, A.; Tikkiwal, V.A.; Chong, P.H.J. Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach. Chaos Solitons Fractals 2020, 142, 110336.
38. Dairi, A.; Harrou, F.; Zeroual, A.; Hittawe M.M.; Sun, Y. Comparative study of machine learning methods for COVID-19 transmission forecasting Journal of Biomedical Informatics 118 103791, 2021.
39. Shastri, S.; Singh, K.; Kumar, S.; Kour, P.; Mansotra, V. Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos, Solitons & Fractals, 140, 110227, 2020.
40. Nazmoon Nabi, K.; Toki Tahmid, M.; Rafi, A.; Ehsanul Kader, M.; Asif Haider, M. Forecasting COVID-19 Cases: A Comparative Analysis between Recurrent and Convolutional Neural Networks. Results Phys. 2021, 24, 104137.
41. Munish, K.; Surbhi, G.; Krishan, K.; Monika S. Spreading of covid-19 in india, italy, japan, spain, uk, us: A prediction using arima and lstm model. Digital Government: Research and Practice, 1(4):1–9, 2020.
42. Ketu, Shwet; Mishra, Pramod Kumar. India perspective: CNN-LSTM hybrid deep learning model-based COVID-19 prediction and current status of medical resource availability. Soft comput; 1-20, 2021 Nov 19.
43. Jiao, F.; Huang, L.; Song, R.; Huang, H. An Improved STL-LSTM Model for Daily Bus Passenger Flow Prediction during the COVID-19 Pandemic. Sensors 2021, 21, 5950. https://doi.org/10.3390/s21175950
44. C. T. Yang et al., Influenza-like illness prediction using a long short-term memory deep learning model with multiple open data sources, J. Supercomput., no. 123456789, 2020.
45. Nussbaumer-Streit, B.; Mayr, V.; Dobrescu, A.I.; Chapman, A.; Persad, E.; Klerings, I.; et al.: Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. Cochrane Database Syst Rev, 2020.
46. Borchering, R.K.; Viboud, C.; Howerton, E.; Smith, C.P.; Truelove, S.; Runge, M.C.; Reich, N.G.; Contamin, L.; Levander, J.; Salerno, J.; et al. Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios-United States, April-September 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 719–724.
47.Chowdhury, R.; Heng, K.; Shawon, S.R.; Goh, G.; Okonofua, D.; Ochoa-Rosales, C.; Gonzalez-Jaramillo, V.; Bhuiya, A.; Reidpath, D.; Prathapan, S.; et al. Dynamic interventions to control COVID-19 pandemic: A multivariate prediction modelling study comparing 16 worldwide countries. Eur. J. Epidemiol. 2020, 35, 389–399.
48. Suryanarayanan, P.; Tsou, C.-H.; Poddar, A.; Mahajan, D.; Dandala, B.; Madan, P.; Agrawal, A.; Wachira, C.; Samuel, O. M.; Bar-Shira, O.; et al. AI-assisted tracking of worldwide non-pharmaceutical interventions for COVID 19. Scientific data, 8(1): 1–14, 2021.
49. Hasan, A.; Putri, E.; Susanto, H.; Nuraini, N. Data-driven modeling and forecasting of COVID-19 outbreak for public policy making. ISA Trans. 2021.
50. Zhong, L.; Diagne, M.; Wang, Q.; Gao, J. Vaccination and three non-pharmaceutical interventions determine the end of COVID-19 at 381 metropolitan statistical areas in the US. medRxiv. 2021.
51. Gozzi, N.; Bajardi, P.; Perra, N. The importance of non-pharmaceutical interventions during the COVID-19 vaccine rollout. medRxiv 2021.
52. Moore, S.; Hill, E.M.; Tildesley, M.J.; Dyson, L.; Keeling, M.J. Vaccination and non-pharmaceutical interventions for COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2021, 21, 793–802.
53. Rowan, N.J.; Moral, R.A. Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): Role of new sustainable NPI design innovations and predictive mathematical modelling. Sci. Total Environ. 2021, 772, 145530.
54. García-Montero, C.; Fraile-Martínez, O.; Bravo, C.; Torres-Carranza, D.; Sanchez-Trujillo, L.; Gómez-Lahoz, A.M.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; Bujan, J.; et al. An updated review of SARS-CoV-2 vaccines and the importance of effective vaccination programs in pandemic times. Vaccines 2021, 9, 433.
55. Nicola Perra. Non-pharmaceutical interventions during the Covid-19 pandemic: A review. Physics Reports, 2021.
56. Bo, Y.; Guo, C.; Lin, C.; Zeng, Y.; Li, H.B.; Zhang, Y.; Hossain, M.S.; Chan, J.W.M.; Yeung, D.W.; Kwok, K.O. Effectiveness of non-pharmaceutical interventions on COVID-19 transmission in 190 countries from 23 January to 13 April 2020. Int. J. Infect. Dis. 2021, 102, 247–253.
57. Giordano, G.; Colaneri, M.; Di Filippo, A.; Blanchini, F.; Bolzern, P.; De Nicolao, G.; Sacchi, P.; Colaneri, P.; Bruno, R. Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy. Nat. Med. 2021, 27, 993–998.
58. Gumel, A.B.; Iboi, E.A.; Ngonghala, C.N.; Ngwa, G.A. Toward achieving a vaccine-derived herd immunity threshold for COVID-19 in the U.S. Front. Public Health 2021, 9, 709369.
59. French government’s action summary website. https://www.gouvernement.fr/info-coronavirus/les-actions-du-gouvernement.
