:::

詳目顯示

回上一頁
題名:穿戴式裝置產品設計指標及其驗證之研究-以銀髮族穿戴式裝置為例
作者:王藝淇
作者(外文):WANG,I-CHI
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
指導教授:廖錦文
學位類別:博士
出版日期:2022
主題關鍵詞:穿戴式裝置產品設計指標銀髮族穿戴式裝置wearable deviceindicators of product designwearable device for the silver-haired group
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
本研究旨在以專家的觀點,透過專家問卷廣泛性的探究以建構穿戴式裝置產品設計指標,其次輔以驗證使用者之實際需求與感受,以提供相關產業未來在設計適用某使用族群穿戴式裝置時之參考依據。首先,在專家問卷部分,本研究以橘色科技的觀點探究穿戴式產品人本科技的本質,彙整穿戴式裝置之相關文獻,初擬發展穿戴式裝置產品設計指標;接著邀請13位產業專家、學者與醫療保健人員分別組成模糊德爾菲專家小組與網路層級分析小組,應用模糊德爾菲法進行二回合反覆修正、合併、增減問卷,俟專家意見取得一致性,以篩選專家對於穿戴式裝置產品設計指標;接著採取決策實驗室分析基礎之網路層級分析法進行分析,採用成對比較方式評估指標的重要性,整合專家意見進行統計分析,以取得指標間因果關係、權重及重要程度排序;其次,在消費者問卷部分,針對台灣地區408位有使用穿載式裝置經驗及390位未使用穿載式裝置經驗之50歳以上銀髮族分別進行重要性與滿意度驗證,並結合決策實驗室分析基礎之網路層級分析法所得之專家權重值與銀髮族之重要性-表現分析結果進行探討分析。
依據研究目的,獲致本研究結果如下所述:
壹、在穿戴式裝置的設計中,以健康與居家監控功能為設計的重點,為能達成功能強化的目標,至少必須考量產品設計的三大內涵,即為愉悅與成功的用戶體驗、裝置感測元件與資料應用的結合,以及以人為本的傳感技術。
貳、穿戴式裝置產品設計指標分為「幸福科技」、「關懷科技」與「健康科技」等3項構面、6項準則以及16項設計指標。
參、穿戴式裝置產品設計指標,以「功能強化」、「未來展望」與「質量外型」準則及「智慧性」、「前瞻性」、「整合性」、「客製化」、「連結性」、「耗能性」、「相容性」與「外觀性」等指標為主要影響因子,藉由其功能或品質之強化,進而帶動其他指標效能的提升,乃為穿戴式裝置業者重視之產品設計方向。
肆、專家認為本研究之穿戴式裝置產品設計指標重要程度等級,分別以「相容性」、「前瞻性」、「整合性」、「舒適性」、「外觀性」、「客製化」與「智慧性」為相對重視的評估因素。
伍、在消費者銀髮族認知最重視之產品屬性為「方便性」、「舒適性」、「安全性」,銀髮族對於穿戴式裝置產品屬性的重視度不會因使用經驗而產生差異;此外,在銀髮族認知的滿意度中,最高的產品屬性為「安全性」、「方便性」及「舒適性」,且銀髮族對於「屬性重視度」的整體性認知顯著高於對「屬性滿意度」的整體性認知。
陸、建構重要性-表現分析知覺矩陣,其評估結果,「相容性」為應優先改善;次要改善屬性分別為:「客製化」、「連結性」、「互動性」、「前瞻性」、「整合性」。
綜上所述,依據專家的觀點與銀髮族之實際感知結果,本研究發現如下:
壹、在供需雙方對於穿戴式裝置產品屬性確實存在重視落差。從專家與銀髮族重要性排序比對坐標圖可知,「方便性」、「客製化」、「耗能性」、「準確性」、「相容性」、「前瞻性」和「整合性」等七項設計指標屬於兩者重視落差較為分歧之產品屬性。藉由供需雙方重視落差之綜合分析,以獲得權衡及改善之效果。
貳、根據專家的觀點與銀髮族之重視落差原因,進一步提出「最具優勢」之產品設計屬性為「舒適性」、「智慧性」、「隱私性」、「方便性」、「安全性」;其次是「永續性」、「可靠性」、「準確性」、「耗能性」。表示銀髮族認為這些設計指標很重要,給人的感知表現都高於平均水準,可以滿足其自我健康管理上的需求。而銀髮族穿戴裝置相關產業應持續保持此相對優勢,甚至突破有限資源及技術困境,以獲得更多消費者的青睞。
This study aims to construct indicators of product design for wearable devices through extensive exploration of expert questionnaires from the perspective of experts and then to verify users’ actual needs and feelings, in order to provide reference to the relevant industries when designing wearable devices suitable for a certain user group in the future. Firstly, in the part of expert questionnaires, this study explored the essence of human-centered technology in wearable products from the perspective of orange technology, collected relevant literature on wearable devices, and initially developed key factors and indicators of wearable device design. Next, 13 experts of the industry, scholars and health care personnel were invited to form a fuzzy Delphi expert group and an analytic network process group respectively, and the Fuzzy Delphi Method (FDM) was employed to conduct two rounds of repeated corrections, mergers, additions and subtractions of questionnaires. When experts came to an agreement, the key factors and indicators of wearable device design based on experts’ opinions were selected. Subsequently, the DEMATEL-based Analytic Network Process (DANP) was used for analysis, the importance of indicators was evaluated by paired comparison, and expert opinions were integrated for statistical analysis, so as to obtain the cause-and-effect relationship, weight, and importance rating among indicators. Secondly, in the part of consumer questionnaires, this study was targeted at the silver-haired people over 50 years old who have used wearable devices and those who have never used wearable devices in Taiwan; among them, 408 experienced and 390 inexperienced seniors were respectively verified with an importance-performance analysis (IPA). Furthermore, this study explored and analyzed weight values of the experts and IPA results of the silver-haired group obtained from the integrated method of DEMATEL-based Analytical Hierarchy Network (DANP).
According to the research purpose, the results of this study are stated as follows:
1.In the design of wearable devices, health and home monitoring functions are the focus of the design. To achieve the goal of functional enhancement, at least three major connotations of product design must be considered, that is, users’ happy and successful experience, the combination of device sensing elements and data applications, and human-centered sensing technologies.
2.The indicators of product design for wearable devices are divided into 3 dimensions, including “happiness technology”, “care technology”, and “health technology”, 6 criteria and 16 design indicators.
3.The indicators of the product design for wearable devices treat not only criteria of “functional enhancement”, “future outlook”, and “quality appearance” but also indicators of “smartness”, “foresightedness”, “integratability”, “individualized”, “connectivity”, “power efficiency”, “compatibility”, and “appearance” as the main influence factors. Through the enhancement of their function or quality, the improvement of other indicators’ performance can be made as well. That is the product design direction to which the wearable device industry pays attention.
4.Experts believe that the importance levels of the product design indicators for wearable devices in this study are “compatibility”, “foresightedness”, “integratability”, “comfortableness”, “appearance”, “individualized”, and “smartness”, which are relatively important evaluation factors.
5.From the perspective of silver-haired consumers, the most important product attributes are “ease of use”, “comfortableness”, and “security”. The silver-haired people’s attention to the product attributes of wearable devices will not be different due to their experience of use. In addition, in the satisfaction recognized by the silver-haired group, the highest product attributes are “security”, “ease of use”, and “comfortableness”. Also, the silver-haired group’s overall recognition of “attribute importance” is significantly higher than that of “attribute satisfaction”.
6.The importance-performance analysis perception matrix is constructed, and its evaluation result suggests that “compatibility” should be prioritized for improvement; the secondary improvement attributes are: individualized, connectivity, interactivity, foresightedness, and integratability.
To sum up, according to the opinions of experts and the actual perception results of the silver-haired group, the findings of this study are listed as follows:
1.There is indeed a gap in the importance of product attributes for wearable devices between the sides of supply and demand. From the coordinate chart of the importance ranking of experts and seniors, it can be seen that seven design indicators, including “ease of use”, “individualized”, “power efficiency”, “accuracy”, “compatibility”, “foresightedness”, and “integratability”, belong to the product attributes with different emphasis on the difference between the two. Through the comprehensive analysis of the gap in importance between the supply and demand sides, we can obtain the effect of trade-off and improvement.
2.According to the opinions of experts and the reasons for the gap in the importance recognized by the silver-haired group, this study further proposes that “the most advantageous” attributes for product design are “comfortableness”, “smartness”, “privacy”, “ease of use”, and “security”, followed by “sustainability”, “reliability”, “accuracy”, and “power efficiency”. That shows the silver-haired people think that these design indicators are very important, and the perceived performance is higher than the average level, which can meet the needs of their self-health management. The related industries of wearable devices for the silver-haired group should continue to maintain this relative advantage, and even break through the limited resources and technical difficulties, in order to gain more consumers’ favor.
壹、中文部分
工程科技推展中心(2019)。科技部工程司108年度產學計畫優良成果專刊。2020年4月25日取自http://www.etop.org.tw/index.php?d=epp&c=epp13911&m=show&id=387。
王正忠(2013)。應用模糊德爾菲法於運動酒吧展店區位選擇因素之探討。運動知識學報,(10),15-32。
王沛娣(2009)。顛覆傳統 [新]銀髮族誕生。動腦 Brain,取自http://www.brain.com.tw/news/articlecontent?ID=12437。
尼爾森(2014)。看不到主打銀髮族的廣告?企業加把勁!2020年4月20日取自https://www.brain.com.tw/news/articlecontent?ID=19856。
吳明隆(2012)。論文寫作與量化研究。臺北市:五南圖書出版股份有限公司。
呂錘卿、林生傳(2001)。國民小教師專業成長指標及現況之研究。教育學刊,17,45-64。
官大文、王駿發(2015)。幸福關懷科技與產品。科學發展,11,64-71。
林政勳、邱煥科(2014)。穿戴式醫療電子裝置大未來。電工通訊季刊(第3季),35-41。
國家發展委員會(2020)。中華民國人口推估(2020至2070年)報告。2020年5月8日取自https://pop-proj.ndc.gov.tw/chart.aspx?c=10&uid=66&pid=60。
梁坤明(2000)。建立教師專業發展能力指標。現代教育論壇-教育人員進修面面觀。國立教育資料館,臺北市立師範學院。
許言、劉東昇(2013)。橘色科技之產品設計探討。工業設計, 128,49-54。
許言、謝富淵(2009)。應用前瞻科技之時尚生活產品設計探討。工業設計,121,240-245。
許碩倫(2016)。高齡者穿戴裝置產品開發。東海大學工業設計學系碩士論文。取自全國博碩士論文資訊網。
陳文亮(2019)。應用橘色科技觀點於智慧型防疫性裝置產品設計策略之研究。樹德科技大學學報,21(1),49-61。
陳弘仁(2014)。迎向智慧穿戴科技的大未來。微系統暨奈米科技協會會刊,31,17-21。
陳根(2014)。穿戴式裝置時代:奇「機」上身,第四波工業革命來襲。臺北市:上奇時代。
陳寬裕、王正華(2017)。論文統計分析實務:SPSS與AMOS的運用(第三版)。臺北市:五南圖書出版股份有限公司。
黃美玲(2015)。穿戴裝置技術與市場趨勢。證券服務,634,100-102。
黃國銘、曾惠萍、吳金能、李坤敏(2014)。整合穿戴式設備之健康管理服務系統。微系統暨奈米科技協會會刊,31,51-55。
黃富順(2012)。高齡心理學。臺北市:師大書苑。
楊豐兆、林利餘(2020)。影響消費者使用穿戴式裝置的知覺價值、滿意度與採用意願之前因。管理資訊計算,9(1),81-98。
葉晉嘉、翁興利、吳濟華(2007)。德菲法與模糊德菲法之比較研究。調查研究方法與應用,21,31-58。
資訊工業策進會(2017)。智慧穿戴 創新生活 解析智慧穿戴式裝置市場趨勢與創新產品應用。2020年6月20日取自 https://www.iii.org.tw/Focus/FocusDtl.aspx?f_type=2&f_sqno=Zdw7bw%2B50oGAn2GA6qArNg__&fm_sqno=13。
榮泰生(2011)。Amos 與研究方法(第四版)。臺北市:五南圖書出版股份有限公司。
劉仲矩、陳文川(2014)。橘色科技運用於雲端服務重要性之研究。工程科技與教育學刊,11(2),159-173。
數位時代(2016)。整合智慧衣與穿戴式裝置建構整體健康照護服務平台。2020年5月11日取自 https://www.digitimes.com.tw/iot/article.asp?cat=130&cat1=40&cat2=55&id=0000486955_J3FL8I1245MHOQ6RIKFTA。
鄭約得、施勵行(2014)。促進家電節能行為的訊息設計策略: 以家用能源顯示設備為例。科學與人文研究,2(4),13-31。
鄭滄濱(2001)。軟體組織提升人員能力之成熟度模糊評估模式。國立台灣科技大學資訊管理研究所碩士論文。取自全國博碩士論文資訊網。

貳、英文部分
Ahmad, A., Rasul, T., Yousaf, A., & Zaman, U. (2020). Understanding factors influencing elderly diabetic patients’ continuance intention to use digital health wearables: Extending the Technology Acceptance Model (TAM). Journal of Open Innovation: Technology, Market, Complexity, 6, 81. doi:10.3390/joitmc6030081
Akbar-Khanzadeh, F., Bisesi, M. S., & Rivas, R. D. (1995). Comfort of personal protective equipment. Applied ergonomics, 26(3), 195-198.
Akins, R. B., Tolson, H., & Cole, B. R. (2005). Stability of response characteristics of a Delphi panel: application of bootstrap data expansion. BMC medical research methodology, 5(1), 1-12.
Amorim, V. J., Silva, M. C., & Oliveira, R. A. (2019). Software and hardware requirements and trade-offs in operating systems for wearables: A tool to improve devices’ performance. Sensors, 19(8), 1904. doi:10.3390/s19081904.
Arias, O., Wurm, J., Hoang, K., & Jin, Y. (2015). Privacy and security in internet of things and wearable devices. IEEE Transactions on Multi-Scale Computing Systems, 1(2), 99-109.
Aroganam , G., Manivannan, N., & Harrison, D. (2019). Review on wearable technology sensors used in consumer sport applications. Sensors, 19(9), 1983. doi:10.3390/s19091983.
Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology, 32(7), 363-371.
Banta D. (2003). The development of health technology assessment. Health Policy, 63(2), 121-132.
Bellekens, X. J., Nieradzinska, K., Bellekens, A., Seeam, P., Hamilton, A. W., & Seeam, A. (2016). A Study on Situational Awareness Security and Privacy of Wearable Health Monitoring Devices. International Journal of Cyber Situational Awareness, 1(1), 74-96.
Bigger, E. E., & Fraguada, L. E. (2016, September). Programmable plaid: the search for seamless integration in fashion and technology. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 464-469).
Blasco, J., & Peris-Lopez, P. (2018). On the feasibility of low-cost wearable sensors for multi-modal biometric verification. Sensors, 18(9), 2782.
Blasco, J., Chen, T. M., Patil, H. K., & Wolff, D. (2019). Wearables security and privacy. In H. Ammari (eds), Mission-Oriented Sensor Networks and Systems: Art and Science (pp. 351-380). Springer, Cham.
Bloch, P.H. (1995). Seeking the ideal form: Product design and consumer response. Journal of. Marketing, 59, 16–29. https://doi.org/10.1177/002224299505900302
Bonato P. (2010). Wearable sensors and systems: From enabling technology to clinical applications. IEEE Engineering in Medicine and Biology Magazine, 29(3), 25-36. doi: 10.1109/MEMB.2010.936554
Boontarig, W., Chutimaskul, W., Chongsuphajaisiddhi, V., & Papasratorn, B. (2012, June). Factors influencing the Thai elderly intention to use smartphone for e-Health services. In 2012 IEEE symposium on humanities, science and engineering research (pp. 479-483). IEEE.
Boostani, A., Jolai, F., & Bozorgi-Amiri, A. (2018). Optimal location selection of temporary accommodation sites in Iran via a hybrid fuzzy multiple-criteria decision making approach. Journal of Urban Planning and Development, 144(4), 04018039. doi: 10.1061/(ASCE)UP.1943-5444.0000479
Boyle, J., & Karunanithi, M. (2008, August). Simulated fall detection via accelerometers. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1274-1277). IEEE.
Bui, T. D., Tsai, F. M., Tseng, M. L., & Ali, M. H. (2020). Identifying sustainable solid waste management barriers in practice using the fuzzy Delphi method. Resources, Conservation and Recycling, 154, 104625. doi:10.1016/j.resconrec.2019.104625
Caprani, N., O’Connor, N. E., & Gurrin, C. (2012). Touch screens for the older user. Assistive technologies, 95-118.
Caulfield, B. M., & Donnelly, S. C. (2013). What is connected health and why will it change your practice?. QJM: An International Journal of Medicine, 106(8), 703-707.
Chae, H. S., Hong, J. Y., Cho, H. S., & Han, K. H. (2007). An investigation of usability evaluation for smart clothing. In J. Jacho (Ed.), Human-Computer Interaction, Part II , 4551, (pp. 1053-1060). Verlag Berlin Heidelberg: Springer.
Chang, C. Y., Chiu, Y. H., & Wang, J. W. (2020). Application of mixed multicriteria decision-making methods to determine the optimal development industries for the taoyuan aerotropolis, Taiwan. International Regional Science Review, 43(4), 370-396.
Chawla, N. (2020). AI, IoT and wearable technology for smart healthcare–A review. International Journal of Recent Research Aspects, 7(1), 9–13.
Cheng, Y.-M. (2015). Towards an understanding of the factors affecting m-learning acceptance: Roles of technological characteristics and compatibility. Asia Pacific Management Review, 20(3), 109–119.
Cho, G., Lee, S., & Cho, J. (2009). Review and reappraisal of smart clothing. International Journal of Human–Computer Interaction, 25(6), 582-617. doi: 10.1080/10447310902997744.
Choi, J., Kim, S. (2016). Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Computers in Human Behavior, 63, 777–786. doi: 10.1016/j.chb.2016.06.007
Cilliers, L. (2020). Wearable devices in healthcare: Privacy and information security issues. Health Information Management Journal, 49(2-3), 150-156. doi: 10.1177/1833358319851684.
Claudio, D., Velzquez. M.A., Bravo-Llerena. W., Okudan. G.E., & Freivalds, A. (2015). Perceived usefulness and ease of use of wearable sensor-based systems in emergency departments. IIE Transactions on Occupational Ergonomics and Human Factors. 3(3-4), 177-187.
Constant, N., Douglas-Prawl, O., Johnson, S., & Mankodiya, K. (2015, June). Pulse-Glasses: An unobtrusive, wearable HR monitor with Internet-of-Things functionality. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks, 1-5.
Degroote, L., De Bourdeaudhuij, I., Verloigne, M., Poppe, L., & Crombez, G. (2018). The accuracy of smart devices for measuring physical activity in daily life: validation study. JMIR mHealth and uHealth, 6(12), e10972.
Dehghani, M., & Dangelico, R. M. (2018). Smart wearable technologies: state of the art and evolution over time through patent analysis and clustering. International Journal of Product Development, 22(4), 293-313.
Dewsbury, G., Clarke, K., Rouncefield, M., Sommerville, I., Taylor, B., & Edge, M. (2003). Designing acceptable ‘smart’home technology to support people in the home. Technology and Disability, 15(3), 191-199.
Dey, S., Roy, A., & Das, S. (2016, October). Home automation using Internet of Thing. In 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), 1-6.
Diaz, C. A., Leal-Junior, A. G., M Avellar, L., C Antunes, P. F., Pontes, M. J., Marques, C. A., & N Ribeiro, M. R. (2019). Perrogator: A portable energy-efficient interrogator for dynamic monitoring of wavelength-based sensors in wearable applications. Sensors, 19(13), 2962.
Dunachie, F. (1996). The success of the industrial revolution and the failure of political revolutions: How Britain got lucky. Historical Notes, 26, 1-7.
Dunne, L. (2008). Wearability in wearable computers. In Proceedings of the 2008 12th IEEE International Symposium on Wearable Computers. p.125. doi: 10.1109/ISWC.2008.4911605.
Duval, S., Hoareau, C., & Hiromichi, H. (2010). Humanistic needs as seeds in smart clothing. In G. Cho (Ed.), Smart Clothing Technology and Applications (pp. 153-189). Boca Raton, FL: CRC Press.
Fawcett, E., Van Velthoven, M. H., & Meinert, E. (2020). Long-term weight management using wearable technology in overweight and obese adults: Systematic review. JMIR MHealth and UHealth, 8(3), e13461. doi: 10.2196/13461
Fawkes, P. (2014). The Future of Wearable Tech: Key Trends Driving The Form And Function Of Personal Devices. Retrieved August 31, 2021, from https://hacedores.com/wp-content/uploads/2014/04/future-of-wearable-tech_v1.0.2.1.pdf.
Ferraro, V., & Ugur, S. (2011, June). Designing wearable technologies through a user centered approach. In Proceedings of the 2011 Conference on Designing Pleasurable Products and Interfaces, 1-8. ACM New York. doi: 10.1145/ 2347504.2347510
Franco, A. A., Bouma, H., & van Bronswijk, J. E. M. H. (2014). Health care paradigms in transition. Gerontechnology, 13(1), 5-10.
Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., & Taylor, N. G. (2020). Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: systematic review. JMIR mHealth and uHealth, 8(9), e18694.
Gao, Y., Yu, L., Yeo, J. C., & Lim, C. T. (2020). Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Advanced Materials, 32(15), 1902133.
Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M., & Martin, R. (1998). Design for wearability. The Second International Symposium on Wearable Computers (pp. 116–122). Los Alamitos, CA: IEEE Computer Society
Gilk, P. (2009). Green Politics is Eutopian. Cambridge, UK: Lutterworth Press.
Glennon, T., O'Quigley, C., McCaul, M., Matzeu, G., Beirne, S., Wallace, G. G., Stroiescu, F., O’Mahoney, N., White, P., & Diamond, D. (2016). ‘SWEATCH’: A wearable platform for harvesting and analysing sweat sodium content. Electroanalysis, 28(6), 1283-1289.
Grand View Research (2021). Wearable technology market size, share & trends analysis report (2021-2028). Retrieved January 5, 2022, from https://www.grandviewresearch.com/industry-analysis/wearable-technology-market
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (Iot): A vision, architectural elements, and future directions. Future Generation Computer Systems. 29(7), 1645-1660.
Gui, H., & Liu, J. (2018). Latest progresses in developing wearable monitoring and therapy systems for managing chronic diseases. arXiv preprint arXiv:1802.01747.
Guk, K., Han, G., Lim, J., Jeong, K., Kang, T., Lim, E. K., & Jung, J. (2019). Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials, 9(6), 813.
Habibi, A., Jahantigh, F. F., & Sarafrazi, A. (2015). Fuzzy Delphi technique for forecasting and screening items. Asian Journal of Research in Business Economics and Management, 5(2), 130-143.
Habibipour, A., Padyab, A. M., & Ståhlbröst, A. (2019). Social, ethical and ecological issues in wearable technologies. In AMCIS 2019, Twenty-fifth Americas Conference on Information Systems, Cancun, México, Augusti 15-17, 2019. Association for Information Systems.
Haghi, M. & Deserno, T.M. (2020). General conceptual framework of future wearables in healthcare: Unified, unique, ubiquitous, and unobtrusive (U4) for customized quantified output. Chemosensors, 8, 85. doi:10.3390/chemosensors8030085
He, Z., Chang, T., Lu, S., Ai, H., Wang, D., & Zhou, Q. (2017). Research on human-computer interaction technology of wearable devices such as augmented reality supporting grid work. Procedia Computer Science, 107, 170-175.
Heidegger, M. (1977). The Question Concerning Technology and Other Essays. New York: Garland Publishing.
Hexoskin Wearable Body Metrics. Retrieved June 18, 2020, from http://www.hexoskin.com/.
Humbani, M., & Wiese, M. (2019). An integrated framework for the adoption and continuance intention to use mobile payment apps. International Journal of Bank Marketing, 37 (2), 646–664.
Hussain, F., Ehatisham-ul-Haq, M., Azam, M. A., & Khalid, A. (2018, October). Elderly assistance using wearable sensors by detecting fall and recognizing fall patterns. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (pp. 770-777).
Hwang, S., & Lee, S. (2017). Wristband-type wearable health devices to measure construction workers' physical demands. Automation in Construction, 83, 330-340.
International Data Corporation (IDC, 2019). IDC Reports Strong Growth in the Worldwide Wearables Market, Led by Holiday Shipments of Smartwatches, Wrist Bands, and Ear-Worn Devices. Retrieved April 20, 2020, from https://www.businesswire.com/news/home/20190305005268/en/IDC-Reports-Strong-Growth-in-the-Worldwide-Wearables-Market-Led-by-Holiday-Shipments-of-Smartwatches-Wrist-Bands-and-Ear-Worn-Devices
International Data Corporation (IDC,2020). Wearable devices market share. Retrieved December 25, 2020, from https://www.idc.com/promo/wearablevendor
Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets and Systems, 55(3), 241-253.
Jafarnejad, A., Momeni, M., Razavi Hajiagha, S. H., & Faridi Khorshidi, M. (2019). A dynamic supply chain resilience model for medical equipment’s industry. Journal of Modelling in Management, 14(3), 816-840.
Jarusriboonchai, P., & Häkkilä, J. (2019). Customisable wearables: exploring the design space of wearable technology. In Proceedings of the 18th International Conference on Mobile and Ubiquitous Multimedia. ACM.
Jensen, M. C. (1993). The modern industrial revolution, exit, and the failure of internal control systems. The Journal of Finance, 48(3), 831-880.
Jia, L. M. & Tung, F. W. (2021). A study on consumers’ visual image evaluation of wrist wearables. Entropy, 23(9), 1118. https://doi.org/10.3390/e23091118.
Juhlin, O., Zhang, Y., Sundbom, C., & Fernaeus, Y. (2013, April). Fashionable shape switching: explorations in outfit-centric design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1353-1362).
Juhlin, O., Zhang, Y., Wang, J., & Andersson, A. (2016, October). Fashionable services for wearables: Inventing and investigating a new design path for smart watches. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction (pp. 1-10).
Kamišalić, A., Fister, I., Turkanović, M., & Karakatič, S. (2018). Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors, 18(6), 1714. doi.org/10.3390/s18061714
Kilani, D., Mohammad, B., Alhawari, M., Saleh, H., & Ismail, M. (2020). Power Management for Wearable Electronic Devices (pp. 1-99). Springer.
Kirk, S. (2014). The Wearables Revolution: Is Standardization a Help or a Hindrance?: Mainstream technology or just a passing phase?. IEEE Consumer Electronics Magazine, 3(4), 45-50.
Klir, G. T., 6 Folger, T. A. (1988). Fuzzy sets, uncertainty, and information. Englewood Cliffs, NJ: Prentice Hall.
Knight, J. F. (2002). The ergonomics of wearable computers: Implications for musculoskeletal loading. Unpublished Ph.D. thesis. University of Birmingham, School of Manufacturing and Mechanical Engineering, Birmingham, UK.
Knight, J. F. and Baber, C. (2005). A tool to assess the comfort of wearable computers. Human Factors: The Journal of the Human Factors and Ergonomics Society, 47(1), 77-91.doi:10.1518/0018720053653875
Knight, J. F., Deen-Williams, D., Arvanitis, T. N., Baber, C., Sotiriou, S., Anastopoulou, S., & Gargalakos, M. (2006, October). Assessing the wearability of wearable computers. In 2006 10th IEEE International Symposium on Wearable Computers (pp. 75-82). IEEE.
Kobsar, D., Charlton, J. M., Tse, C. T., Esculier, J. F., Graffos, A., Krowchuk, N. M., & Hunt, M. A. (2020). Validity and reliability of wearable inertial sensors in healthy adult walking: a systematic review and meta-analysis. Journal of neuroengineering and rehabilitation, 17, 1-21.
Ledger, D., & McCaffrey, D. (2014). Inside wearables: How the science of human behavior change offers the secret to long-term engagement. Endeavour Partners, 200(93), 1.
Lee, C. H., Wu, K. J., & Tseng, M. L. (2018). Resource management practice through eco-innovation toward sustainable development using qualitative information and quantitative data. Journal of Cleaner Production, 202, 120-129.
Lee, S. S., Son, I. H., Choi, J. G., Nam, D. H., Hong, Y. S., & Lee, W. B. (2011). Estimated blood pressure algorithm for a wrist-wearable pulsimeter using Hall device. Journal of the Korean Physical Society, 58(2), 349∼352.
Lee, S., & Seo, K. K. (2016). A hybrid multi-criteria decision-making model for a cloud service selection problem using BSC, fuzzy Delphi method and fuzzy AHP. Wireless Personal Communications, 86(1), 57-75.
Li, R. Y., & Wang, C. H. (2020). Key factors and network model for location-based cultural mobile game design. British Journal of Educational Technology, 51(6), 2495-2512.
Liang, J., Xian, D., & Liu, X.(2018). Usability study of mainstream wearable fitness devices: Feature analysis and system usability scale evaluation. JMIR mhealth and uhealth. 6(11):e11066. doi: 10.2196/11066
Liao, Y., Thompson, C., Peterson, S., Mandrola, J., & Beg, M. S. (2019). The Future of Wearable Technologies and Remote Monitoring in Health Care. American Society of Clinical Oncology Educational Book, 39, 115–121. doi: 10.1200/EDBK_238919.
Lidynia, C., Offermann-van Heek, J., & Ziefle, M. (2019, July). Nudging vs. budging–users’ acceptance of nudging for more physical activity. In International Conference on Applied Human Factors and Ergonomics (pp. 20-33). Springer, Cham.
Lin, C. T., & Wu, C. S. (2008). Selecting a marketing strategy for private hotels in Taiwan using the analytic hierarchy process. The Service Industries Journal, 28(8), 1077-1091.
Liu, H., Yao, X., Yang, T., & Ning, H. (2018). Cooperative privacy preservation for wearable devices in hybrid computing-based smart health. IEEE Internet of Things Journal, 6(2), 1352–1362. doi: 10.1109/JIOT.2018.2843561.
Liu, X and Lillehoj, P. B. (2016). Embroidered electrochemical sensors for biomolecular detection. Lab on a Chip, 16(11), 2093–2098.
Loncar-Turukalo, T., Zdravevski, E., da Silva, J. M., Chouvarda, I., & Trajkovik, V. (2019). Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers. Journal of medical Internet research, 21(9), e14017.
Looney, D., Kidmose, P., Park, C., Ungstrup, M., Rank, M. L., Rosenkranz, K., & Mandic, D. P. (2012). The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE pulse, 3(6), 32-42.
López-Blanco, R., Velasco, M. A., Méndez-Guerrero, A., Romero, J. P., Del Castillo, M. D., Serrano, J. I., ... & Benito-León, J. (2019). Smartwatch for the analysis of rest tremor in patients with Parkinson's disease. Journal of the neurological sciences, 401, 37-42.
Lutz, J., Memmert, D., Raabe, D., Dornberger, R., & Donath, L. (2020). Wearables for integrative performance and tactic analyses: opportunities, challenges, and future directions. International journal of environmental research and public health, 17(1), 59.
Majumder, S., Aghayi, E., Noferesti, M., Memarzadeh-Tehran, H., Mondal, T., Pang, Z., & Deen, M. J. (2017). Smart homes for elderly healthcare-Recent advances and research challenges. Sensors, 17(11), 2496.
Martilla, J. A., & James, J. C. (1977). Importance-performance analysis. Journal of marketing, 41(1), 77-79.
Melyani, M., Kosala, R., Ranti, B., Supangkat, S., & Gaol, F. L. (2019, November). Business Platform Model for Smart Home for Technology Planning Task Force. In IOP Conference Series: Materials Science and Engineering (Vol. 662, No. 2, p. 022022). IOP Publishing.
Mohammadfam, I., Aliabadi, M. M., Soltanian, A. R., Tabibzadeh, M., & Mahdinia, M. (2019). Investigating interactions among vital variables affecting situation awareness based on Fuzzy DEMATEL method. International Journal of Industrial Ergonomics, 74, 102842.
Mordor Intelligence (2020). Smart wearable market-Growth, trends, COVID-19 impact, and forcasts (2021 - 2026). Retrieved May 1, 2020, from https://www.mordorintelligence.com/industry-reports/smart-wearables-market.
Motti, V. G. & Caine, K. (2014, October). Human factors considerations in the design of wearable devices. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (pp. 1820–1824), San Diego, CA, USA.
Motti, V. G. (2020). Introduction to wearable computers. In V. G. Motti(ed), Wearable Interaction, Human–Computer Interaction Series (pp. 1–39). Springer International Publishing, Cham.
Mück, J. E., Ünal, B., Butt, H., & Yetisen, A. K. (2019). Market and patent analyses of wearables in medicine. Trends in Biotechnology, 37(6), 563-566.
Murray, T. J., Pipino, L. L., & van Gigch, J. P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management, 5(1), 76-80.
Oswald, A. J. (1997). Happiness and economic performance. The Economic Journal, 107(445), 1815-1831.
Pal, D., Triyason, T., & Funikul, S. (2017, December). Smart homes and quality of life for the elderly: A systematic review. In Proceedings of 2017 IEEE International Symposium on Multimedia (pp. 413–419), Taichung, Taiwan.
Pantelopoulos, A. & Bourbakis, N.G. (2010). A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and Cybernetics, 40(1):1–12.
Patel, M. S., Asch, D. A., & Volpp, K. G. (2015). Wearable devices as facilitators, not drivers, of health behavior change. Jama, 313(5), 459-460.
Peek, S. T., Wouters, E. J., Van Hoof, J., Luijkx, K. G., Boeije, H. R., & Vrijhoef, H. J. (2014). Factors influencing acceptance of technology for aging in place: a systematic review. International journal of medical informatics, 83(4), 235-248.
Perez, A. J. & Zeadally, S. (2018). Privacy issues and solutions for consumer wearables. IT Professional, 20(4), 46-56. doi:10.1109/MITP.2017.265105905
Poon, C. C., & Zhang, Y. T. (2008). Perspectives on high technologies for low-cost healthcare. IEEE Engineering in Medicine and Biology Magazine, 27(5), 42-47.
Priya, A., Kumar, A., & Chauhan, B. (2015). A review of textile and cloth fabric wearable antennas. International Journal of Computer Applications, 116(17), 975-8887.
PwC, P. (2017). The wearable life 2.0: Connected living in a wearable world. London: Author. Retrieved May 14, 2020, from https://www.pwc.com/ee/et/publications/pub/pwc-cis-wearables.pdf
Quer, G., Radin, J. M., Gadaleta, M., Baca-Motes, K., Ariniello, L., Ramos, E., & Steinhubl, S. R. (2021). Wearable sensor data and self-reported symptoms for COVID-19 detection. Nature Medicine, 27(1), 73-77.
Righi, V., Sayago, S., & Blat, J. (2015, June). Urban ageing: technology, agency and community in smarter cities for older people. In Proceedings of the 7th International Conference on Communities and Technologies,119-128.
Rogers, W. A., Meyer, B., Walker, N., & Fisk, A. D. (1998). Functional limitations to daily living tasks in the aged: A focus group analysis. Human Factors, 40(1), 111-125.
Roupa, Z., Nikas, M., Gerasimou, E., Zafeiri, V., Giasyrani, L., Kazitori, E., & Sotiropoulou, P. (2010). The use of technology by the elderly. Health Science Journal, 4(2), 118.
Saaty, T. L. (1996). Decision making with dependence and feedback: The Analytic Network Process, 4922.
Sanchez, V. G., Pfeiffer, C. F., & Skeie, N. O. (2017). A review of smart house analysis methods for assisting older people living alone. Journal of Sensor and Actuator Networks, 6(3), 11.
Scott, H., Lack, L., & Lovato, N. (2020). A systematic review of the accuracy of sleep wearable devices for estimating sleep onset. Sleep Medicine Reviews, 49, 101227.
Sempionatto, J. R., Nakagawa, T., Pavinatto, A., Mensah, S. T., Imani, S., Mercier, P., & Wang, J. (2017). Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab on a Chip, 17(10), 1834-1842.
Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Hassan, M., & Seneviratne, A. (2017). A survey of wearable devices and challenges. IEEE Communications Surveys & Tutorials, 19(4), 2573-2620.
Serrano-Garcia, W., Jayathilaka, W.A.D.M., Chinnappan, A., Tran, T.Q., Baskar, C., Thomas, S.W., & Ramakrishna, S. (2019). Nanocomposites for electronic applications that can be embedded for textiles and wearables. Science China Technological Sciences, 62, 895–902.
Shah, Y., Dunn, J., Huebner, E., & Landry, S. (2017). Wearables data integration: Data-driven modeling to adjust for differences in Jawbone and Fitbit estimations of steps, calories, and resting heart-rate. Computer in Industry, 86, 72–81. doi: 10.1016/j.compind.2017.01.003
Shi, G. & Jiang, D. (2021). Research on data security and privacy protection of wearable equipment in healthcare. Journal of Healthcare Engineering, ID 6656204. doi: 10.1155/2021/6656204
Stafford, L., & Baldwin, C. (2018). Planning walkable neighborhoods: are we overlooking diversity in abilities and ages? Journal of Planning Literature, 33(1), 17-30.
Starner, T. (2014). How wearables worked their way into the mainstream. IEEE Pervasive Computing, 13(4), 10-15.
Statista (2020). Retrieved June 30, 2020, from https://www.statista.com/outlook/319/100/wearables/worldwide#market-arpu.
Statista (2021a). Number of connected wearable devices worldwide by region 2015-2022. Retrieved September 7, 2021, from https://www.statista.com/statistics/490231/wearable-devices-worldwide-by-region/.
Statista (2021b). Motivations to purchase wearable tech in Taiwan 2019, by age. Retrieved August 27, 2021, from https://www.statista.com/statistics/1058942/taiwan-main-reasons-to-buy-wearables-tech-by-age/.
Sun, H., Zhang, Z., Hu, R. Q., & Qian, Y. (2018). Wearable communications in 5G: challenges and enabling technologies. IEEE Vehicular Technology Magazine, 13(3), 100-109.
Teng, X.-F., Zhang, Y.-T., Poon, C.C.-Y., & Bonato, P. (2008). Wearable medical systems for p-Health. IEEE Reviews in Biomedical Engineering, 1:62-74. doi: 10.1109/RBME.2008.2008248
Thierer, A. D. (2015). The internet of things and wearable technology: Addressing privacy and security concerns without derailing innovation. Richmond Journal of Law & Technology,21(2).
Thorp, E. O. (1998, October). The invention of the first wearable computer. In Proceedings of Second International Symposium on Wearable Computers (Cat. No. 98EX215), 4-8.
Tresp, V., Overhage, J. M., Bundschus, M., Rabizadeh, S., Fasching, P. A., & Yu, S. (2016, November). Going digital: a survey on digitalization and large-scale data analytics in healthcare. Proceedings of the IEEE, 104(11), 2180-2206.
United Nations (2019). World Population Ageing 2019 Highlights. Retrieved May 13, 2020, from https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf
Wang, J. F., & Chen, B. W. (2011, September). Orange computing: challenges and opportunities for awareness science and technology. In 2011 3rd International Conference on Awareness Science and Technology (iCAST), 533-535.
Wang, J. F., Chen, B. W., Fan, W. K., & Li, C.H. (2012) Emotion-aware interactive system for humanistic care based on orange computing concept. Journal of Applied Computational Intelligence and Soft Computing, 9, 183610.
Wang, Z., Yang, Z., & Dong, T. (2017). A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors, 17(2), 341.
Whitford, M. (1998). Market in motion. Hotel & Motel Management, 213(7), 41-43.
Wu, J., Li, H., Cheng, S., & Lin, Z. (2016). The promising future of healthcare services: When big data analytics meets wearable technology. Information and Management, 53(8), 1020–1033. doi: 10.1016/j.im.2016.07.003
Wu, K. J., Tseng, M. L., Chiu, A. S. F., & Lim, M. K. (2017). Achieving competitive advantage through supply chain agility under uncertainty: A novel multi-criteria decision-making structure. International Journal of Production Economics, 190, 96-107.
Yang, H.; Yu, J.; Zo, H.; & Choi, M. (2016). User acceptance of wearable devices: An extended perspective of perceived value. Telematics and Informatics, 33(2), 256–269.
Yazar, A., Erden, F., & Cetin, A. E. (2014, May). Multi-sensor ambient assisted living system for fall detection. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1-3), Florence, Italy.
Zhao, R.; Gao, Y.; Lin, X.; Tian, Y.; Chen, X.; Xia, L.; Jie, Y. (2021). Fuzzy theory analysis on imagery modeling of wearable bracelet in the urbanian health management. Mathematical Biosciences and Engineering, 18(1), 600–615. doi: 10.3934/mbe.2021033

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
QR Code
QRCODE