60. Schuppert, A.; Polotzek, K.; Schmitt, J.; Busse, R.; Karschau, J.; Karagiannidis, C. Different spreading dynamics throughout Germany during the second wave of the COVID-19 pandemic: A time series study based on national surveillance data. The Lancet Reg. Health Eur. 2021, 6, 100151.
61. Timeline of UK government coronavirus lockdowns. https://www.instituteforgovernment.org.uk/charts/uk-government-coronavirus-lockdowns
62. Hale, T.; Webster, S.; Petherick, A.; Phillips, T. & Kira, B. Oxford COVID-19 government response tracker (OXCGRT) 477 (2020).
63. Thomas, H.; Anna, P.; Toby P.; Samuel, Webster. Variation in government responses to covid-19. Blavatnik School of government working paper, 31, 2020.
64. Shen, Y. et al. Monitoring non-pharmaceutical public health interventions during the COVID-19 pandemic. Sci. Data 8 485, 2021.
65. A. Gulli, S. Pal. Deep Learning with Keras. Packt Publishing Ltd (2017)
66. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.
67. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
68. R. Hecht-Nielsen et al. Theory of the backpropagation neural network. Neural Networks 1, 445–448, 1988.
69. Khanday, N.Y.; Sofi, S.A. Deep Insight: Convolutional Neural Network and its Applications for COVID-19 Prognosis. Biomedical Signal Processing and Control, vol. In Press, p. 102814, 2021.
70. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
71. Optimizers – Keras. https://keras.io/zh/optimizers/.
72. Kingma, Diederik P.; Ba, Jimmy. Adam: A Method for Stochastic Optimization. ArXiv: 1412.6980 [cs.LG], December 2014.
73. Rohani, A.; Taki, M.; Abdollahpour, M. A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I). Renew. Energy 2018, 115, 411–422.
74. Yu, T.; Zhu, H. ‘‘Hyper-parameter optimization: A review of algorithms and applications,’’ 2020, arXiv: 2003.05689.
75. Bhasin, H.; Bhatia, S. 2011. Application of genetic algorithms in machine learning. International Journal of Computing Science and Information Technology 2, 5, 2412–2415, 2011.
76. Armano, G.; Marchesi, M.; Murru, A. A hybrid genetic-neural architecture for stock indexes forecasting. Inf. Sci. 2005, 170, 3–33.
77. Widiputra.; Harya. GA-Optimized Multivariate CNN-LSTM Model for Predicting Multi-Channel Mobility in the COVID-19 Pandemic. Emerging Science Journal 5, no. 5, 619–635, 2021.
78. Rani, P.; Shokeen, J.; Majithia, A.; Agarwal, A.; Bhatghare, A.; Malhotra, J.. Designing an LSTM and Genetic Algorithm-based Sentiment Analysis Model for COVID-19. Lecture Notes on Data Engineering and Communications Technologies; 91:209-216, 2022.
79. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73.
80. Holland, J. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press: Ann Arbor, MI, USA, 1975.
81. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306.
82. Medsker, L.; Jain, L. Recurrent neural networks. In Design and Applications; CRC Press: London, UK, 2001.
83. Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Computation, 9(8), 1735–1780, 1997.
84. Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos Solitons Fractals 2020, 140, 110121.
85. Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep Learning with Long Short-Term Memory for Time Series Prediction. IEEE Commun. Mag. 2019, 57, 114–119.
86. Chang, Y.-M.; Chen, C.-H.; Lai, J.-P.; Lin, Y.-L.; Pai, P.-F. Forecasting Hotel Room Occupancy Using Long Short-Term Memory Networks with Sentiment Analysis and Scores of Customer Online Reviews. Appl. Sci. 2021, 11, 10291.
87. Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top. 2019, 228, 2313–2324.
88. Myttenaere, A.D.; Golden, B.; Grand, B.L.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing 2016, 192, 38–48.
89. Yang Y.; Yu. W.; Chen. D. Prediction of COVID-19 spread via LSTM and the deterministic SEIR model. Chinese Control Conf. CCC, vol. 2020-July, pp. 782–785, 2020.
90. World Health Organization. (‎2020)‎. Clinical management of COVID-19: interim guidance, 27 May 2020. World Health Organization.
91. Li, Q. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020.
92. Wang, Y.; Zhu, S.; Li, C. Research on Multistep Time Series Prediction Based on LSTM. In Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), Xiamen, China, 18–20 October 2019; Institute of Electrical and Electronics Engineers (IEEE): Bari, Italy, 2019; pp. 1155–1159.
93. Tang, R.; Zeng, F.; Chen, Z.; Wang, J.S.; Huang, C.M.; Wu, Z. The Comparison of Predicting Storm-time Ionospheric TEC by Three Methods: ARIMA, LSTM, and Seq2Seq. Atmosphere 2020, 11, 316.
94. Stajkowski, S.; Kumar, D.; Samui, P.; Bonakdari, H.; Gharabaghi, B. Genetic-Algorithm-Optimized Sequential Model for Water Temperature Prediction. Sustainability 2020, 12, 5374.
95. Miikkulainen, R.; Francon, O.; Meyerson, E.; Qiu, X.; Sargent, D.; Canzani, E.; Hodjat, B. From Prediction to Prescription: Evolution-ary Optimization of Nonpharmaceutical Interventions in the COVID-19 Pandemic. IEEE Trans. Evol. Comput. 2021, 25, 386–401.
96. Lewis, C.D. Industrial and Business Forecasting Methods; Butterworth Scientific: London, UK, 1982.
97. Bhapkar, H.; Mahalle, P.N.; Dey, N.; Santosh, K. Revisited COVID-19 mortality and recovery rates: are we missing recovery time period? J. Med Syst. 2020, 44, 1–5.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE